Math 3210 § 2. Third Midterm Exam Name:
Treibergs November 11, 2009
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[1.] Using just the definition of derivative, show that f(x) = N is differentiable at ¢ = 9 and
z

find f'(9).

The derivative exists if the limit of the difference quotient exists. Since z > 0 as z — 9, by
the “workhorse theorem,” the limit of the quotient of products exists and is the quotient of the
products of the limits. Hence f is differentiable and its derivative is
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[2.] State the definition: {xp}nen is a Cauchy Sequence. Let x1 € R be any number. Define the
sequence recursively by xp+1 = 3 — %xn for all n € N. Show that |xpio — Tpy1| < %|xn+1 — Ty
for all n € N. Using the definition, show that this {x,}nen is a Cauchy Sequence.

Definition: {x,},eny C R is a Cauchy Sequence if for every € > 0 there is an N € R such that
|xr — x¢| < € whenever k, ¢ € R satisfy k, ¢ > N.
Computing for each n,
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‘In+2 - zn-&-l‘ = '3 - §In+1 - (3 - zn)‘ = §|xn+1 — Tn|-

Thus, by induction, it follows that for each n € N,
|Zn41 = anl < Gomglze — .

To complete the argument that the sequence is Cauchy, choose € > 0. Let N = 3+ lea=a] . ol hen,
if k,¢ € N satisfy k,¢ > N either k = ¢ so |z — x¢| = 0 < € or we may assume, after swapping if
necessary, that k& > ¢. Then sneaking in intermedlate terms using the inequality above and the

formula for a geometric sum 1 +7 +--- + 7" =1 f , and 2™ > n,

|z) — x| = |xp — Tp—1 + Tho1 — - — x| < Tk — Tt | + |Tho1 — To—2| + - F g1 — o] <

1 1 1 - 1 1 < |x2—x1| < |1‘2—$1|
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[3.] Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterezample.
1. Statement: If f : R — R s not differentiable at ¢ € R then f is not continuous at c.
FALSE. The function f(z) = |z| is not differentiable at ¢ = 0 but it is continuous there.
2. Statement: If g : [0,1] — R is a continuous function such that g(0) = 1 and g(1) = 0.
then there is a point ¢ € [0,1] such that ¢ = g(c).

TRUE. Let w(x) = = — g(z) which is a difference of continuous functions, hence continuous
on [0,1]. w(0) =0—g¢(0) = —1. w(l) =1—g(1) = 1. By the intermediate value theorem
there is ¢ € [0,1] so that w(c) = 0. Thus for this ¢, ¢ = g(c).



3. Statement: Ifh: (0,1) — R is continuous and bounded, then it is uniformly continuous.

FALSE. The function h(z) = sin(1/x) is continuous and bounded on (0,1) but it is not
uniformly continuous. If it were uniformly continuous, it would have a continuous extension
to H : [0,1] — R such that H(z) = h(z) for all x € (0,1). But H cannot be continuous at
zero. The sequence z,, = 1/(mn + 7/2) tends to zero as n — oo but H(z,) = (—1)" does
not converge to H(0) as n — oo because it doesn’t even converge.

[4.] Let: R — R be a function. State the definition: [ is continuous at a € R. Show that if
f i R — R is continuous at a € R, then there exist positive constants M and 6 > 0 so that
|f(x)] < M for all z € R such that a — 6 < x < a+ 0.

Definition: f is continuous on R if for every a € R and every € > 0 there is a § > 0 such that
|f(z) — f(a)|] < e whenever = € R satisfies |z — ¢| < J.

Let € = 1 and apply continuity. There is a 6 > 0 so that |f(z) — f(a)| < € whenever the real
number x satisfies a — § < x < a 4+ J. For such z,

@) =1f(a) + f(z) = fla)| < [f(a)| + [f(z) = fla)| < [f(a)| + €< [f(a)[ +1 =M.
Thus we have established the desired estimate with this § and M = |f(a)| + 1.
[5.] Let f, frn : R — R be functions for all n € N. State the definition: f, converges pointwise to

f asm — oo; State the definition: f, converges uniformly to f as n — oo. Let f,(z) =
Does f, — 0 pointwise? Does fp, — 0 uniformly? Why?
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Definition: f,, converges to f pointwise as n — oo in R iff for every € R, lim f,(z) = f(x).
In other words, (Vz € R)(Ve > 0)3N e R)(Vn e N)(n > N = |fn(z) — f(x)] <e€).

Definition: f, converges to f uniformly as n — oo in R iff
(Ve >0)3N e R)Vz e R)(Vn e N)(n > N = |fn(z) — f(z)| <¢).

To see that the convergence is pointwise, we choose z € R. Then, using limit theorems,
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To see that the convergence is also uniform, choose € > 0. Let N = ﬁ Then for any choice

of x € R and n € N such that n > N we have
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