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Sample Problems for First Midterm Name: SAMPLE
Sept. 15, 2008

First Midterm Exam given Sept. 20, 2000.
1. Using induction, prove that for all n ∈ N,

(P(n)) 1 + 3 + · · ·+ (2n− 1) = n2

2. Let f : X → Y be a function. Suppose that there is a function g : Y → X so that g ◦ f is the identity and
that f ◦ g is the identity. Show that f is one-to-one and onto.
3. Assuming only the field axioms for R, deduce that for every x ∈ R there holds x · 0 = 0. For each step of
your deductions, state which axiom is being used.
4. Find the complement in R of the set of numbers x ∈ R for which there exists ε > 0 such that x ≤ −ε or
x ≥ ε. Written in symbols ∀, ∃, \, you are to find the set

E = R\ {x ∈ R : (∃ε > 0)(x ≤ −ε OR ε ≤ x)} .

5. Using Peano’s axioms and their immediate consequences proved in class, show that if m,n ∈ N then
m+ n 6= n. [Hint: use induction on n.]

Extra Problems.
E1. The terms of a sequence a0, a1, a2, a3, . . . are given by a0 = 0, a1 = 1 and the recursive relation for
n ≥ 1 by an+1 = 2an − an−1 + 2. Find a formula for an and prove it.
E2. For x, y ∈ R, say that x and y satisfy the relation P (x, y) whenever x = y + i for some i ∈ Z. Show
that P is an equivalence relation. Describe R/P .
E3. Let Q = {m

n : m,n ∈ Z such that n 6= 0 }/ ∼ be the usual definition of the rational numbers, where we
declare two fractions equivalent, m

n ∼
a
b , whenever mb = na. Show that the usual rule for multiplication of

equivalence classes
[

m
n

]
·
[

a
b

]
:=
[

ma
nb

]
is well defined.

Solutions.

1. Prove that for all n ∈ N,
(An) 1 + 3 + · · ·+ (2n− 1) = n2.
Induction proofs have two steps: the basis step proving A1 and the induction step An =⇒ An+1. First

we show the basis step A1. When n = 1, 1 + 3 + · · ·+ (2n−1) = 1 and n2 = 1 which are equal, so A1 is true.
Then we show the induction step. We assume the induction hypothesis: for any n we have An is true,

namely, 1+3+ · · ·+(2n−1) = n2. We wish to show this implies An+1, namely, 1+3+ · · ·+(2n−1)+
(
2(n+

1)− 1
)

= (n+ 1)2. However, using the induction hypothesis on the first n terms, and then rearranging,{
1 + 3 + · · ·+ (2n− 1)

}
+
[
2(n+ 1)− 1

]
=
{
n2
}

+
[
2n+ 1

]
= (n+ 1)2,

so the induction step is complete.
As the basis and the induction steps hold, by induction, An holds for all n.

2. Let f : X → Y be a function. Suppose that there is a function g : Y → X so that g ◦ f is the identity and
that f ◦ g is the identity. Show that f is one-to-one and onto.

First we show that f is onto, namely, for every y ∈ Y there is an x ∈ X so that y = f(x). Choose y ∈ Y .
The desired x is x = g(y). To see that this x works, f(x) = f(g(y)) = (f ◦ g)(y) = Id(y) = y since f ◦ g = Id.
Hence we have shown f is onto.

Second we show that f is one-to-one, namely, if whenever for some x1, x2 ∈ X we have f(x1) = f(x2),
then x1 = x2. Suppose there are x1, x2 ∈ X so that f(x1) = f(x2). Then apply g to both sides: g(f(x1)) =
g(f(x2)) or (g ◦ f)(x1) = (g ◦ f)(x2). But since g ◦ f = Id, Id(x1) = Id(x2) or x1 = x2. Thus we have shown
that f is one-to-one.
3. Assuming only the field axioms for R, deduce that for every x ∈ R there holds x · 0 = 0. For each step of
your deductions, state which axiom is being used.



SOLUTIONS.

Choose x ∈ R.

x · 0 =x · 0 + 0 Property of additive identity.

=x · 0 + (x+ (−x)) Additive inverse of x.

=(x · 0 + x) + (−x) Associativity of addition.

=(0 · x+ x) + (−x) Commutativity of multiplication.

=(0 · x+ 1 · x) + (−x) Multiplicative identity.

=(0 + 1) · x+ (−x) Distributive. (From the right.)

=(1 + 0) · x+ (−x) Commutativity of addition.

=1 · x+ (−x) Property of additive identity.

=x+ (−x) Multiplicative identity.
=0 Additive inverse of x.

Thus x · 0 = 0 and we are done.
4. Find the set E = R\ {x ∈ R : (∃ε > 0)(x ≤ −ε OR ε ≤ x)}.

E =R\ {x ∈ R : (∃ε > 0)(x ≤ −ε OR ε ≤ x)}
= {x ∈ R :∼ (∃ε > 0)(x ≤ −ε OR ε ≤ x)} Meaning of complement.

= {x ∈ R : (∀ε > 0) ∼ (x ≤ −ε OR ε ≤ x)} Negation of ∃.
=
{
x ∈ R : (∀ε > 0)

(
∼ (x ≤ −ε) AND ∼ (ε ≤ x)

)}
De Morgan’s Law.

= {x ∈ R : (∀ε > 0)(−ε < x AND x < ε)}
= {x ∈ R : 0 ≤ x AND x ≤ 0}
= {x ∈ R : x = 0}
= {0} .

5. Using Peano’s axioms and their immediate consequences proved in class, show that if m,n ∈ N then
n+ n 6= n.

Choose m ∈ N. Let Q(n) be the statement “m+ n 6= n.”
The basis statement Q(1) is m+1 6= 1. Arguing by contradiction, if this were not the case then m+1 = 1

which says that 1 is the successor of m. However, by axiom N3., 1 is not the successor of any element of N,
which implies the contradicrtion: 1 is not the successor of m.

The induction step is to show Q(n+1) assuming Q(n). In other words, we have to show m+(n+1) 6= n+1.
Again, argue by contradiction and assume that ` = m+ (n+ 1) = n+ 1. The last equality says that ` is the
successor to n. Using the inductive definition of addition (m + (n + 1) := (m + n) + 1, or its consequence,
the associative property of addition in N,) we see that ` = (m+ n) + 1. In other words, ` is the successor of
m + n. By the inductive hypothesis m + n 6= n so that ` is the successor of two different numbers, n and
m+ n. However, by Peano’s axiom N4., if two elements of N have the same successor, then they are equal.
In particular, this implies the contradiction that n and m+ n are equal.
E1. The terms of a sequence a0, a1, a2, a3, . . . are given by a0 = 0, a1 = 1 and the recursive relation for
n ≥ 1 by an+1 = 2an − an−1 + 2. Find a formula for an and prove it.

Let’s try a few terms to see the pattern. a2 = 2a1−a0+2 = 2·1−0+2 = 4. a3 = 2a2−a1+2 = 2·4−1+2 = 9.
a4 = 2a3 − a2 + 2 = 2 · 9− 4 + 2 = 16. It seems that an = n2. Let’s prove it by strong induction.

There are two base cases: for n = 0 we have a0 = 0 = 02 and for n = 1 we have a1 = 1 = 12.
For strong induction for n ≥ 1, we shall show the statement for n + 1 assming it’s true for n and n − 1.

Using the recursive definition, an+1 = 2an − an−1 + 2. Using the two induction hypotheses, an = n2 and
an−1 = (n− 1)2 we see that an+1 = 2n2 − (n− 1)2 + 2 = 2n2 − [n2 − 2n+ 1] + 2 = n2 + 2n+ 1 = (n+ 1)2.
The induction is proven.



E2. For x, y ∈ R, say that x and y satisfy the relation P (x, y) whenever x = y + i for some i ∈ Z. Show
that P is an equivalence relation. Describe R/P .

To be an equivalence relation, P has to be reflexive, symmetric and transitive. To see reflexive, choose
x ∈ R to see if P (x, x) holds. But by taking 0 ∈ Z, we see that x = x+ 0 so P (x, x) holds. To see transitive,
for any x, y ∈ R to see if P (x, y) =⇒ P (y, x). If P (x, y) then x = y+ j for some j ∈ Z. But by subtracting
j we see that y = x + (−j), where −j ∈ Z. Hence P (y, x) holds as well. Finally, for any z, y, x ∈ R,
transitivity means if P (x, y) and P (y, z) hold then P (x, z) holds. But P (x, y) means x = y + i and P (y, x)
means y = z+ j for some i, j ∈ Z. Substituting, this gives x = (z+ j) + i or x = z+ (i+ j) for this i+ j ∈ Z.
But this is the condition that P (x, z) holds. R/P is nothing more than the circle. None of the points of
the interval [0, 1) are identified to each other, because they don’t differ by an integer. However, every real is
identified to a point in [0, 1). Since 0 and 1 are identified (P (0, 1) holds since 0 = 1 + (−1)) as if we glued
the ends of the interval together. But this is a circle of unit length.
E3. Let Q = {m

n : m,n ∈ Z such that n 6= 0 }/ ∼ be the usual definition of the rational numbers, where we
declare two fractions equivalent, m

n ∼
a
b , whenever mb = na. Show that the usual rule for multiplication of

equivalence classes
[

m
n

]
·
[

a
b

]
:=
[

ma
nb

]
is well defined.

To be well defined on equivalence classes means that if we take different representatives of the equivalence
classes, we still get the same answer. That is if

[
m
n

]
=
[

m′

n′

]
and

[
a
b

]
=
[

a′

b′

]
then

[
ma
nb

]
=
[

m′a′

n′b′

]
. The first

equation means mn′ = m′n and the second ab′ = a′b. Multiplying these equations we see that man′b′ =
nbm′a′. However this says ma

nb ∼
m′a′

n′b′ as to be shown.


