
Homework for Math 5470 §1, Spring 2016

A. Treibergs, Instructor

April 13, 2016

Our text is by Steven H. Strogatz, Nonlinear Dynamics and Chaos, 2nd ed. Please read the
relevant sections in the text as well as any cited reference. Assignments are due the following
Friday, or on Apr. 26, whichever comes first.

Your written work reflects your professionalism. Make answers complete and self contained.
This means that you should copy or paraphrase each question, write in complete sentences,
provide adequate explanation to help the reader understand the structure of your argument, be
thorough in the details, state any theorem that you use and proofread your answer.

Homework from Thursday and Tuesday will be due Friday. Late homework that is up to one
week late will receive half credit. Homework that is more than one week late will receive no credit
at all. Homework that is placed in my mailbox in JWB 228 before 4:00 pm Friday afternoon will
be considered to be on time.

Please hand in problems A on Thursday, January 21.

A. Exercises from Chapter 2 of the text

2.2[3,6,8,12], 2.3[2,3,4], 2.4[2], 2.5[2], 2.6[2]

2.2.3 Analyze graphically: sketch the vector field, find the fixed points, classify their stability,
sketch graph for various initial conditions. Find the analytic solution if it’s easy.

ẋ = x− x3

2.2.6 Same for ẋ = 1− 2 cosx

2.2.8 Find an ẋ = f(x) whose phase portrait is

−−−−→ −1 −−−−→ 0 ←−−−−←−−−− 2 −−−−→

2.2.12 Suppose that the resistor I = V/R in the RC circuit Example 2.2.2 is replaced by
I = g(V ) which is an increasing function with g(0) = 0, for example g(V ) = rAtn(V )
for some r > 0. Redo Example 2.2.2 in this case. Derive the circuit equations, find the
fixed points and analyze their stability. What qualitative effect does this nonlinearity
introduce (if any)?

2.3.2 Autocatalysis for the concentration x = [X] is given by the equation

ẋ = k1x− k2x
2

where ki are positive reaction rate constants. Find all fixed points and classify their
stability. Sketch the graph of x(t) for various initial values.
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2.3.3 Growth of a tumor may be modeled by a Gompertz law

Ṅ = −aN log(bN)

where N(t) is proportional to number of cells in the tumor and a, b > 0 are constants.
Interpret a and b biologically. Sketch the vector field and graph N(t) for various initial
values.

2.3.4 For certain organisms, the effectve growth rate Ṅ/N is largest at intermediate N . This
is called the Allee Effect. Show that

Ṅ

N
= r − a(N − b)2

provides an example of the Allee Effect, if a, b and r satisfy certain constraints to
be determined. Find the fixed points and classify their stability. Sketch the solutions
for various initial values. Compare solutions N(t) to those of the Logistic Equation.
What are the qualitative differences (if any)?

2.4.2 Use linearized stability analysis to classify the fixed point of ẋ = x(x− 1)(x− 2).

2.5.2 Show that the solution to ẋ = 1 + x10 escapes to +∞ in finite time, starting from
any initial condition. Hint: don’t try to find an exact solution; instead, compare the
solution to those of ẋ = 1 + x2.

2.6.2 Here is an analytic proof that periodic solutions are impossible for vector fields on
the line. Suppose on the contrary that x(t) is a nontrivial periodic solution, i.e.,
x(t) = x(t + T ) for some T > 0, and x(t) 6= x(s) for all t < s < t + T . Derive a
contradiction by considering ∫ t+T

t

f(x)
dx

dt
dt.

Please hand in problems B on Thursday, January 28.

B. Exercises from Chapter 2 – 3 of the text

2.7[3,6], 3.1[4], 3.2[4,6,7], 3.3[1,2]

2.7.3 Plot the potential. Identify all equalibrium points and their stability.

ẋ = sinx

2.7.6 Same for
ẋ = r + x− x3 for various values of r.

3.1.4 Sketch the qualitatively different vector fields as r is varied. Show that a saddle-node
bifurcation occurs for a particular value of r, to be determined. Sketch the bifurcation
diagram for various fixed points x∗ versus r.

ẋ = r +
1

2
x− x

1 + x

3.2.4 Sketch the qualitatively different vector fields as r is varied. Show that a transcritical
bifurcation occurs for a particular value of r, to be determined. Sketch the bifurcation
diagram for various fixed points x∗ versus r.

ẋ = x(r − ex)
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3.2.6 Consider Ẋ = RX −X2 + aX3 + O(X4) where R 6= 0. We seek a new variable x so
that the system transforms to ẋ = Rx − x2 + O(X4). Put x = X + bX3 + O(X4),
where b will be chosen later to eliminate the cubic term. Rewrite the equation in terms
of x using the steps:

(a) Show that this can be inverted to yield X = x+ cx3 + O(x4) and solve for c.

(b) Write ẋ = Ẋ + 3bX2Ẋ +O(X4) and substitute X and Ẋ on the right side so that
everything depends only on x. Multiply the resulting expansion and collect terms
to obtain ẋ = Rx− x2 + kx3 + O(x4) where k depends on a, b and R.

(c) Choose b so that k = 0.

(d) Is it really necessary to assume R 6= 0? Explain.

3.2.7 Generalize. Suppose we have eliminated terms to obtain Ẋ = RX − X2 + anX
n +

O(Xn+1), where n ≥ 3. Use the strategy of the previous problem to show that the
equation may be rewritten as ẋ = Rx−x2 +O(Xn+1) for an appropriate choice of bn.

3.3.1 The laser model of Milonni and Eberly is

ṅ = GnN − kn
Ṅ = −GnN − fN + p

where constants G, k, f > 0 and p may have either sign.

(a) Assume we can approximate Ṅ ≈ 0. Derive a first order equation for n.

(b) Show that n∗ = 0 becomes stable for p > pc, where pc is to be determined.

(c) What type of bifurcation occurs at pc?

(d) For what range of parameters is it valid to make the approximation used in (a)?

3.3.2 The (slightly corrected from Strogatz*) laser model of Maxwell-Bloch (the Haken-
Lorenz equations) is

Ė = κ(P − E)

Ṗ = γ1(ED − P )

Ḋ = γ2(λ+ 1−D − EP )

where E is electric field, P is mean polarization and D is population inversion, and
where constants κ, γ1, γ2 > 0 and λ may have either sign. In practical lasers, γ1, γ2 � κ
so D and P relax rapidly to steady values and may be eliminated as follows.

(a) Assume we can approximate Ṗ ≈ 0 and Ḋ ≈ 0. Express P and D in terms of E
to derive an ODE for E.

(b) Find the fixed points in the equation for E

(c) Draw the bifurcation diagram of E∗ versus λ. Distinguish stable and unstable
branches.

(*) See for example, Roldan and Prati, “Semiclassical Theorey of Amplification and
Lasing,” p.15, http://arxiv.org/pdf/quant-ph/0605084.pdf
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Please hand in problems C on Thursday, Feb. 4.

C. Exercises from Chapter 3 of the text

3.4[15], 3.5[1, 2, 3, 7], 3.6[3], 3.7[6]

3.4.15 Consider the potential V (x) for the system

ẋ = rx+ x3 − x5

Calculate the critical rc defined by the condition that V has three equally deep wells,
i.e., the values of V at the three local minima are equal.

3.5.1 Consider the bead on the rotating hoop discussed in Section 3.5. Explain in physical
terms why the bead can’t have an quilibrium position with φ > π

2 .

3.5.2 Do the linear stability analysis at all fixed points for Equation (3.5.7) and confirm that
Figure 3.5.6 is correct.

3.5.3 Show that Equation (3.5.7) reduces to

dφ

dτ
= Aφ−Bφ3 + O(φ5)

near φ = 0. Find A and B.

3.5.7 Consider the logistic equation

Ṅ = rN

(
1− N

K

)
, N(0) = N0.

(a) The equation has three dimennsional parameters r, K and N0. Find the dimen-
sions of each of these parameters.

(b) Show that the system can be written in dimensionless form

dx

dτ
= x(1− x), x(0) = x0.

3.6.3 Consider the system
ẋ = rx+ ax2 − x3

where a and r are real constants. When a = 0 we have the normal form of the
supercritical pitchfork.

(a) For each a there is a bifurcation diagram of x∗ versus r. As a varies, these diagrams
undergo qualitative changes. Sketch all the qualitatively different diagrams for
various a.

(b) Summarize your results by plotting in the regions in the (r, a) plane that corre-
spond to qualitatively different vector fields. Bifurcations occur at the boundary
of these regions. Identify the type of bifurcations that occur.

3.7.6 Kermack and McKendrick’s model for an epidemic is

ẋ = −kxy
ẏ = kxy − `y
ż = `y

where x, y and z are the number of healthy people, sick people, and dead people, resp.,
and k and ` are positive constants. It ignores slower changes such as births, emigration
and deaths due to other causes.
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(a) Show that x+ y + z = N , where N is a constant.

(b) Use the ẋ and ẏ equations to show that

x(t) = x0 exp

(
−k
`
z(t)

)
, where x0 = x(0).

(c) Show that z satisfies the first order equation

ż = `

[
N − z − x0 exp

(
−k
`
z(t)

)]
.

(d) Show this equation may be nondimensionalized to

du

dτ
= a− bu− e−u

(e) Show a ≥ 1 and b > 0.

(f) Determine the number of fixed points u∗ and classify their stability.

(g) Show that the maximum of u̇(t) occurs at the same time as the maximum of ż(t)
and y(t). This time is called the peak of the epidemic and is denoted tp.

(h) Show that if b < 1 then u̇(t) is increasing at t = 0 and reaches its maximum at
some time tp > 0. Thus things get worse before they get better. Show that u̇(t)
eventually decreases to zero. In this situation we say that an epidemic occurs.

(i) On the other hand, show that tp = 0 if b > 1. So no epidemic occurs.

(j) b = 1 is the threshold condition far the epidemic to occur. Can you give a biological
interpretation?

(k) How would you revise the model to make it more appropriate for AIDS? Which
assumptions need revising?

Please hand in problems D on Thursday, Feb. 11.

D. Exercises from Sec. 4.1 – 5.1 of the text

4.1[5], 4.2[2], 4.3[4], 4.5[3], 4.6[3], 5.1[2]

4.1.5 Find and classify all the fixed points and sketch the phase portrait on the circle.

θ̇ = sin θ + cos θ

4.2.2 Graph x(t) = sin 8t + sin 9t for −20 < t < 20. You should find that the amplitude is
modulated.

(a) What is the period of the amplitude modulation?

(b) Solve the problem analytically, using a trig identity that converts sums of sines
and cosines to products of sines and cosines.

4.3.4 Draw the phase portrait as a function of the control parameter µ. Classify the bifur-
cations that occur as µ varies and find all the bifurcation values of µ.

θ̇ =
sin θ

µ+ cos θ
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4.5.3 In an excitable system, as in a neuron, a small signal will cause little response, but
above a threshold level the signal will produce a large spike before returning to rest.
Roughly speaking, excitable systems have two properties: (1) it has a unique, globally
attracting rest state; and (2) a large stimulus can send the system on a long excursion
through phase space before it returns to the resting state. Consider the caricature
equation

θ̇ = µ+ sin θ

where µ is slightly less than 1.

(a) Show that the system satisfies the two properties. What objects plays the role of
“rest state” and “threshold”?

(b) Let V (t) = cos θ(t). Sketch V (t) for various initial conditions. (V (t) is analogous
to a neuron’s membrane potential and initial conditions correspond to different
perturbations from the rest state.)

4.6.3 As in §2.7, imagine a particle sliding down a suitable potential.

(a) Find a potential function corresponding to Equation (4.6.7): φ′ = I/Ic − sinφ.
Show that it is not a single valued function on the circle.

(b) Graph the potential, called the washboard potential, as a function of φ for various
values of I/Ic. Here φ is to be regarded as a real number, not an angle.

(c) What is the effect of increasing I?

5.1.2 Consider the system for constant a < −1

ẋ = ax

ẏ = −y

Sketch some trajectories. Show that all trajectories become parallel to the y-direction
as t → ∞, and parallel to the x-direction as t → −∞. (Hint: Examine the slope
dy/dx = ẏ/ẋ)

Please hand in problems E on Thursday, Feb. 25.

E. Exercises from Sec. 5.1 – 6.1 of the text

5.1[9, 10], 5.2[2, 6], 5.3[4], 6.1[5, 14]

5.1.9 Consider the system ẋ = −y, ẏ = −x.

(a) Sketch the vector field.

(b) Show that trajectories are hyperbolas of the form x2 − y2 = C.
[Hint: show xẋ− yẏ = 0 and integrate.]

(c) The origin is a saddle point. Find equations for its stable and unstable manifolds.

(d) The system can be solved as follows. Introduce new variables u = x + y and
v = x − y. Rewrite the system in terms of u and v. Solve starting from an
arbitrary initial condition (u0, v0).

(e) What are the equations of the stable and unstable manifolds in terms of u and v?

(f) Using the answer to (d), write the general solution for x(t) and y(t) starting from
an initial condition (x0, y0).

5.1.10 Here are the official definitions of different types of stability. Consider a fixed point x∗

of the system ẋ = f(x).
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We say that x∗ is attracting if there is a δ > 0 such that limt→∞ x(t) = x∗ whenever
‖x(0) − x∗‖ < δ. In other words, any trajectory that starts within a distance δ of x∗

is guaranteed to converge to x∗ eventually. Trajectories that start nearby are allowed
to stray from x∗ in the short run but must converge to x∗ in the long run.

In contrast, we say that x∗ is Lyapunov Stable if for each ε > 0 there is a δ > 0 such
that ‖x(t)− x∗‖ < ε whenever t ≥ 0 and ‖x(0)− x∗‖ < δ. Thus trajectories that start
within δ of x∗ stay within ε of x∗ for all positive time.

Finally, we say x∗ is asymptotically stable if it is both attracting and Liapunov
stable.

For each of the following systems, determine whether the origin is attracting, Liapunov
stable, asymptotically stable or none of these. Explain your deductions.

(a)

{
ẋ = y

ẏ = −4x
(b)

{
ẋ = 2y

ẏ = x
(c)

{
ẋ = 0

ẏ = x

(d)

{
ẋ = 0

ẏ = −y
(e)

{
ẋ = −x
ẏ = −5y

(f)

{
ẋ = x

ẏ = y

5.2.2 Consider the system ẋ = x− y, ẏ = x+ y.

(a) Sketch the vector field.

(b) Show that A has the eigenvalues λ, λ̄ = 1 ± i with corresponding eigenvectors
x, x̄ =

(±i
1

)
.

(c) The general solution is z(t) = c1e
λtx + c2e

λ̄tx̄. Write a general solution in terms
of purely real functions. Solving for the unknown constants, write the general
solution for x(t) and y(t) starting from the initial condition (x0, y0).

5.2.6 Plot the phase portrait and classify the fixed point in the following linear system. If
the eigenvectors are real, indicate them in your sketch.

ẋ = −3x+ 2y

ẏ = x− 2y

5.3.4 Predict the course of the love affair depending on signs and relative sizes of the con-
stants a and b. Suppose Romeo and Juliet are opposites. Analyze

Ṙ = aR+ bJ

J̇ = −bR− aJ

6.1.5 Find the fixed points. Find the null-clines. Sketch the vector field and a plausible
phase portrait.

ẋ = x(2− x− y)

ẏ = x− y

6.1.14 Recall system 6.1.1. It has a saddle fixed point at (−1, 0).

ẋ = x+ e−y

ẏ = −y

Its unstable manifold is the x-axis. Find an approximation to the stable manifold.
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(a) Let (x, y) be a point on the stable manifold, and assume (x, y) is close to (−1, 0).
Introduce a new variable u = x+1 and write the stable manifold as a power series

y = au+ bu2 + O(u3)

near u = 0. Because this curve passes through (u, y) = (0, 0), the constant term
is zero. Determine the coefficients a and b by deriving two expressions for dy/du
and equating them.

(b) Sketch the vector field, null clines, phase portrait, unstable and stable manifolds,
using (a). Check that your sketch agrees with Figure 6.1.4.

Please hand in problems F on Thursday, Mar. 3.

F. Exercises from Sec. 6.3 – 6.8 of the text

6.3[4, 13], 6.4[2], 6.5[9, 10, 19], 6.6[5], 6.8[1, 7]

6.3.4 Find and classify the rest points. Sketch the neighboring trajectories and fill in the
rest of the phase portrait.

ẋ = y + x− x3

ẏ = −y

6.3.13 Show that the origin is a spiral although the it’s a center for the linearization.

ẋ = −y − x3

ẏ = x

6.4.2 Let x, y ≥ 0 be populations of rabbits and sheep. Find the fixed points. Investigate
their stability. Draw the null clines and sketch the phase portrait. Indicate the basin
of attraction for any stable fixed point.

ẋ = x(3− 2x− y)

ẏ = y(2− x− y)

6.5.9 A Hamiltonian System in the system in the plane for which there exists a smooth real
function H(p, q) such that

q̇ =
∂H

∂p

ṗ = −∂H
∂q

Show that H is a conserved quantity so that trajectories lie on contour lines H(p, q) =
C.

6.5.10 A particle moves in the plane governed by inverse square force whose Hamiltonian is

H(p, r) =
p2

2
+

h2

2r2
− k

r

where r > 0 is the distance to the origin and p is the radial momentum. The parameters
h and k are the angular momentum and force constant, resp.
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(a) Suppose k > 0 corresponding to an attracting force of gravity. Sketch the phase
portrait in the (r, p) plane. [Hint: graph the effective potential V (r) = h2/2r2−k/r
and look for intersections with horizontal lines of height E. Use this to sketch
contour curves H(p, r) = E for various positive and negative E.

(b) Show that the trajectories are closed if −k2/2h2 < E < 0. What happens if
E > 0?

(c) If k < 0 (as in electric repulsion) show that there are no periodic orbits.

6.5.19 Consider the Volterra-Lotka predator prey model (rabbits and foxes although V-L
wrote about fish in the Mediterranean)

Ṙ = aR− bRF
Ḟ = −cF + dRF

where a, b, c, d > 0 are constants.

(a) Discuss the biological meaning of each of the terms in model. Comment on any
unrealistic assumptions.

(b) Show that the model may be recast in dimensionless form

x′ = x(1− y)

y′ = µy(x− 1)

(c) Find a conserved quantity in terms of the dimensionless variables.

(d) Show that the model predicts cycles in the populations of both species for almost
all initial conditions.

6.6.5 Consider equations of the form

ẍ+ f(ẋ) + g(x) = 0

where f and g are smooth functions such that f is an even function.

(a) Show that the equation is invariant under pure time-reversal symmetry t→ −t.
(b) Show that equilibrium points cannot be stable nodes or spirals.

6.8.1 Show that each of the following fixed points each has an index equal to +1: (a) stable
spiral, (b) unstable spiral, (c) center, (d) star, (e) degenerate node.

6.8.7 Use index theory to show that the system has no closed orbits.

x′ = x(4− y − x2)

y′ = y(x− 1)
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Please hand in your term project proposal and problems G on Thursday, Mar. 10.

Term Project Proposal. Please prepare a one paragraph proposal for your term project. Pick
the topic you plan to write about and try to be specific about what you will say about the
topic. If you have already discussed your project with me, please jot down what we agreed.

G. Exercises from Sec. 7.1 – 7.3 of the text

7.1[3, 5, 8], 7.2[7, 12, 18], 7.3[1, 3, 10]

7.1.3 Sketch the phase portrait of system in polar coordinates

ṙ = r(1− r2)(4− r2)

θ̇ = 2− r2

7.1.5 Show that the systems are equivalent where x = r cos θ, y = r sin θ{
ṙ = r(1− r2)

θ̇ = 1

{
ẋ = x− y − x(x2 + y2)

ẏ = x+ y − y(x2 + y2)

7.1.8 Consider the equation for a > 0

ẍ+ a(ẋ2 + x2 − 1)ẋ+ x = 0

(a) Find and classify all fixed points.

(b) Show that the system has a circular limit cycle. Find its amplitude and period.

(c) Determine the stability of the limit cycle.

(d) Give an argument that the limit cycle is unique, i.e., there are no other periodic
trajectories.

7.2.7 Consider

ẋ = y + 2xy

ẏ = x+ x2 − y2

(a) Show that ∂f/∂y = ∂g/∂x so that the system is a gradient system.

(b) Find the potential V .

(c) Sketch the phase portrait.

7.2.12 Show that the system has no periodic trajectory

ẋ = −x+ 2y3 − 2y4

ẏ = −x− y + xy

Hint: Find a, m, n such that V = xm + ayn is a Liapunov function.

7.2.18 Consider Hofbauer and Sigmund’s predator-prey model for r > 0 and x ≥ 0, y ≥ 0

ẋ = rx
(

1− x

2

)
− 2xy

1 + x

ẏ = −y +
2xy

1 + x

Prove that it has no periodic trajectory. Use Dulac’s Criterion with g(x, y) =
1 + x

x
yα

with suitable α.
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7.3.1 Consider

ẋ = x− y − x(x2 + 5y2)

ẏ = x+ y − y(x2 + y2)

(a) Classify the fixed point at the origin.

(b) Rewrite the system in polar coordinates (r, θ).

(c) Determine the circle of maximal radius r1 centered at the origin such that all the
trajectories have a radially outward component on it.

(d) Determine the circle of minimal radius r2 centered at the origin such that all the
trajectories have a radially inward component on it.

(e) Prove that the system has a limit cycle somewhere in the annulus r1 ≤ r ≤ r2.

7.3.3 Show that the system has a periodic solution.

ẋ = x− y − x3

ẏ = x+ y − y3

7.3.10 Consider the two-dimensional system

ẋ = Ax− r2x

where r = ‖x‖ and A ia a constant 2 × 2 matrix with complex eigenvalues α ± iω.
Prove that there exists at least one limit cycle if α > 0 and that there are none for
α < 0.

Please hand in problems H on Thursday, Mar. 24.

H. Exercises from Sec. 8.1 – 8.3 of the text

8.1[1, 4, 6, 13], 8.2[1], 8.3[1]

8.1.1 Plot the phase portraits as µ varies.

(a.)

{
ẋ = µx− x2

ẏ = −y
(b.)

{
ẋ = µx+ x3

ẏ = −y

8.1.4 Find the eigenvalues at the stable fixed point as a function of µ, and show that one of
the eigenvalues tends to zero as µ→ 0.

ẋ = µx+ x3

ẏ = −y

8.1.6 Consider the system

ẋ = y − 2x

ẏ = µ+ x2 − y

(a) Find the nullclines.

(b) Find and classify all bifurcations that occur as µ varies.

(c) Sketch the phase portrait as a function of µ.
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8.1.13 Recall the laser model of Exercise 3.3.1 for the number of excited atoms N(t) and the
number of photons n(t)

ṅ = GnN − kn
Ṅ = −GnN − fN + p

where f , G, k are positive constants and p is a constant of either sign.

(a) Nondimensionalize the system.

(b) Find and classify all of the fixed points.

(c) Sketch all the quantitatively different phase portraits that occur as the dimension-
less parameters are varied.

(d) Plot the stability diagram for the system. What types of bifurcations occur?

8.2.1 Consider the biased van der Pol Equation

ẍ+ µ(x2 − 1)ẋ+ x = a

Find the curves in the (µ, a) space at which Hopf bifurcations occur.

8.3.1 Consider the Brusselator model of a chemical reaction for concentrations x ≥ 0 and
y ≥ 0

ẋ = 1− (b+ 1)x+ ax2y

ẏ = bx− ax2y

where a > 0 and b > 0 are parameters.

(a) Find all the fixed points, and use the Jacobian to classify them.

(b) Sketch the nullclines. Find as small as possible trapping region for the flow.

(c) Show that a Hopf bifurcation occurs at some parameter value b = bc, where bc is
to be determined.

(d) Does the limit cycle exist for b > bc or b < bc? Explain using the Poincaré
Bendixson Theorem.

(e) Find the approximate period of the limit cycle for b ≈ bc.
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Please hand in problems I on Thursday, Apr. 7.

In grading your homework, I have recently noticed that too many homework solu-
tions are almost identical to each other. The same notation, steps, tricks and shortcomings
appear. I can only conclude that some students are copying from each other or copying
solutions found on line word for word. It is bad enough that the source isn’t attributed,
but it is an example of claiming another’s work as your own. This is plagiarism and is a
violation of the University of Utah’s Student Code (see our syllabus or Article XI). In the
future, when I see similar solutions, I will not just mark them “Don’t Copy,” but will assign
a zero score.

Nowadays the internet is omnipresent. I don’t want to prevent students from accessing
this useful resource or, once in a while, looking there for hints on a difficult problem.
Similarly, I want to encourage students to work together and exchange ideas about problems,
or to seek help from me or others. But, when it comes to writing the homework, students
should work alone. In writing up solutions, students should use their own words and thereby
make an original, intellectual contribution in explaining what they’ve worked hard to learn.
Answers should be thorough enough to convince me you understand the solution and should
attribute any extraordinary sources.

My apologies for this message to the majority of students who don’t copy.

I. Exercises from Sec. 8.5 – 8.6 of the text

8.5[3, 4], 8.6[1, 2]

8.5.3 Consider the Logistic Equation with periodic carrying capacity

Ṅ = rN

(
1− N

K(t)

)
where the carrying capacity K(t) > 0 is a smooth T -periodic function.

(a) Using a Poincaré Map argument, show that the system has at least one stable
T -periodic limit cycle, contained in the strip Kmin ≤ N(t) ≤ Kmax.

(b) Is the cycle necessarily unique?

8.5.4 Consider a generalization of the fishery model of Exercise 3.7.3 where the harvesting
is now a periodic function reflecting seasonal variations. Assume Benardete et al.’s
model where the harvesting is sinusoidal. If fish population grows logistically in the
absence of harvesting, the model is given in dimensionless form by

ẋ = rx(1− x)− h(1 + α sin t)

where r, h > 0 and 0 < α < 1 are parameters.

(a) If r < 4h, show that there is no periodic solution even though the fish is being
harvested with period T = 2π. What happens to the fish population in this case?

(b) Using a Poincaré Map argument, show that if 4h(1 + α) < r, there exists a stable
2π-periodic solution in the strip 1/2 < x < 1. Similarly there exists an unstable
2π-periodic solution in 0 < x < 1/2. Interpret these results biologically.

(c) What happens in between cases (a) and (b) when 4h < r < 4h(1 + α)?

8.6.1 Consider Ermentrout & Koppel’s neural oscillator model with parameters ω1, ω2 ≥ 0

θ̇1 = ω1 + sin θ1 cos θ2

θ̇2 = ω2 + sin θ2 cos θ1
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(a) Sketch the qualitatively different phase portraits that arise when ω1 and ω2 vary.

(b) Find the curves in (ω1, ω2) parameter space along which bifurcations occur, and
classify the various bifurcations.

8.6.2 Continuation of the previous problem. Now suppose

θ̇1 = ω1 +K1 sin(θ2 − θ1)

θ̇2 = ω2 +K2 sin(θ1 − θ2)

(a) Find a conserved quantity for the system. Hint: solve for sin(θ2−θ1) in two ways.

(b) Suppose K1 = K2. Show that the system can be non-dimensioqnalized to

dθ1

dτ
= 1 + a sin(θ2 − θ1)

dθ2

dτ
= ω + a sin(θ1 − θ2)

(c) Find the winding number ψ analytically, where

ψ = lim
τ→∞

θ1(τ)

θ2(τ)

Hint: Evaluate the long time averages〈
d(θ1 + θ2)

dτ

〉
,

〈
d(θ1 − θ2)

dτ

〉
where

〈f〉 = lim
T→∞

1

T

∫ T

0

f(τ) dτ.

Please hand in problems J on Thursday, Apr. 14.

J Exercises from Sec. 8.7 – 9.2 of the text

8.7[1, 2, 3], 9.1[3, 4], 9.2[3]

8.7.1 Use partial fractions to evaluate the integral from Example 8.7.1 and use it to compute
r1(r0). Then check that P ′(r∗) = e−4π.∫ r1

r0

dr

r(1− r2)
, r1 =

1√
1 + e−4π(r−2

0 − 1)

8.7.2 Consider the vector field on the cylinder

θ̇ = 1

ẏ = ay

Define an appropriate Poincaré Map and find a formula for it. Show that the system
has a periodic orbit. Classify its stability for all real values of a.
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8.7.3 Consider an over damped linear oscillator forced by a square wave. The system can
be non-dimensionalized to

ẋ+ x = F (t)

where

F (t) =

{
+A, if 0 ≤ t < T

2 ,

−A, if T
2 ≤ t < T

for all 0 ≤ t < T , and the F (t) is extended by T -periodicity to all other t. Show that
trajectories approach a unique periodic solution.

(a) Let x(0) = x0. Show that x(T ) = x0e
−T −A(1− e−T/2)2.

(b) Show that the system has a unique periodic solution that satisfieds x0 = −A tanh(T/4).

(c) Interpret the limits of x(T ) as T →∞. Explain why they’re plausible.

(d) Let x1 = x(T ) and define the Poincaré Map P as P (x0) = x1. More generally
xk+1 = P (xk). Plot the graph of P .

(e) Using the cobweb picture, shew what P has a globally stable fixed point.

9.1.3 Find a change of variables that converts the water wheel equations

ȧ1 = ωb1 −Ka1

ḃ1 = −ωa1 + q1 −Kb1

ω̇ = −ν
I
ω +

πgr

I
a1

into the Lorenz equations

ẋ = σ(y − x)

ẏ = rx− xz − y
ż = xy − bz

where σ, b, r > 0 are parameters. Also show that when the waterwheel equations are
transformed into the Lorenz equations, then the Lorenz parameter b turns out to be
b = 1. Express the Prandtl and Rayleigh numbers σ and r in terms of the waterwheel
parameters.

9.1.4 The Maxwell-Bloch equations for a laser are

Ė = κ(P − E)

Ṗ = γ1(ED − P )

Ḋ = γ2(λ+ 1−D − λEP )

(a) Show that the non-lading state (the fixed point with E∗ = 0) loses stability above
a threshold value of λ, to be determined. Classify the bifurcation at this laser
threshold.

(b) Find the change of variables that transforms this system into the Lorenz system.

9.2.3 Show that all trajectories of the Lorenz equations eventually enter and remain inside
the sphere

x2 + y2 + (z − r − σ)2 = C

for C sufficiently large. [Hint: show that x2 +y2 +(z−r−σ)2 decreases on trajectories
outside a certain ellipsoid. Then pick C large enough so that the sphere engulfs this
ellipsiod.]
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Please hand in problems K on Thursday, Apr. 21.

K Exercises from Sec. 9.2 – 10.3 of the text

9.2[6], 9.3[8], 9.4[2], 10.1[10], 10.3[2], 12.1[7]

9.2.6 Consider Rikitake’s model for geommagnetic reversals with a, ν > 0 parameters

ẋ = −νx+ zy

ẏ = −νy + (z − a)x

ż = 1− xy

(a) Show that the system is dissipative.

(b) Show that the fixed points may be written x∗ = ±k, y∗ = ±k−1, z∗ = νk2 where
ν(k2 − k−2) = a.

(c) Classify the fixed points.

9.3.8 Consider the following system in polar coordinates. ṙ = r(1− r2), θ̇ = 1.

Let D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} be the closed unit disk.

(a) Is D an invariant set?

(b) Does D attract an open set of initial conditions?

(c) Is D an attractor? If not, why not? If so, find its basin of attraction.

(d) Repeat part (c) for the circle C = {(x, y) ∈ R2 : x2 + y2 = 1}.
9.4.2 Consider the map

xn+1 =

{
2xn, if 0 ≤ xn ≤ 1

2 ,

2− 2xn, if 1
2 < xn ≤ 1.

(a) Why is it called a “tent map”?

(b) Find all the fixed points and classify their stability.

(c) Show that the map has a period-2 obit. Is it stable or unstable?

(d) Can you find any period-3 points? How about period-4? If so, are the correspond-
ing periodic orbits stable or unstable?

10.1.10 Show that the map xn+1 = 1 + 1
2 sinxn has a unique fixed point. Is it stable?

10.3.2 Let p and q be points in a 2-cycle for the logistic map.

(a) Show that if the cycle is superstable then either p = 1
2 or q = 1

2 .

(b) Find the value r at which the logistic map has a superstable 2-cycle.

12.1.7 Consider the Smale Horseshoe map from the square to itself given in Figure 1 on p. 455.
Poincaré maps that act like horseshoe maps on a region generate chaos.

(a) Find the points in the original square that correspond to the two shaded horizontal
strips. (Points for which the map is defined.)

(b) Show that after the next round, the square contains four shaded horizontal strips.
Find where they came from in the original square. (they are points that survive
two iterations.)

(c) Describe the set of points in the original square that survive forever.

Please hand in Term Projects on Tuesday, Apr. 26.

The Final is Wednesday, May 4, from 8:00 – 10:00 am.
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