Math 5410 § 1. First Midterm Exam Name: Goluptions
Treibergs Sept. 20, 2017

1. Consider the system

X' = X.
a b

Sketch the regions in the ab-plane where this system has different types of canonical forms.
In the interior of each region, sketch a small phase plane indicating how the flow looks.

Find the eigenvalues.

-2 1
0 =det(A—\)= =X —b\—a

Solving the quadratic equation
bV 4 4a

Thus the ab-plane is split into five regions by the parabola 4a = —b? and the coordinate axes.
Note that A\j Ay = det(A) = —a and A\; + Ao = tr A = b. Hence if a > 0 the determinant
is negative and the eigenvalues have opposite signs: the rest point is a saddle. If 4a < —b?
then the roots are complex. If also b < 0 (b > 0) the rest point is a stable spiral (unstable
spiral resp.) But if —b? < 4a < 0 the roots are real. If also b < 0 (b > 0) the rest point is a
stable node (unstable node resp.)
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Figure 1: ab plane for Problem 1.



2. Consider the system

X' = X. (1)

Find the real general solution. Determine the real canonical form Y' = BY for system (1).
Find the matriz M so that Y = M X puts (1) in canonical form. Check that your matriz
works.

Find the eigenvalues.

1—x 2
0=det(A — ) = =(1-NB-N+2= -4\ +5=1-2)2+1

-1 3-A

S0 A1 = 2414 and Ao = 2 — i. Solving for the A\; eigenvector

—1—1 2 2
O:(A—All)’lil =

-1 1—14 1474

Thus a complex solution is given by

. 2 2
X(t) = e+t = e?!(cost +isint)
141 141
2cost 2sint
= e? +1
cost —sint cost +sint

The real general solution is a combination of the real and imaginary parts of one of the
complex solutions.

2cost 2sint
X(t)=¢" | + co
cost —sint cost +sint

If A = a + ib then the real canonical form is Y’/ = BY where

There is a matrix 7 such that B = T~'AT and the transformation is given by M = T~
Indeed, if Y = 771X then

YV =T7'X'=T7'AX =T 'ATY = BY.



In fact, the matrix is given by the real and imaginary parts of the eigenvector

2 0 10
T= , M=T'=-
11 -1 2
To check, we compute
1 2 2 0 4 2
AT = =
-1 3 1 1 1 3
which equals
2 0 2 1 4 2
TB = =
11 -1 2 1 3

. Let A be an n x n real matriz. Define ‘range A” and “ker A.” Let A be an n x n real
matriz such that ker A = {0}. From first principles, show that range A = R™ and, therefore
dimker A 4+ dimrange A = n.

The kernel is the nullspace defined by
ker A= {z € R": Az = 0}.
The range is the image defined by
range A = {Ay :y € R"}.
Suppose that the kernel is zero. That means that the only solution of
Ax =0

is x = 0. If we do elementary row operations R, the matrix A is reduced to a reduced row
echelon form that has no free columns, otherwise there are nonzero null vectors. But an
n X n reduced row echelon matrix with no free columns is the identity matrix

RA=1

We claim that range A = R™. To see this, we show that any b € R" is the image of some

vector z under A. Such z satisfies
Az =b.

Doing row operations

Since we found an x € R"™ such that b = Az, any vector b € R™ is in the range of A. O



4. Consider the family of differential equations depending on the parameter a.
o' = 2% +42% — ax

Find the bifurcation points. Sketch the phase lines for values of a just above and just
below the bifurcation values. Sketch the bifurcation diagram for this family of equations.
Determine the stability type of the rest points for each a.

Factoring,
v’ = z(2® + 42 — a) = f(x,a).

The bifurcation curves are the solutions of f(z,a) = 0 which are the curves x = 0 and a =
2?2 +4x = (x+2)%2 —4. Thus z = 0 is a rest point for all values of a and z = —2++/a + 4 are
two more rest points for a > —4. Thus there are two bifurcation points at (a,z) = (—4, —2)
and at (a,z) = (0,0). As a increases from —oo, a rest point appears at a« = —4 which splits
into a stable and unstable rest point for —4 < a giving a fold type bifurcation. Then as
a increases through a = 0, a stable and unstable rest point collide and “bounce,” giving a
transcritical bifurcation. The phase lines are indicated for some typical a values in Fig. 2.
Since f(x,a) goes from negative to positive at £ = —2++/a + 4 when a > 0, these are both
unstable. z = 0 is stable for a > 0 and unstable for a < 0. * = —2 4 v/a + 4 is stable for
—4 <a<0and x =—-2—+/a+ 4 is unstable for a > —4. The flow directions are indicated
on the a = const. lines for some typical values of a. When ¢ < —4 when x — f(z,a) is
an increasing function which is negative for x < 0 and positive for x > 0. Thus flow is
away from the rest point. When —4 < a < 0, x — f(x,a) goes from negative to positive to
negative to positive so flow is to the left for r < —2—+v/4+aand —2++v4+a <z <0 and
to the right otherwise making the rest points —2 — /4 4+ a and 0 unstable and —2++v4 +a
stable. When 0 < a,  — f(x,a) goes from negative to positive to negative to positive so
flow is to the left for t < —2 —+v/4+a and 0 < z < —24+/4 + a and to the right otherwise
making the rest points —2 + /4 + @ unstable and 0 stable.
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Figure 2: Bifurcation Diagram and Phase Lines for Problem (4).



5. Find the flows ¢7X and ¢Y . Find an ezxplicit congugacy between the flows and check that
your conjugacy works.

X' = X, Yy =

a eta a e ?tq

b e 3h b eth

Notice that the incoming and outgoing axes are different, so we seek a homeomorphism that
swaps the two directions. We look for p and ¢ so that

T sgn(y)|y|P
y sgn(x)|x|?

Then flowing first and then applying the map yields

A sgn(y)le*ylP
h o ¢; =
y sgn(z)le’z|?
Applying the map first and then flowing yields
@ e sgn(y)ly|”
(j)f oh =
y e sgn()|z|?
For these to be equal we need
2
3p =2, 2=q - P=3 q=2
SO
@ sgn(y)|y|*/*
h =
y sgn(z)|z|®
Checking,
x sg(y)le 'y e sgn(y)ly*/* @
hoot || = = =6} oh
y sgn(z)|e'z|? e* sgn(z)[z[? y



