Math 3210 § 2. Sample Problems for First Midterm Name: SAMPLE
Treibergs ar Sept. 15, 2008

First Midterm Exam given Sept. 20, 2000.
1. Using induction, prove that for all n € N,

(P(n)) 1+3+...+(2n_1):n2

2. Let f: X —Y be a function. Suppose that there is a function g : Y — X so that go f is the identity and
that f o g is the identity. Show that f is one-to-one and onto.

3. Assuming only the field axioms for R, deduce that for every x € R there holds x -0 = 0. For each step of
your deductions, state which axiom is being used.

4. Find the complement in R of the set of numbers x € R for which there exists € > 0 such that x < —¢ or
x > e. Written in symbols V, 3, \, you are to find the set

E=R\{reR:(Fe>0)(x <—c ORe<1z)}.

5. Using Peano’s axioms and their immediate consequences proved in class, show that if m,n € N then
m+n # n. [Hint: use induction on n.J
Extra Problems.

El. The terms of a sequence ag,a1,as,as,... are given by ag = 0, a; = 1 and the recursive relation for

n>1byant1 =2a, —an—1 + 2. Find a formula for a,, and prove it.

E2. For z,y € R, say that x and y satisfy the relation P(x,y) whenever x = y + i for some i € Z. Show

that P is an equivalence relation. Describe R/P.

E3. Let Q= {": m,n € Z such that n # 0 }/ ~ be the usual definition of the rational numbers, where we
a

declare two fractions equivalent, ™ ~ 7, whenever mb = na. Show that the usual rule for multiplication of

equivalence classes [%] . [%} = [%] 1s well defined.
Golutions.

1. Prove that for alln € N,
(An) 1+3+ -+ (2n—1)=n%

Induction proofs have two steps: the basis step proving A; and the induction step A,, = A, 1. First
we show the basis step A;. Whenn =1,1+3+---+(2n—1) = 1 and n? = 1 which are equal, so A; is true.

Then we show the induction step. We assume the induction hypothesis: for any n we have A, is true,
namely, 1+3+---+(2n—1) = n?. We wish to show this implies 4,1, namely, 1 +3+4---+(2n—1)+ (2(n+
1) — 1) = (n + 1)2. However, using the induction hypothesis on the first n terms, and then rearranging,

{143+ +@n-D}+[2n+1)—1] ={n’} + 2n+1] = (n+ 1)?,

so the induction step is complete.

As the basis and the induction steps hold, by induction, A,, holds for all n.

2. Let f: X —Y be a function. Suppose that there is a function g : Y — X so that go f is the identity and
that f o g is the identity. Show that f is one-to-one and onto.

First we show that f is onto, namely, for every y € Y there is an x € X so that y = f(z). Choose y € Y.
The desired = is = g(y). To see that this x works, f(z) = f(g(y)) = (fog)(y) = Id(y) = y since fog = 1d.
Hence we have shown f is onto.

Second we show that f is one-to-one, namely, if whenever for some x1,z02 € X we have f(z1) = f(x2),
then 1 = x9. Suppose there are x1,22 € X so that f(z1) = f(z2). Then apply g to both sides: g(f(z1)) =
g(f(z2)) or (go f)(xz1) = (go f)(x2). But since go f =1d, Id(x1) = Id(x2) or 1 = 2. Thus we have shown
that f is one-to-one.

3. Assuming only the field axioms for R, deduce that for every x € R there holds -0 = 0. For each step of
your deductions, state which axiom is being used.



SOLUTIONS.

Choose z € R.

z-0=x-040 Property of additive identity.
=z-0+ (z+ (—x)) Additive inverse of x.
Associativity of addition.
Commutativity of multiplication.
=0-z+1-z)+ (—2x) Multiplicative identity.

=0+1)-z+ (—x) Distributive. (From the right.)
=1+40)-z+ (—x) Commutativity of addition.
=1-z+ (—x) Property of additive identity.
=z + (—x) Multiplicative identity.

=0 Additive inverse of z.

Thus z - 0 = 0 and we are done.
4. Find the set E=R\{z € R: (Je > 0)(z < —¢ OR e < z)}.

E=R\{z€R:(Fe>0)(r <—-ORe<ux)}
={zeR:~(Fe>0)(zr<—-eORe<uzx)} Meaning of complement.
={zeR:(Ve>0)~(z<—eORe<uz)} Negation of 3.
={zeR: (Ve >0)(~ (z < —) AND ~ (e <2))} De Morgan’s Law.
={zeR:(Ve>0)(—e <z AND z <¢)}
={zeR:0< 2z AND z <0}
={zeR:2=0}
={0}.

5. Using Peano’s axioms and their immediate consequences proved in class, show that if m,n € N then
n+n#n.

Choose m € N. Let Q(n) be the statement “m +n # n.”

The basis statement Q(1) is m+1 # 1. Arguing by contradiction, if this were not the case then m+1 =1
which says that 1 is the successor of m. However, by axiom IN3., 1 is not the successor of any element of N,
which implies the contradicrtion: 1 is not the successor of m.

The induction step is to show Q(n+1) assuming Q(n). In other words, we have to show m+(n+1) # n+1.
Again, argue by contradiction and assume that £ = m+ (n+ 1) = n+ 1. The last equality says that ¢ is the
successor to n. Using the inductive definition of addition (m + (n 4+ 1) := (m 4+ n) + 1, or its consequence,
the associative property of addition in N,) we see that £ = (m + n) + 1. In other words, £ is the successor of
m + n. By the inductive hypothesis m 4+ n # n so that £ is the successor of two different numbers, n and
m + n. However, by Peano’s axiom N4., if two elements of N have the same successor, then they are equal.
In particular, this implies the contradiction that n and m + n are equal.

El. The terms of a sequence ag,a1,as,as,... are given by ag = 0, a; = 1 and the recursive relation for
n>1byapy1 =20, —an—1 + 2. Find a formula for a,, and prove it.

Let’s try a few terms to see the pattern. as = 2a1—ag+2 = 2:1-04+2 = 4. a3 = 2a2—a1+2 =2-4—142 = 9.
ay =2a3 —as +2=2-9—4+2=16. It seems that a,, = n?. Let’s prove it by strong induction.

There are two base cases: for n = 0 we have ag = 0 = 0% and for n = 1 we have a1 =1 = 12.

For strong induction for n > 1, we shall show the statement for n + 1 assming it’s true for n and n — 1.
Using the recursive definition, a,y; = 2a,, — a,_1 + 2. Using the two induction hypotheses, a, = n? and
an—1 = (n—1)2 we see that a,4 1 =2n?> — (n—1)2+2=2n2 -2 -2n+1]+2=n? +2n+1= (n+ 1)
The induction is proven.



E2. For z,y € R, say that x and y satisfy the relation P(x,y) whenever © =y + i for some i € Z. Show
that P is an equivalence relation. Describe R/P.

To be an equivalence relation, P has to be reflexive, symmetric and transitive. To see reflexive, choose
x € R to see if P(x, ) holds. But by taking 0 € Z, we see that © = £+ 0 so P(z,z) holds. To see transitive,
for any z,y € R to see if P(z,y) = P(y,z). If P(z,y) then z = y + j for some j € Z. But by subtracting
j we see that y = © + (—j), where —j € Z. Hence P(y,z) holds as well. Finally, for any z,y,z € R,
transitivity means if P(z,y) and P(y, z) hold then P(z, z) holds. But P(z,y) means = y + 4 and P(y, z)
means y = z+ j for some ¢, j € Z. Substituting, this gives x = (z4j)+i or x = 2+ (i+ ) for this i+ j € Z.
But this is the condition that P(x,z) holds. R/P is nothing more than the circle. None of the points of
the interval [0, 1) are identified to each other, because they don’t differ by an integer. However, every real is
identified to a point in [0,1). Since 0 and 1 are identified (P(0,1) holds since 0 = 1 + (—1)) as if we glued
the ends of the interval together. But this is a circle of unit length.
E3. Let Q= {": m,n € Z such that n # 0 }/ ~ be the usual definition of the rational numbers, where we
declare two fractions equivalent, ™ ~ < whenever mb = na. Show that the usual rule for multiplication of

equivalence classes [;] . [ﬂ = [W] 1s well defined.

To be well defined on equivalence classes means that if we take different representatives of the equivalence
classes, we still get the same answer. That is if [%] = [ZL—:} and [%] = {‘;—:} then [%] = [%} The first
equation means mn’ = m’n and the second ab’ = a’b. Multiplying these equations we see that man'd’ =

I
m A as to be shown.

nbm’a’. However this says 2% ~ ¢
nb n’b




