
Math 5410 § 1.
Treibergs

First Midterm Exam Name: Soluytions
Sept. 20, 2017

1. Consider the system

X ′ =

0 1

a b

X.

Sketch the regions in the ab-plane where this system has different types of canonical forms.
In the interior of each region, sketch a small phase plane indicating how the flow looks.

Find the eigenvalues.

0 = det(A− λI) =

∣∣∣∣∣∣∣∣
−λ 1

a b− λ

∣∣∣∣∣∣∣∣ = λ2 − bλ− a

Solving the quadratic equation

λ =
b±
√
b2 + 4a

2
.

Thus the ab-plane is split into five regions by the parabola 4a = −b2 and the coordinate axes.
Note that λ1λ2 = det(A) = −a and λ1 + λ2 = trA = b. Hence if a > 0 the determinant
is negative and the eigenvalues have opposite signs: the rest point is a saddle. If 4a < −b2
then the roots are complex. If also b < 0 (b > 0) the rest point is a stable spiral (unstable
spiral resp.) But if −b2 < 4a < 0 the roots are real. If also b < 0 (b > 0) the rest point is a
stable node (unstable node resp.)

Figure 1: ab plane for Problem 1.

1



2. Consider the system

X ′ =

 1 2

−1 3

X. (1)

Find the real general solution. Determine the real canonical form Y ′ = BY for system (1).
Find the matrix M so that Y = MX puts (1) in canonical form. Check that your matrix
works.

Find the eigenvalues.

0 = det(A− λI) =

∣∣∣∣∣∣∣∣
1− λ 2

−1 3− λ

∣∣∣∣∣∣∣∣ = (1− λ)(3− λ) + 2 = λ2 − 4λ+ 5 = (λ− 2)2 + 1

so λ1 = 2 + i and λ2 = 2− i. Solving for the λ1 eigenvector

0 = (A− λ1I)v1 =

−1− i 2

−1 1− i


 2

1 + i

 .

Thus a complex solution is given by

X(t) = e(2+i)t

 2

1 + i

 = e2t(cos t+ i sin t)

 2

1 + i



= e2t


 2 cos t

cos t− sin t

+ i

 2 sin t

cos t+ sin t




The real general solution is a combination of the real and imaginary parts of one of the
complex solutions.

X(t) = e2t

c1
 2 cos t

cos t− sin t

+ c2

 2 sin t

cos t+ sin t


 .

If λ = a+ ib then the real canonical form is Y ′ = BY where

B =

 a b

−b a

 =

 2 1

−1 2

 .

There is a matrix T such that B = T−1AT and the transformation is given by M = T−1.
Indeed, if Y = T−1X then

Y ′ = T−1X ′ = T−1AX = T−1ATY = BY.
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In fact, the matrix is given by the real and imaginary parts of the eigenvector

T =

2 0

1 1

 , M = T−1 =
1

2

 1 0

−1 2

 .

To check, we compute

AT =

 1 2

−1 3


2 0

1 1

 =

4 2

1 3


which equals

TB =

2 0

1 1


 2 1

−1 2

 =

4 2

1 3

 .

3. Let A be an n × n real matrix. Define “rangeA” and “kerA.” Let A be an n × n real
matrix such that kerA = {0}. From first principles, show that rangeA = Rn and, therefore
dim kerA+ dim rangeA = n.

The kernel is the nullspace defined by

kerA = {x ∈ Rn : Ax = 0}.

The range is the image defined by

rangeA = {Ay : y ∈ Rn}.

Suppose that the kernel is zero. That means that the only solution of

Ax = 0

is x = 0. If we do elementary row operations R, the matrix A is reduced to a reduced row
echelon form that has no free columns, otherwise there are nonzero null vectors. But an
n× n reduced row echelon matrix with no free columns is the identity matrix

RA = I.

We claim that rangeA = Rn. To see this, we show that any b ∈ Rn is the image of some
vector x under A. Such x satisfies

Ax = b.

Doing row operations
x = Ix = RAx = Rb.

Since we found an x ∈ Rn such that b = Ax, any vector b ∈ Rn is in the range of A.
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4. Consider the family of differential equations depending on the parameter a.

x′ = x3 + 4x2 − ax

Find the bifurcation points. Sketch the phase lines for values of a just above and just
below the bifurcation values. Sketch the bifurcation diagram for this family of equations.
Determine the stability type of the rest points for each a.

Factoring,
x′ = x(x2 + 4x− a) = f(x, a).

The bifurcation curves are the solutions of f(x, a) = 0 which are the curves x = 0 and a =
x2 +4x = (x+2)2−4. Thus x = 0 is a rest point for all values of a and x = −2±

√
a+ 4 are

two more rest points for a > −4. Thus there are two bifurcation points at (a, x) = (−4,−2)
and at (a, x) = (0, 0). As a increases from −∞, a rest point appears at a = −4 which splits
into a stable and unstable rest point for −4 < a giving a fold type bifurcation. Then as
a increases through a = 0, a stable and unstable rest point collide and “bounce,” giving a
transcritical bifurcation. The phase lines are indicated for some typical a values in Fig. 2.
Since f(x, a) goes from negative to positive at x = −2±

√
a+ 4 when a > 0, these are both

unstable. x = 0 is stable for a > 0 and unstable for a < 0. x = −2 +
√
a+ 4 is stable for

−4 < a < 0 and x = −2−
√
a+ 4 is unstable for a > −4. The flow directions are indicated

on the a = const. lines for some typical values of a. When a < −4 when x 7→ f(x, a) is
an increasing function which is negative for x < 0 and positive for x > 0. Thus flow is
away from the rest point. When −4 < a < 0, x 7→ f(x, a) goes from negative to positive to
negative to positive so flow is to the left for x < −2−

√
4 + a and −2 +

√
4 + a < x < 0 and

to the right otherwise making the rest points −2−
√

4 + a and 0 unstable and −2 +
√

4 + a
stable. When 0 < a, x 7→ f(x, a) goes from negative to positive to negative to positive so
flow is to the left for x < −2−

√
4 + a and 0 < x < −2 +

√
4 + a and to the right otherwise

making the rest points −2±
√

4 + a unstable and 0 stable.

Figure 2: Bifurcation Diagram and Phase Lines for Problem (4).
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5. Find the flows φXt and φYt . Find an explicit congugacy between the flows and check that
your conjugacy works.

X ′ =

1 0

0 −3

X, Y ′ =

−2 0

0 2

 .

If the flow starts at (a, b) at t = 0, the flows are given by solving the systems

φXt

a
b

 =

 eta

e−3tb

 , φYt

a
b

 =

e−2ta
e2tb

 .

Notice that the incoming and outgoing axes are different, so we seek a homeomorphism that
swaps the two directions. We look for p and q so that

h

x
y

 =

sgn(y)|y|p

sgn(x)|x|q

 .

Then flowing first and then applying the map yields

h ◦ φXt

x
y

 =

sgn(y)|e−3ty|p

sgn(x)|etx|q

 .

Applying the map first and then flowing yields

φYt ◦ h

x
y

 =

e−2t sgn(y)|y|p

e2t sgn(x)|x|q

 .

For these to be equal we need

3p = 2, 2 = q =⇒ p =
2

3
, q = 2

so

h

x
y

 =

sgn(y)|y|2/3

sgn(x)|x|2

 .

Checking,

h ◦ φXt

x
y

 =

sgn(y)|e−3ty|2/3

sgn(x)|etx|2

 =

e−2t sgn(y)|y|2/3

e2t sgn(x)|x|2

 = φYt ◦ h

x
y

 .
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