
Math 5440 § 1.
Treibergs

First Midterm Exam Name: Practice Problems
September 23, 2016

1. Find an equation whose solutions are graphs over the plane which are rotationally symmetric
about the z-axis.

We seek a PDE whose general solution is

u(x, y) = f(x2 + y2)

We shall differentiate and eliminate f . To simplify notation, put t = x2 + y2. Then

ux = f ′(t) 2x, uy = f ′(t) 2y

Equating
ux
x

= 2f ′(t) =
uy
y

we see that the eliminating f give the desired PDE

y ux − xuy = 0.

Checking, we see that the characteristics satisfy the ODE’s

ẋ(τ) = y; ẏ(τ) = −x.

These imply
dy

dx
= −x

y

which is a separable equation
y dy = −x dx

Its solutions are
1

2
y2 = −1

2
x2 +

c

2
.

In other words, the characteristic curves are

x2 + y2 = c

which are circles about the origin. The function u is constant on concentric circles, which
says the graph z = u(x, y) is rotationally symmetric about the z-axis.

2. Find the general solution of x2 ux − xy uy + yu = 0.

The characteristics satisfy
ẋ = x2; ẏ = −xy.

Separate variables in the first equation.

dx

x2
= dt.

The solution of the first with x(0) = x0 is

1

x0
− 1

x
= τ

or
x(τ) =

x0
1− x0τ

.
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Then separating variables in the second equation yields

dy

y
= − x0 dτ

1− x0τ

Hence
log y − log y0 = log(1− x0τ).

The solution of the second with y(0) = y0 is

y(τ) = y0(1− x0τ).

so the characteristics are curves that satisfy xy = const.

Let us specify u when the characteristic crosses the line x = 1 when y = x0y0. Starting
from there at time zero, at time t0 = 1 − 1/x0 we flow to (x(t0), y(t0)) = (x0, y0). Along
the characteristic starting at (1, x0y0), the solution satisfies

dz

dτ
= −yz = x0y0(τ − 1)u

so
du

u
= x0y0(τ − 1) dτ.

The solution of this with u(1, x0y0) = u0 is

log u− log u0 = x0y0

(
1

2
τ2
)

or

u
(
x(τ), y(τ)

)
= exp

(
1

2
τ2 − τ

)
returning to t0 = 1− 1/x0, the general solution is thus

u(x0, y0) = u(x(t0), y(t0)) = f(x0y0) exp

(
1

2
τ20 − τ0

)
= f(x0y0) exp

(
y0

2x0
− x0y0

2

)
= φ(x0y0) exp

(
y0

2x0

)
where φ(w) = f(w)e−w/2 is an arbitrary function. This general form also works if x0 < 0.

3. For the transport equation
ux + 4x3yuy = 0

find the characteristic curves. Find the general solution. Find the solution associated to the
initial condition u(0, y) = y2.

The characteristic curves satisfy

ẋ = 1, ẏ = 4x3y.

Thus the first has solutions x(τ) = x0 + τ . Then the second may be separated

d ln y =
dy

y
= 4x3 dτ = d

(
(x0 + τ)4

)
to yield the solution

ln y − ln y0 = (x0 + τ)4 − x40
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or
y(τ) = y0 exp

(
(x0 + τ)4 − x40

)
The characteristic through the point (x0, y0) is the curve

y(x) = y0 exp
(
x4 − x40

)
.

Each of these curves cross the y-axis. Starting from (x0, y0) the curve crosses x = 0 when
τ = −x0 at the point y(0) = y0 exp

(
−x40

)
. If we parameterize by the crossing point y(0) = c,

then the set of points that cross there (the characteristic curve) is given by

y = c exp
(
x4
)
.

So the general solution may be assigned any value on the c-characteristic so it is

u(x0, y0) = g
(
y0 exp

(
−x40

))
where g(z) is any function. Checking we see that

ux0
= g′

(
y0 exp

(
−x40

))
y0 exp

(
−x40

)
(−4x30),

uy0 = g′
(
y0 exp

(
−x40

))
exp

(
−x40

)
Hence the PDE is satisfied

ux0 = −4x30y0uy.

If u(0, y) = y2 then
u(x0, y0) = y20 exp

(
−2x40

)
.

4. Determine the type of the following PDE. Make a change of variables to bring the equation
into canonical form.

2uxx + 4uxy + 5uyy = 0

The discriminant is ∆ = B2− 4AC = 16− 4 · 2 · 5 = −24 < 0 so the equation is elliptic. We
diagonalize the coefficient matrix by changing to eigenvector coordinates. The characteristic
polynomial has factorization

0 =

∣∣∣∣∣∣∣∣
2− λ 2

2 5− λ

∣∣∣∣∣∣∣∣ = (2− λ)(5− λ)− 4 = λ2 − 7λ+ 6 = (λ− 1)(λ− 6)

An eigenvector for λ = 6 is found by instepction

0 =

2− λ 2

2 5− λ

v1 =

1 2

2 4


 2

−1


For λ = 6,

0 =

2− λ 2

2 5− λ

v2 =

−4 2

2 −1


1

2


Making the change to eigen-directions

ξ = 2x+ y

η = −x+ 2y
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we find

ux = uξ ξx + uη ηx = 2uξ + uη etc.

uy = −uξ + 2uη

uxx = 4uξξ + 4uξη + uηη

uxy = −2uξξ + 3uξη + 2uηη

uyy = uξξ − 4uξη + 4uηη

Thus, inserting into the original equation,

0 = 2uxx + 4uxy + 5uyy = 5uξξ + 30uηη

A further change to s = ξ/
√

5 and t = η/
√

30 reduces the equation to Laplace’s equation
(the canonical form)

0 = uss + utt.

5. A flexible chain of length ` is hanging from one end x = 0 but oscillates horizontally. Let
the x-axis point downward and the u-axis point to the right. Assume that the force of gravity
at each point of the chain equals the weight of the part of the chain below the point and is
directed tangentially along the chain. Assume that the oscillations are small. Find the PDE
satisfied by the chain.

Smallness of the oscillations implies that the motion is entirely horizontal and has zero
vertical component. Also that ux is small and the first order approximation is adequate√

1 + u2x ≈ 1.

Compared to the derivation of the usual wave equation, the tensions along the chain are
no longer constant. The tension (downward pull force) in the chain is by assumption
proportional to the length dangling at point x

T (x) = gρ(`− x).

Let ρ be the constant mass density per unit length and g the acceleration of gravity. Under
the assumptions, the vertical component of the force vectors simply say that the tension
on top to hold up a length of string from x0 to x1 equals the tension on bottom plus the
weight of the length of string, resulting in Newton’s Law ma = F to zero acceleration.

ma =
T (x1)√

1− u2x(t, x1)
+ gρ(x1 − x0)− T (x0)√

1− u2x(t, x0)

≈ gρ(`− x1) + gρ(x1 − x0)− gρ(`− x0) = 0.

The horizontal component of forces acting on the length of chain is

T (x)ux√
1− u2x

∣∣∣∣∣
x1

x0

=

∫ x1

x0

ρutt dx

Using smallness, this is approximately

gρ(`− x1)ux(t, x1)− gρ(`− x0)ux(t, x0) =

∫ x1

x0

ρutt dx

Differentiating with respect to x1 yields the desired PDE

g
∂

∂x

(
(`− x)

∂ u

∂x

)
=
∂2u

∂t2
.
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6. Solve the initial value problem.

(PDE) ut = uxx for −∞ ≤ x ≤ ∞, 0 < t;

(IC) u(x, 0) = ϕ(x) for −∞ ≤ x ≤ ∞.

where

ϕ(x) =

{
1, if |x| ≤ a;

0, otherwise.

The solution of the initial value problem

(PDE) ut = uxx for −∞ ≤ x ≤ ∞, 0 < t;

(IC) u(x, 0) = H(x) for −∞ ≤ x ≤ ∞.

with the Heaviside Function

H(x) =

{
0, if x < 0;

1, if x ≥ 0;

is given by the special solution found by the similarity method in the text:

Q(x, t) =
1

2
+

1√
π

∫ x√
4t

0

e−p
2

dp = Φ

(
x√
4t

)
where Φ(z) is the cumulative distribution function for the standard normal variable. We
shall obtain a solution by superposition of reflections and translations of Q(x, t) which
preserve the heat equation and make the initial condition.

Observe that ϕ(x) = H(x+ a)−H(x− a). The first term turns on when x > −1 and the
second turns on cancelling the first when x > a. Thus the solution of the problem is given
by

u(x, t) = Q(x+ a, t)−Q(x− a, t) = Φ

(
x+ a√

4t

)
− Φ

(
x− a√

4t

)

=
1√
π

∫ x+a√
4t

0

e−p
2

dp− 1√
π

∫ x−a√
4t

0

e−p
2

dp

=
1√
π

∫ x+a√
4t

x−a√
4t

e−p
2

dp

This is equivalent to the heat kernel formula

u(x, t) =
1√
4πt

∫ ∞
−∞

e
− (x−y)2

4t ϕ(y) dy =
1√
4πt

∫ a

−a
e
− (x−y)2

4t dy
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7. Solve

(PDE) Lu = uxx − 3uxt − 4utt = 0 for −∞ ≤ x ≤ ∞, 0 < t;

(IC) u(x, 0) = x2, ut(x, 0) = ex for −∞ ≤ x ≤ ∞.

Factor the operator
Lu = (∂x + ∂t)(∂x − 4∂t)u = 0

The solution of the transport equation (∂x + ∂t)u = 0 is

u(x, t) = f(x− t)

and the solution of the transport equation (∂x − 4∂t)u = 0 is

u(x, t) = g

(
x+

t

4

)
.

where f , g are any functions. Both solve the equation so by superposition, the most general
solution is

u(x, t) = f(x− t) + g

(
x+

t

4

)
At the initial time,

x2 = u(x, 0) = f(x) + g(x)

so
2x = f ′(x) + g′(x).

Also

ut(x, t) = −f ′(x− t) +
1

4
g′
(
x+

t

4

)
so at the initial time,

ex = ut(x, 0) = −f ′(x) +
1

4
g′ (x)

The solution of the 2× 2 system is

f ′(x) =
2x− 4ex

5
, g′(x) =

8x+ 4ex

5

Hence, adding constants of integration,

f(x) =
x2 − 4ex

5
+ c1, g(x) =

4x2 + 4ex

5
+ c2

so

u(x, t) =
1

5
(x− t)2 − 4

5
ex−t +

1

20
(4x+ t)2 +

4

5
ex+

t
4 + (c1 + c2)

At time zero,
x2 = u(x, 0) = x2 + (c1 + c2)

so c1 + c2 = 0. Thus the solution of the Cauchy Problem is

u(x, t) = x2 +
1

4
t2 − 4

5
ex

(
e−t − e

t
4

)
.
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8. Let k, a, b, `, M , N and T be positive constants. Suppose f(x, t) is continuous and satisfies
|f(x, t)| ≤ N for all x and t. Let the parabolic boundary tT = {(0, t) : 0 ≤ t ≤ T} ∪ {(`, t) :
0 ≤ t ≤ T} ∪ {(x, 0) : 0 ≤ x ≤ `}. Let u(x, t) be continuous on QT = [0, `]× [0, T ] and be a
solution of the heat equation

(HE) −ut + kuxx + aux − bu = f(x, t) for 0 < x < `, 0 < t ≤ T ;

Suppose that u is bounded on the parabolic boundary: |u(x, t)| ≤ M for all (x, t) ∈ tT .
Show that |u(x, t)| ≤M +Nt for all (x, t) ∈ [0, `]× [0, T ] .

We argue that the maximum principle continues to hold for (HE). Let w(x, t) be continuous
on [0, `]× [0, T ] and satisfy the heat inequality

(HI) −wt + kuxx + awx − bw ≥ 0 for 0 < x < `, 0 < t ≤ T ;

(IBC) w ≤ 0 for (x, t) ∈ tT ;

Then w ≤ 0 on QT . To see it, for contradiction there is a point (x0, t0) ∈ (0, `) × (0, T ]
where w is a positive maximum. There w(x0, t0) > 0, wx(x0, t0) = 0, wxx(x0, t0) ≤ 0 and
wt(x0, t0) ≥ 0. But this is a contradiction to (HI):

−wt(x0, t0) + kuxx(x0, t0) + awx(x0, t0)− bw(x0, t0) ≤ 0 + 0 + 0− bw(x0, t0) < 0.

We prove an upper and a lower inequality for u. First, we consider

v(x, t) = u(x, t)−M −Nt

Then for (x, t) ∈ tT , v(x, t) ≤M −M −Nt ≤ 0 which is (IBC), and for (x, t) ∈ QT ,

−vt+kvxx+avx−bv = −ut+N+kuxx+aux−bu+bM+bNt = f(x, t)+N+bN+bNt ≥ 0

which is (HI) so v(x, t) ≤ 0 for all (x, t) ∈ QT . Similarly, for

z(x, t) = −u(x, t)−M −Nt

Then for (x, t) ∈ tT , z(x, t) ≤M −M −NT ≤ 0, and for (x, t) ∈ QT ,

−zt+kzxx+azx−bz = ut+N−kuxx−aux+bu−bM−bNt = −f(x, t)+N+bN+bNt ≥ 0

so z(x, t) ≤ 0 for all (x, t) ∈ QT . Putting these together imply for (x, t) ∈ QT ,

|u(x, t))| ≤M +Nt.

9. Show that solutions of the heat equation exhibit infinite propagation speed.

Consider the initial value problem for an infinite rod

(PDE) ut = kuxx for −∞ ≤ x ≤ ∞, 0 < t;

(IC) u(x, 0) = H(x) for −∞ ≤ x ≤ ∞.

where the Heaviside Function

H(x) =

{
0, if x < 0;

1, if x ≥ 0;

The solution found by the similarity method is given by

Q(x, t) =
1

2
+

1√
π

∫ x√
4t

0

e−p
2

dp = Φ

(
x√
4t

)
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Note that

lim
z→−∞

1√
π

∫ z

0

e−p
2

dp = −1

2

so that Φ(z) → 0 as z → −∞ but Φ(z) > 0 for all z ∈ R as it is the integral of a positive
function.

Now the initial data is positive only for x ≥ 0 so that the speed of propogation to the point
(x, t) with x < 0 and t > 0 exceeds −t/x if Q(x, t) > 0. But Q(x, t) > 0 for all x and t > 0
so the propagation speed −x/t may be made as large as you like by decreasing t or sending
x→ −∞.

10. Prove the uniqueness of the wave equation with Neumann boundary conditions.

(PDE) utt = c2uxx for 0 ≤ x ≤ `, 0 < t;

(IC) u(x, 0) = φ(x), ut(x, 0) = ψ(x) for 0 ≤ x ≤ `;
(BC) ux(0, t) = a(t), ux(`, t) = b(x) for 0 ≤ t.

Suppose there are two solutions u(x, t) and v(x, t). The difference

w(x, t) = u(x, t)− v(x, t)

satisfies the IBVP

(PDE) ρwtt = Twxx for 0 ≤ x ≤ `, 0 < t;

(IC) w(x, 0) = 0 = φ̃(x), wt(x, 0) = 0 = ψ̃(x) for 0 ≤ x ≤ `;
(BC) ux(0, t) = 0, ux(`, t) = 0 for 0 ≤ t.

The energy

E(t) =
1

2

∫ `

0

ρw2
t (x, t) + Tw2

x(x, t) dx

starts at

E(0) =
1

2

∫ `

0

ρψ̃2(x) + T
(
φ̃′(x)

)2
dx = 0.

It grows according to

dE
dt

=

∫ `

0

ρwt wtt + Twx wxt dx

=

∫ `

0

ρwt wtt − Twxx wt dx+

[
Twx wt

]`
0

=

∫ `

0

wt (ρwtt − Twxx) dx+ 0− 0 = 0.

where we have integrated by parts and used (PDE) and (BC). It follows that E(t) = E(0) = 0
is constant. But the only way a continuous function can have

0 =
1

2

∫ `

0

ρw2
t (x, t) + Tw2

x(x, t) dx

is if ut(x, t) = 0 for all t, which implies x(x, t) = x(x, 0) = φ̃(x) = 0 is constant, dead zero.
But then u = v so any two solutions have to agree: the problem has a unique solution.
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