
Math 5410 § 1.
Treibergs

Second Midterm Exam Name: Practice Problems
October 28, 2014

1. Find generalized eigenvectors of the matrix A and the general solution of X ′ = AX.

A =


3 −2 1

1 0 0

−1 2 3


The characteristic equation is

0 = det(A− λI) = (3− λ)2(−λ) + 2 + 2(λ− 3)− λ = −(λ− 2)3.

The eigenvalue is λ = 2 with algebraic multiplicity three. Then

B = A− 2I =


1 −2 1

1 −2 0

−1 2 1

 ; B2 =


−2 4 2

−1 2 1

0 0 0

 ; B3 = 0.

Thus a vector not in the kernel of B2 is V3 =


1

0

0

. We obtain a chain of generalized

eigenvectors by computing for λ = 2,

V2 = (A− λI)V3 =


1 −2 1

1 −2 0

−1 2 1




1

0

0

 =


1

1

−1



V1 = (A− λI)V2 =


1 −2 1

1 −2 0

−1 2 1




1

1

−1

 =


−2

−1

0


0 = (A− λI)V1.

Three independent solutions may be found by substituting the Ansätze X1 = eλtV , X2 =
teλtV + eλtW and X3 = 1

2 t
2eλtV + teλtW + eλtZ into the ODE X ′ = AX to find V = V1
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the eigenvector, W = V2 and Z = V3. Thus the general solution is

X = c1X1 + c2X2 + c2X3 = c1e
2t


−2

−1

0

+ c2e
2t


1− 2t

1− t

−1

+ c3e
2t


1 + t− t2

t− 1
2 t

2

−t

 .

2. Solve the initial value problem:

X ′ =

(
−3 4

−1 1

)
X +

(
t3

0

)
; X(0) =

(
−1

1

)
.

First we need etA where A =
(−3 4
−1 1

)
. The characteristic equation is

0 = det(A− λI) = (−3− λ)(1− λ) + 4 = (λ+ 1)2.

Thus λ = −1 with algebraic multiplicity two. We fid a chain of generalized eigenvectors for
λ = −1 by solving

0 = (A− λI)V1 =

(
−2 4

−1 2

)(
2

1

)
V1 = (A− λI)V2 =

(
−2 4

−1 2

)(
−1

0

)
Using the generalized eigenvectors as columns,

T =

(
2 − 1

1 0

)
.

Then

AT =

(
−3 4

−1 1

)(
2 − 1

1 0

)
=

(
−2 3

−1 1

)
=

(
2 − 1

1 0

)(
−1 1

0 − 1

)
= TC.

It follows that A = TCT−1 so

etA = etTCT
−1

= TetCT−1 =

(
2 − 1

1 0

)
e−t
(

1 t

0 1

)(
0 1

−1 2

)
= e−t

(
1− 2t 4t

−t 1 + 2t

)
Now, using the variation of constants formula, the solution of the IVP is

X(t) = etAx0 + etA
∫ t

0

e−sAG(s) ds

= e−t
(

1− 2t 4t

−t 1 + 2t

)[(
−1

1

)
+

∫ t

0

es
(

1 + 2s − 4s

s 1− 2s

)(
s3

0

)
ds

]
= e−t

(
1− 2t 4t

−t 1 + 2t

)[(
−1

1

)
+

∫ t

0

es
(
s3 + 2s4

s4

)
ds

]
= e−t

(
1− 2t 4t

−t 1 + 2t

)[(
−1

1

)
+

(
2ett4 − 7ett3 + 21ett2 − 42ett+ 42et − 42

ett4 − 4ett3 + 12ett2 − 24ett+ 24et − 24

)]
= e−t

(
−6t− 43

−3t− 23

)
+

(
−t3 + 9t2 + 18t+ 42

−t3 + 6t2 + 6t+ 24

)
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3. Find etA where

A =


6 2 −2

−1 3 0

4 3 0


The characteristic equation is

0 = det(A− λI) = (6− λ)(3− λ)(−λ) + 6− 2λ+ 8(3− λ) = −(λ− 3)(λ2 − 6λ+ 10)

so the eigenvalues are λ = 3± i, 3. The eigenvectors for λ1 = 3 and λ2 = 3 + i are

0 = (A− λ1I)V1 =


3 2 −2

−1 0 0

4 3 −3




0

1

1

 ; 0 = (A− λ2I)V2 =


3− i 2 −2

−1 −i 0

4 3 −3− i




−2i

2

1− 3i


Now let T have columns V1, <eV2, =mV2 gives

T =


0 0 −2

1 2 0

1 1 −3


so that

AT =


6 2 −2

−1 3 0

4 3 0




0 0 −2

1 2 0

1 1 −3

 =


0 2 −6

3 6 2

3 6 −8

 =


0 0 −2

1 2 0

1 1 −3




3 0 0

0 3 1

0 −1 3

 = TC.

Since A = TCT−1, the matrix exponential is thus

etA = etTCT
−1

= TAtCT−1

=


0 0 −2

1 2 0

1 1 −3

 e3t


1 0 0

0 cos t sin t

0 − sin t cos t




−3 −1 2

3
2 1 −1

− 1
2 0 0



= e3t


3 sin t+ cos t 2 sin t −2 cos t

−3 + 3 cos t− sin t −1 + 2 cos t 2− 2 cos t

−3 + 3 cos t+ 4 sin t −1 + cos t+ 3 sin t 2− cos t− 3 sin t


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4. Find et(A+B) in two ways, where

A =

(
−3 0

0 − 3

)
, B =

(
0 4

−4 0

)
.

A first way is to notice that tAtB = t2
(

0 −12
−12 0

)
= tBtA. Then

et(A+B) = etAetB =

(
e−3t 0

0 e−3t

)(
cos 4t sin 4t

− sin 4t cos 4t

)
= e3t

(
cos 4t sin 4t

− sin 4t cos 4t

)
.

A second way is to solve the initial value problem

X ′ =

(
−3 4

−4 − 3

)
X;

X(0) = I

so the solution is X(t) = et(A+B). The eigenvalues of A+B =
(−3 4
−4 −3

)
are λ = −3± 4i. A

complex eigenvector is thus

0 = (A− λI)V =

(
−4i 4

−4 − 4i

)(
1

i

)
.

A complex solution is thus

X(t) = e(3+4i)t

(
1

i

)
= e3t(cos 4t+ i sin 4t)

(
1

i

)
= e3t

(
cos 4t

− sin 4t

)
+ ie3t

(
sin 4t

cos 4t

)
Then the general real (matrix) solution is

X(t) = e3t
(

cos 4t sin 4t

− sin 4t cos 4t

)(
c11 c12
c21 c22

)
The initial value X(0) = I is satisfied when c = I so we get the same solution this second
way

X(t) = e3t
(

cos 4t sin 4t

− sin 4t cos 4t

)
.

5. Assume that f : Rn → Rn is Lipschitz Contnuous: there is a constant K ∈ R such that

|f(x)− f(y)| ≤ K|x− y|, for all x, y ∈ Rn.

A unique solution of the initial value problem

x′ = f(x)

x(t0) = x0

is known to exist locally. Assuming this, show that it exists globally: the solution ϕ(t, x0)
exists for all t ∈ R.

The solution is known to exist around a little interval beginning at any initial point (t0, x0) ∈
R×Rn. Thus we may always extend a solution that stops at some finite initial point. In
other words, the solution exists as long as X(t) is finite, and it cannot be extended to the
whole real line if it blows up in finite time. Thus the problem reduces to showing that the
solution remains finite for all time, assuming that it exists to that time.
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The main idea is that if the function f(x) is globally Lipschitz, then it can grow at most
linearly. If the differential equation grows linearly, then the solution grows at most expo-
nentially.

To see that f(x) grows linearly, let us note that for any x ∈ Rn

|f(x)| = |f(0) + f(x)− f(0)| ≤ |f(0)|+ |f(x)− f(0)| ≤ |f(0)|+K|x− 0| = A+K|x|

where A = |f(0)| and K is the Lipschitz Constant. This shows that f(x) has at most linear
growth.

To see that the solution is finite for all t, assume that we know that X(t) solves the initial
value problem on t0 ∈ (a, b) to show that |X(t)| ≤ (|x0|+A/K) exp(K|t− t0|) for t ∈ (a, b).

From the integral equation

X(t) = x0 +

∫ t

t0

f(X(s)) ds

Estimating the integral equation for t ≥ t0,

|X(t)| ≤ |x0|+
∫ t

t0

|f(x(X(s))| ds ≤ |x0|+
∫ t

t0

A+K|X(s)| ds = F (t)

The result follows from the Gronwall inequality, which gives a growth bound for a solution of
an integral inequality. But we may rederive the estimate from first principles. Differentiating
F (t) we find

F ′ = A+K|X(t)| ≤ A+KF (t)

where F (t0) = |x0|. Multiplying by the integrating factor, we find(
Fe−Kt

)′
= e−Kt (F ′ −KF ) ≤ Ae−Kt

so that

F (t)e−Kt − F (t0)e−Kt0 ≤
∫ t

t0

Ae−Ks ds =
A

K

(
e−t0K − e−tK

)
from which it follows that

|X(t)| ≤ F (t) ≤ eK(t−t0)
(
|x0|+

A

K

)
− A

K
.

The estimate for t < t0 is similar.

6. Show that the n× n matrices whose eigenvalues have nonzero real part are generic.

The set is
S = {A ∈ L(Rn) : <eλ 6= 0 for all eigenvalues λ of A}.

To see that S is open, we use the fact that the eigenvalues depend continuously on the
matrix. Let A ∈ S be a matrix whose eigenvalues have nonzero real part. Then the zeros
of its characteristic polynomial ℘A(z) = det(A − zI) are points of the complex plane that
miss the imaginary axis. If ε > 0 is sufficiently small enough, then any matrix T such that
‖T − A‖ < ε will have a characteristic polynomial ℘T very close to ℘A and therefore have
its complex roots close to those of ℘A. In other other words, their roots will also avoid the
imaginary axis. This shows that a whole neighborhood of matrices around A will also be
in S, hence S is open.

To see S is dense in L(Rn), let A be any real matrix. Then for any real ε, the eigenvalues
of A + εI will be λ + ε, where λ are eigenvalues of A. Thus, except for at most finitely
many choices of ε, the eigenvalues of A + εI will not have zero real part. Since ε may be
chosen arbitrarily small. There are arbitrarily close matrices to A which have eigenvalues
of nonzero real parts: the matrices of S are dense in L(Rn).
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7. Let A be a real k × n matrix. Show that the dimension of the column space of A equals the
dimension of the row space of A.

Let A be a real k × n matrix and let R be its reduced row echelon form. For example
suppose the 5× 8 matrix A has three pivots for columns 1, 4 and 7.

A =



a11 a12 a13 a14 a15 a16 a17 a18

a21 · · · a28

...
...

a51 · · · a58



R =



1 ∗ ∗ 0 ∗ ∗ 0 ∗

0 0 0 1 ∗ ∗ 0 ∗

0 0 0 0 0 0 1 ∗

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


We argue that the row space and the column space both have the same number of dimen-
sions, which is exactly the number of pivotal elements of R. (This number is called the rank
of A.)

First let’s argue that a basis for the column space of A is given by the columns of A cor-
responding to pivotal elements hence has dimension equal to the number of pivots. In the
example these are columns 1, 4 and 7 of the matrix A. Indeed, these are independent
vectors. Any vanishing linear combination of these vectors must be zero. This is because
the same linear combination of the corresponding columns of R will have to be the zero
combination because the pivot columns of the reduced row echelon matrix R are indepen-
dent: each pivotal column has exactly one nonzero entry which is “1” in a different pivotal
position. Each nonzero row of R starts with a nonzero pivot, thus back substitution of a
zero combination results in zero coefficients. For the same reason the pivotal columns span
the column space of R: there are as many pivots as there are nonzero rows. But, by row
operations we can recover A. If the pivotal columns of R span the row space of R, then
after row operations, the columns of A corresponding to the pivotal columns also span the
row space of A which is the result of applying the same row operations to the row space of
R.

Second, let’s argue that a basis for the row space are the pivotal rows of R which are all the
nonzero rows of R, hence there are as many dimensions as pivotal entries. First, A may be
recovered by row operations on R, thus all the rows of A are linear combinations of the rows
of R. Thus the pivotal rows of R span the row space of A. On the other hand, the rows
of R, which are the pivotal rows of R are linearly independent. This is because the rows
of R begin with different numbers of zeros. No row of R may be expressed as the linear
combination of lower rows, because there would be too many leading zeros. The upshot is
that no row may be expressed as a linear combination of the others because if there were
a non-trivial linear combination of rows, the upper most row in the combination would be
expressible as a combination of the others, which is impossible.
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8. Suppose that λ = α+ iβ is a complex eigenvalue of algebraic multiplicity two and geometric
multiplicity one for the 4 × 4 real matrix A. Let V1 and V2 be a chain of generalized λ
eigenvectors. Show that the four vectors <eV1,=mV1,<eV2,=mV2 are independent.

For λ = α+ iβ, the matrix A−λI has rank three and there is a chain of nonzero generalized
complex eigenvectors that satisfies

(A− λI)V1 = 0

(A− λI)V2 = V1.

V1 6= 0 since it is an eigenvector. V2 6= 0 since otherwise V1 = 0. Because A is real, the
corresponding chain for the other eigenvalue λ̄ = α− iβ is gotten by taking conjugates

(A− λ̄I)V̄1 = 0

(A− λ̄I)V̄2 = V̄1.

Note that V̄1 is the eigenvector for a different eigenvalue λ̄ so it is independent of V1. To
see this, note that

(A− λI)V̄1 = (A− λ̄+ (λ̄− λ)I)V̄1 = (λ̄− λ)V̄1

so that if for complex numbers ci we had

0 = c1V1 + c2V̄1 (1)

then after applying A− λI we get

0 = c1(A− λI)V1 + c2(A− λI)V̄1 = c1 · 0 + c2(λ̄− λ)V̄1

so c2(λ̄− λ) = 0 thus c2 = 0 hence by (1) we have c1 = 0.

Next we claim that V1, V̄1 and V2 are independent. To see this, if for complex numbers ci
we had

0 = c1V1 + c2V̄1 + c3V2 (2)

then after applying A− λI we get

0 = c1(A− λI)V1 + c2(A− λI)V̄1 + c3(A− λI)V2 = c1 · 0 + c2(λ̄− λ)V̄1 + c3V1.

Since V1 and V̄1 are independent, c2(λ̄− λ) = c3 = 0 so c2 = 0 and so by (2), c1 = 0.

Finally we claim V1, V2 V̄1 and V̄2 are independent over the complex numbers. To see this,
note that

(A− λ̄I)V1 = (A− λI + (λ− λ̄)I)V1 = (λ− λ̄)V1

(A− λ̄I)V2 = (A− λI + (λ− λ̄)I)V2 = V1 + (λ− λ̄)V2.

Suppose there are complex ci so that

0 = c1V1 + c2V̄1 + c3V2 + c4V̄2. (3)

Apply (A− λ̄I) we get

0 = c1(A− λ̄I)V1 + c2(A− λ̄I)V̄1 + c3(A− λ̄I)V2 + c4(A− λ̄I)V̄2

= c1(λ− λ̄)V1 + c2 · 0 + c3V1 + c3(λ− λ̄)V2 + c4V̄1

Now since V1, V̄1 and V2 are independent, c1(λ− λ̄) + c3 = c3(λ− λ̄) = c4 = 0 which implies
c3 = 0 and so c1 = 0. By (3), c2 = 0 also.
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Now we are in a position to answer the question. Write the real vectors W1 = <eV1,
W2 = =mV1, W3 = <eV2 and W4 = =mV2 as linear combinations of Vi and V̄i. We claim
the four vectors are independent. Suppose there are constants ci such that

c1W1 + c2W2 + c3W3 + C4W4 = 0.

Because <eV = 1
2 (V + V̄ ) and =mV = − i

2 (V − V̄ ) we find

0 =
c1
2

(V1 + V̄1)− ic2
2

(V1 − V̄1) +
c3
2

(V2 + V̄2)− ic4
2

(V2 − V̄2)

=

(
c1
2
− ic2

2

)
V1 +

(
c1
2

+
ic2
2

)
V̄1 +

(
c3
2
− ic4

2

)
V1 +

(
c3
2

+
ic4
2

)
V̄1

Now since V1, V2 V̄1 and V̄2 are independent we have

c1
2
− ic2

2
=
c1
2

+
ic2
2

=
c3
2
− ic4

2
=
c3
2

+
ic4
2

= 0

which implies c1 = c2 = c3 = c4 = 0 so the four Wi are independent, as claimed.

9. Let A be a real n×n matrix. Propose a meaning for sinA. Prove that your sinA is defined
for every matrix A.

For any square matrix A, a meaning to sinA is given by the series for sin z where powers
of the scalar zk are replaced by powers matrices Ak.

sinA = A− 1

3!
A3 +

1

5!
A5 − · · · =

∞∑
k=0

(−1)k

(2k + 1)!
A2k+1

Let Aij(p) denote the i, j entry of the matrix Ap. If we use the maximum matrix norm

‖A‖ = max
i,j=1,...,n

|aij |

then we claim |Aij(p)| ≤ np−1‖A‖p. To see this, we argue by induction on p. It is true
when p = 1 since the maximum entry ‖A‖ exceeds any entry |aij |. Assume the inequality
is true for some p ∈ N. Then for any i, j, using |aik| ≤ ‖A‖ and the induction hypothesis,

|Aij(p+ 1)| =

∣∣∣∣∣
n∑
k=1

aikAkj(p)

∣∣∣∣∣
≤

n∑
k=1

|aik| |Akj(p)|

≤
n∑
k=1

‖A‖np−1‖A‖p

= np‖A‖p+1.

Now we show that the partial sum sequence for the ij term is a Cauchy Sequence. For any
` < m we have∣∣∣∣∣

m∑
k=0

(−1)k

(2k + 1)!
Aij(2k + 1)−

∑̀
k=0

(−1)k

(2k + 1)!
Aij(2k + 1)

∣∣∣∣∣ =

∣∣∣∣∣
m∑

k=`+1

(−1)k

(2k + 1)!
Aij(2k + 1)

∣∣∣∣∣
≤

m∑
k=`+1

n

(2k + 1)!
|Aij(2k + 1)| ≤

∞∑
k=`+1

n2k+1

(2k + 1)!
‖A‖2k+1

= sinh(n‖A‖)−
∑̀
k=0

n2k+1

(2k + 1)!
‖A‖2k+1
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which tends to zero as `→∞. It follows that each entry of the partial matrix sum satisfies
the Cauchy Crirterion, thus converges.

10. Find the first four Picard Iterates to solve the initial value problem(
x′

y′

)
= F

(
x

y

)
=

(
1

x2 + y2

)
,

(
x(0)

y(0)

)
=

(
0

0

)
.

The Picard iterates are given by X0(t) =
(
0
0

)
and then

Xk+1(t) =

(
x(0)

y(0)

)
+

∫ t

0

F (Xk(s)) ds.

We compute

X1(t) = 0 +

∫ t

0

(
1

02 + 02

)
ds =

(
t

0

)
.

X2(t) = 0 +

∫ t

0

(
1

s2 + (0)2

)
ds =

(
t

1
3 t

3

)
.

X3(t) = 0 +

∫ t

0

(
1

s2 + ( 1
3s

3)2

)
ds =

(
t

1
3 t

3 + 1
63 t

7

)
.

X4(t) = 0 +

∫ t

0

(
1

s2 + ( 1
3s

3 + 1
63s

7)2

)
ds =

(
t

1
3 t

3 + 1
63 t

7 + 2
2079 t

11 + 1
59535 t

15

)
.
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