Final Exam Name: Goliutions

Math 3220 § 1.

Treibergs ar April 26, 2013

Questions are from Final Exam of December 11, 2007.
(1.) Determine whether the function f : R? — R is differentiable at (0,0), where
5

s @) # 0,0

0, if (z,y) = (0,0).

Since f(x,0) =0 and f(0,y) = 0, we have partial derivatives f;(0,0) =0 and f,(0,0) = 0 so
that if f were differentiable at zero, its differential would be df(0,0)(h, k) = 0. We check that the
difference quotient vanishes at (0,0). For (h, k) # (0,0),

flx,y) =

hk?
NG k|
NGE= (bt + k%) VB2 + &2

(h? + k2) (h* + k*)
< < VR + k2 = ||(h,k
T2(h R VR R T ’ Ik, B

Thus f is differentiable at (0,0).

[F(h k) — £(0,0) — dF(0,0)(h. ) -0 0‘

(7, B -

which tends to zero as (k,h) — (0,0).
1 (h* 4+ k%) and k* < bt + K2

We used |hk| <

(2.) Let K C R™ be a compact subset. Suppose xi, € K, k=1,2,3,... s a sequence of points in
K. Show that there is a subsequence X, that converges in K as j — o0.

Since K is compact, it is bounded. Since {x;} C K C R", it is a bounded sequence. By
the Bolzano Weirstrass Theorem, every bounded sequence in Euclidean space has a convergent
subsequence. Hence there are k; — oo such that x;, — x as j — oo for some x € R". But since
K is compact, it is also closed. But every closed set contains its limit points, thus x € K.

(3.) Show that there is a neighborhood U C R3 of the point (1,2, 3) and a C* function G : U — R?
such that G(1,2,3) = (4,5) and f(x,G(x)) = (27,17) for all x € U where f : R> — R? is given
by f = (flv f2) with

fl(z7y7z7u7v) :x+yz+u/v7
fa(z,y,2,u,0) = zu+yv + 2.

Find dG(1,2,3).

We use the Implicit Function Theorem to solve for w = (u, v) in terms of x = (z,y, z) near
(1,2,3,4,5). We check the assumptions. First, f is polynomial, hence C!. Second the differential
dw(1,2,3,4,5) is given by the 2 x 2 matrix

f

ou % . vou _ 5 4
af: af
Be oo z 12

(x,w)=(1,2,3,4,5) (x,w)=(1,2,3,4,5)

whose determinant is 6 so dw(1,2,3,4,5) is invertible. Hence the IFT applies: there is an open
neighborhood V C RS of (1,2,3,4,5), an open neighborhood U C R3 of (1,2,3) and a function
G € C1(U,R?) such that G(1,2,3) = (4,5), f(x,G(x)) = (27,17) for all x € U and if (x,w) € V
such that f(x,z) = (27,17) then x € U and w = G(x).



By differentiating f(x, G(x)) = (27,17) we see that dxf + dw f 0 dxG = 0 so that

dxG(1,2,3) = — [dw £(1,2,3,4,5)] " 0 dxf(1,2,3,4,5)
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(4.) Let f, fn:R? — R be functions for n € N. Suppose that for allx € R?, lim f,(x) = f(x).

Determine whether the statement is true or false. If true give a brief reason. If false, give a
counterexample.

(a.) Statement. For every sequence X, € R?, k = 1,2,3,... which converges X — X we have
T fi () = £().
1
FALSE. For example, let f,(x) = T a2 which tends to f(x) =0if x # 0 and f(0) =1

Take x,, = (+,0). Then f(x,) = 3 which does not tend to f(0) = 1. The statement would have
been true if the convergence had been uniform.

(b.) Statement. Suppose all fi.(x) € CY(R?). Then f is continuous.

FALSE. The example in (a.) has f, € C!(R?) since it is the quotient of smooth nonzero
functions, but the limit f is not continuous at zero. The statement would have been true if the
convergence had been uniform.

(c.) Statement. Let R C R? be an aligned rectangle.
Then/ f(z)dV(x hm / fn(z)dV (x).

FALSE. Let R = [ ] f(z,y) =0 and
nlz, o<z < 2L
fa(z,y) = n —n’z, if%<x§%,
0, otherwise.

Then f, — f, [5 f(x)dV(x) =0 but [, fu(x)dV(x) = 1. The statement would have been true
if the convergence had been uniform.



(5.) Let T = {(z,y) € R?* : =3 < x < 3, |z| <y < 3}. Consider I = / eV’ dV(z,y). Why

does the integral I exist? Why can the integral I be reduced to an iterated iﬁtegml? FEvaluate the
integral 1.

Since the region T is a triangle in the plane, it is a Jordan region because it is bounded by
line segments which have content zero so V(9T) = 0. Also the function f(x,y) = exp(—y?) is
continuous over the whole plane, thus on 7. Since we have a continuous function on a Jordan
region, by the existence theorem over Jordan regions, f is integrable on T

T={(z,y) : 0<y<3and ¢¥(y) <z < ¢(y) } is a compact Jordan region in the plane de-
termined by the continuous upper and lower functions ¢ (y) < z < ¢(y) defined on the Jordan
region B = [0, 3], where ¢(y) = —y and ¢(y) = y. Since f is continuous in the plane, f(x,y) is
integrable on T" and integrable with respect to « on the interval [¢)(y), p(y)] for every y € [0, 3]. Tt
follows by theorem on iterated integrals over non-rectangular regions determined by an upper and
lower function (which follows from Fubini’s Theorem) that the integral over T' may be written as
an iterated integral which reduces the problem to a simple substitution.

»(y)
/T F,y) dV (2, ) = /B / ey dav()

(s

3 ry

[ [ ey
0 J—y
3

= / 2y exp(—yz) dy
0
=1—e"Y.

(6.) Let D C R? be the region in the first quadrant bounded by the curves y = z, y* — 2% = 1,
224+y? =4, and 22+y% = 9. Find an open set U C R? and a change of variables ¢ : U — R? such
that D = o(R), where R = [0,1] x [4,9], and such that ¢ is C', one-to-one and det(dp(x,y)) # 0

on U. Then find the integral
| S ave),
D

.TQ + y2
The first two constraints are equivalent to y?> — 22 = 0 and y? — 22 = 1. Thus we may take

s =y’ —a°,
t=y? 4 22

Solving for (z,y) in terms of (s,t) we find

where we take the positive square roots. ¢ € C'(U,R?) is a one-to-one function if we take the
open set U = {(s,t) € R? :t — s >0 and t + s > 0}. Note that ¢(U) is the open first quadrant.
Note also that D = ¢(R) and the rectangle R C U. Since f(z,y) = % is continuous away

from (0,0) and ¢ is C* on R, it follows that f is integrable on ¢(R) and f(p(s,t)) |det(dp(s,t))]
is integrable on R. The differential is

dr  Ox _1(t—s>_
do(s,ty=| 95 ot | =| 4\ 2

dy oy 1 (t+s) 2
ds Ot 4 2

[




so that

det(dy(s, 1)) = —é (t ; s>é (t ; S)é ,

which is nonzero for all (s,¢t) € U. Thus the change of variables formula applies to D C U.

Yy
——dV(z,y :/ flz,y)dV(x,y
/D%‘“ry2 () w([o,nx[zt,g])( Javiey)

- / F((s.1)) [ det(dip(s, )| dV (s, 1)
[0,1] % [4,9]

1
_/ 1(1?—5)2
0,1)x4,90) t \ 2
//fdtds
I
-5 (5):

(7)) Let f:R? - R, 9 : R — R be continuous functions such that 0 < (z).
Y(z)
Show that g(x) = / f(z,y)dV (y) is continuous at all z € R.

1

()25 ()

The idea is to split the integral into two parts where in one the dependence on x is in the
upper limit and in the other the dependence is as an argument of f.

Fix a € R. To show that ¢ is continuous at a € R, we have to show the definition of continuity
is satisfied: that for all € > 0 there is a § > 0 such that

lg(z) —g(a)] < € whenever x € R and |z — a| < 0.

Let M =sup{¢(z) : x € [a—1,a+1]} and N = sup{|f(z,y)|: (z,y) € [a—1,a+1] x[-1, M +1]}.
The suprema exist because continuous functions are bounded on compact sets. Now choose ¢ > 0.
By the continuity of 1, there is ; > 0 so that

3

ON 1 whenever € R and |z — a| < 0.

() = (a)] <

Since f is continuous on the compact set R = [a—1, a+1] x [—1, M +1], it is uniformly continuous.
There is a d, > 0 such that

€

L1 whenever (z,y), (a,b) € R and ||(z,y) — (a,b)|| < d2.

|f(z,y) = f(a,b)| <

Iclaim § = min{dy, 2, 1} will work for g. Suppose that z € R and |[x—a| < dsox € [a—1, a+1].
For simplicity let’s argue in case (z) > ¥(a). Then since ¥(x),¥(a) € [-1, M +1], | f(z,y)| < N



and ||(z,y) — (a,y)|| <6 for y € [{(a),P(z)] C [-1, M + 1] so

P(x) P(a)
l9(z) — 9(a)| = / Fla,y) dy — / f(a, ) dy

neo) ¥ () ¥(a)
= / f(xyy)—f(a,y)der/ f(a,y)dy—/ fla,y)dy
0 0 0

P(x)
/ f(x.y) dy

P(x)
< /O f(e.y) — flay) dy

+
P(a)
P(x) p(x)
< / F(@.y) — Fa,y)l dy + / (@9 dy
0 P(a)
va) . ()
g/o 2M+1dy+/w(a) Ndy
= PO b NJi(z) ~ pla)
Me Ne
< 2M +1 + 2N +1
< €.

If ¢(a) > ¢ (x) then swap upper and lower limits in the third line and argue similarly. We have
shown ¢ is continuous at a, and as a was arbitrary, continuous on R.

(8.) Define: E C R™ is a Jordan Region. Let f : [a,b] — R be be a nonnegative integrable
function. Show that E is a Jordan region and find its volume V(E), where

E={(z,y) eR?*:a<2<b,0<y< f(zx)}

A bounded set E C R? is a Jordan Region if its characteristic function yp is integrable on
some aligned rectangle R containing E, or equivalently, its volume V(E) = [ r XE dV exists.

The idea is that the union of the strips under f over the little subintervals of the partition
that shows f is integrable gives an approximation to E so that the integral of f is the area of E.

We are given that 0 < f is an integrable function. Hence it is bounded: there is M € R such
that M = sup{f(z) : © € [a,b]}. Take the rectangle R = [a,b] x [0, M] so that E C R. To show
that xg is integrable on R, we will use the theorem that says that xg s integrable on R if and
only if for every € > 0 there is a partition P of R such that

U(xe,P)— L(xe, P) <e.
Since f is integrable on [a, b], there is a partition
G=la=z0<a1 <79 <+ <13 = b}

such that one dimensional upper minus lower sums satisfy

k
U(f,G) = L(f,G) = > (M; —m;)(w; — 1) <&
i=1
where
M; = sup f(x), m; = inf  f(x).
TE[Ti—1,2i] x€mi_1,24)



Now use the z;’s as cut points of [a,b] in the z-direction and use both sets M; and m; as cut
points of [0, M] for the y direction. Subdivide the vertical further, so that no rectangle has height
greater than €. We may take the y-cut points
{M;:i=1,...,k}U{m; :j=1,...,k}U{eh: heNand eh < M}
={0=y <y <yp2<--<ye=M}

Together they make a two dimensional partition P of R.
Denote the subrectangles of P by R; j = [xi—1,2;] X [y;—1,y;]. Let

M;; = sup xgp(zy), mi; = inf  xge(z,y).
(z,y)ER; ; (z,9)ER;;

Observe that M, ; = 1 exactly when R; ; N E # (), which happens for rectangles that touch and
are below the graph of f. If f takes its max on [z;_1, ;] this is for y;_1 < M; and if f does not
take its max then for y; < M;. Similarly, m; ; = 1 exacty when R; ; C E. If f takes its min on
[i—1,2;] this is for yj41 < m; and if f does not take its min then for y; < m;.

Consider the upper sum for a fixed z;.

DM V(R < Y (@immio)(y—yi1) < (Mityj—yi1)(@i—wi1) < (Mite) (wi—zi 1)
Jj=1 Jyi—1<M;
Also the lower sum for a fixed z;.

¢
D omiV(Riy) > > (wimwioa)(y—yi-1) = (mi—ys4y;) (@i—wio1) > (mi—e)(wi—wi 1),
j=1 Jyi+1<m;

It follows that the difference for a fixed x; is

Mi’j — mi’j)V(Ri,j> < (Mi —m; + 25)(1'1‘ — xi,l).

MN
N
—

Jj=

Summing over 4 gives the difference for xg

U(XE7P) L XE7

[1 + 2(b - )]5
As e was arbitrary, this shows that E is a Jordan Domain.

Moreover, the upper and lower sums approximate the integrals. Nomely,

k£

XE; ZZMZ]V z;

i=1 j=1



Similarly
L(xg,P) = L(f,G) — (b —a).

The upper and lower sums approximate the integral of f:

/f Ydr —e < L(f,G) <U(f,G /f )dx + ¢

Hence
b
/ fl@)de —e—e(b—a) < L(f,G) —e(b—a) <
Lixp.P) V(E) = [ xpdV < Ulxe.P)

<U(f,0) +2(b—a) g/ F@)do +e+2(b—a).

Since € is arbitrary we see that the “area under the graph of f is the integral”

E) /abf(x)dx



