
Math 5440 § 1.
Treibergs

Second Midterm Exam Name: Solutions
Nov. 9, 2016

1. Consider the initial-boundary value problem on an interval with k > 0 constant.

(PDE) ut = kuxx, for 0 < x <
π

3
and 0 < t;

(BC) u(0, t) = 0,

u(
π

3
, t) = 0, for 0 < t;

(IC) u(x, 0) = ϕ(x), for 0 < x <
π

3
.

Separate variables and deduce an eigenvalue problem for the x-part of the solution. Deter-
mine the eigenvalues and eigenfunctions. (You may assume eigenvalues are positive.) Solve
the t-part of the solution and find the general solution as a series.

Assuming u(t, x) = T (t)X(x), the separation of variables leads to

T ′(t)X(x) = kT (t)X ′′(x)

so
T ′

kT
=
X ′′

X
= −λ

for some constant λ. The BC’s imply this eigenvalue problem for X has Dirichlet conditions.
The eigenvalue problem becomes

X ′′ + λX = 0, X(0) = 0, X(
π

3
) = 0

We are told λ is positive. But this is easy to see because these are symmetric BC’s so the
eigenvalue is real, nonnegative. If λ = 0 then X ′′ = 0 so X = A + Bx. The boundary
conditions give 0 = X(0) = A and 0 = X(π3 ) = 0 + B π

3 so B = 0 also, the trivial solution.
So λ = 0 is ruled out leaving λ > 0.

Putting λ = β2 where β > 0 gives solutions

X(x) = A cosβx+B sinβx

Boundary conditions 0 = X(0) = A and 0 = X(π3 ) = 0 +B π
3 imply B = 0 or

βn = 3n, n = 1, 2, 3, . . . .

The eigenfunctions are thus

Xn(x) = sin 3nx, n = 1, 2, 3, . . . .

The corresponding time equation is

T ′n + kλnTn = 0, n = 1, 2, 3, . . .

whose general solution is

Tn(t) = Ane
−9kn2t

where An is constant. The general solution is thus

u(t, x) =

∞∑
n=1

Ane
−9kn2t sin 3nx.
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The coefficients satisfy

ϕ(x) = u(x, 0) =

∞∑
n=1

An sin 3nx

so An is the sine series coefficient, given by the formula

An =
2

`

∫ `

0

ϕ(x) sin
(nπx

`

)
dx =

6

π

∫ π
3

0

ϕ(x) sin 3nx dx.

2. Consider the initial-boundary value problem.

(PDE) utt = c2uxx, for 0 < x < π and 0 < t;

(BC) ux(0, t) = 0,

u(π, t) = 0, for 0 < t;

(IC) u(x, 0) = 0,

ut(x, 0) = cos 5
2x, for 0 < x < π.

All solutions of the eigenvalue problem

X ′′ + λX = 0, X ′(0) = 0, X(π) = 0

are given by

Xn(x) = cos

(
n+

1

2

)
x, n = 0, 1, 2, 3, . . . .

Find the eigenvalues. Find the general solution as a series. Find the particular solution.

Inserting the eigenfunction Xn into the PDE

−
(
n+

1

2

)2

cos

(
n+

1

2

)
x+ λn cos

(
n+

1

2

)
x

implies

λn =

(
n+

1

2

)2

, n = 0, 1, 2, 3, . . . .

Assuming u(t, x) = T (t)X(x), the separation of variables leads to

T ′′

c2T
=
X ′′

X
= −λ

for some constant given as positive λ = β2 where β > 0. The BC’s imply this eigenvalue
problem for X has mixed BC Neumann on the left and Dirichlet on the right BC’s. You
were given the eigenfunctions Xn(x). The corresponding time equation is

T ′′n + c2λnTn = 0, n = 0, 1, 2, 3, . . .

whose general solution is

Tn(t) = An cos

(
n+

1

2

)
ct+Bn sin

(
n+

1

2

)
ct

where An and BN are constant. The general solution is thus

u(t, x) =

∞∑
n=1

{
An cos

(
n+

1

2

)
ct+Bn sin

(
n+

1

2

)
ct

}
cos

(
n+

1

2

)
x
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We have

0 = u(x, 0) =

∞∑
n=1

An cos

(
n+

1

2

)
x

so An = 0 for all n. Also

cos
5

2
x = ut(x, 0) =

∞∑
n=1

Bnc

(
n+

1

2

)
cos

(
n+

1

2

)
x

so

B2 =
2

5c

and the rest of the Bn = 0. Thus the particular solution is

u(t, x) =
2

5c
sin

(
5

2
ct

)
cos

(
5

2
x

)
.

3. Consider the functions fn(x) = xn−xn+1. The infinte sum S(x) =

∞∑
n=1

fn is known to

converges pointwise on the interval [0, 1].

(a) Find S(x) for 0 ≤ x ≤ 1. [Be careful!]

The sum telescopes so

Sn = (x1 − x2) + (x2 + x3) + · · · (xN − xN+1) = x− xN+1

If x = 1 then SN (x) = 0 for all N . On the other hand, for 0 ≤ x < 1, SN (x) =
x− xN+1 → x as N →∞. Summarizing, for 0 ≤ x ≤ 1,

S(x) = lim
N→∞

SN (x) =

{
x, if 0 ≤ x < 1;

0, if x = 1.

(b) Define:

∞∑
n=1

fn converges uniformly.

Does the series converge uniformly on [0, 1] with these fn? Why?

The series

∞∑
n=1

fn is said to converge uniformly on [0, 1] if

lim
N→∞

sup
0≤x≤1

|SN (x)− S(x)| = 0.

Here the sum does not converge uniformly on [0, 1]. Even though SN (1) − S(1) = 0,
this is because for each N ,

sup
0≤x≤1

|SN (x)− S(x)| = sup
0≤x<1

∣∣x− xN+1 − x
∣∣ = 1

which does not converge to zero.

(c) Define:

∞∑
n=1

fn converges in the L2-sense.

Does the series converge in the L2-sense on [0, 1] with these fn? Why?

3



The series

∞∑
n=1

fn is said to converge in the L2-sense on [0, 1] if

lim
N→∞

∫ 1

0

|SN (x)− S(x)|2 dx = 0.

Here the sum does converge in the L2-sense on [0, 1]. We can omit one point |SN (1)−
S(1)|2 = 0 of the integrand and not change the integral. For each N ,∫ 1

0

|SN (x)− S(x)|2 dx =

∫ 1

0

∣∣x− xN+1 − x
∣∣2 dx =

[
x2N+3

2N + 3

]1
0

=
1

2N + 3

which converges to zero as N →∞.

4. For positive constants A, B, T let

ϕ(x) =

{
1, if 0 ≤ x ≤ A;

0, otherwise.
f(t, x) =

{
1, if 0 ≤ x ≤ B and 0 ≤ t ≤ T ;

0, otherwise.

Consider the initial-boundary value problem on the half-line, where k > 0 is constant.

(PDE) ut − kuxx = f(t, x), for 0 < x <∞ and 0 < t;

(BC) ux(0, t) = 0, for 0 < t;

(IC) u(x, 0) = ϕ(x), for 0 < x <∞.

Solve the problem. You may write your solution as an integral. Show that for all x ≥ 0, the
solution u(x, t)→ 0 as t→∞.

The Neumann condition at x = 0 tells us to find the even extension to all of −∞ < x <∞
and then do Duhamel’s formula using the extended data to express the solution on the
halfline.

ϕev(x) =

{
1, if −A ≤ x ≤ A;

0, otherwise.
fev(t, x) =

{
1, if −B ≤ x ≤ B and 0 ≤ t ≤ T ;

0, otherwise.

Then

u(t, x) =

∫ ∞
−∞

S(t, x− y)ϕev(y) dy +

∫ t

0

∫ ∞
−∞

S(t− s, x− y)fev(s, y) dy ds+

where

S(t, z) =
1√

4kπt
exp

(
− z2

4kt

)
.

So, if t > T then inserting ϕev and Fev,

u(t, x) =

∫ A

−A

1√
4kπt

exp

(
− (x− y)2

4kt

)
dy+

∫ T

0

∫ B

−B

1√
4kπ(t− s)

exp

(
− (x− y)2

4k(t− s)

)
dy ds

The integrands are everywhere positive so u(t, x) ≥ 0. Observing that for 0 ≤ s ≤ T < t
we have

exp

(
− (x− y)2

4kt

)
≤ 1, exp

(
− (x− y)2

4k(t− s)

)
≤ 1,

1√
4kπ(t− s)

≤ 1√
4kπ(t− T )

It follows that for t > T ,

0 ≤ u(t, x) ≤ 2A√
4kπt

+
2BT√

4kπ(t− T )
→ 0, as t→∞.
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5. Consider the eigenvalue problem on 1 ≤ x ≤ 2

X ′′ + λX = 0, X ′(1) = X(1), X ′(2) = −X(2).

Show that the eigenvalues are real and positive.

Let X be a possibly complex eigenfunction with possibly complex eigenvalue λ. Multiplying
by the complex conjugate, integrating by parts and using the boundary condition yields

λ

∫ 2

1

XX̄ dx = −
∫ 2

1

X ′′X̄ dx

=

∫ 2

1

X ′X̄ ′ dx−
[
X ′X̄

]2
1

=

∫ 2

1

X ′X̄ ′ dx−X ′(2)X̄(2) +X ′(1)X̄(1)

=

∫ 2

1

X ′X̄ ′ dx+X(2)X̄(2) +X(1)X̄(1)

λ

∫ 2

1

|X|2 dx =

∫ 2

1

|X ′|2 dx+ |X(2)|2 + |X(1)|2

Since X is nontrivial, the integral of |X|2 is positive. Similarly, the terms on the right are
nonnegative, hence λ is real, nonnegative.

If λ = 0 then X ′′ = 0 so X = A+Bx and X ′ = B. The boundary conditions give

B = X ′(1) = A+B

B = X ′(2) = A+ 2B

so A = B = 0, the trivial solution. So λ = 0 is ruled out leaving λ > 0.
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