
Math 3010 § 1.
Treibergs

First Midterm Exam Name: Practice Problems
January 22, 2018

Here are some problems soluble by methods encountered in the course. I have tried to select
problems ranging over the topics we’ve encountered. Admittedly, they were chosen because
they’re fascinating and have solutions that are longer than the questions you might expect on an
exam. Here are a few of my references.
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1. Consider a right triangle with sides a ≤ b and hypotenuse c. Through the center of the b× b
square, draw two lines that are parallel and perpendicular to the hypotenuse. For each of
the four quadrilaterals resulting by cutting the square, show sum of the lengths of two sides
is c and the difference of the two other sides is a. Hence they may be placed in the c × c
square without overlapping and leaving a hole of size a×a, thus providing yet another proof
of the Pythagorean Theorem.
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The line parallel to the hypotenuse has length c as it is a translate of the hypotenuse. The
other line is a 90◦ rotation, thus has length c too. Let F be the midpoint of AB and FG
a line parallel to AC. Then the triangles 4(ABC) and 4(FBG) are similar. Since F is
the midpoint of AB we have c

2 = FB and so a
2 = GB. Since 4(FBG) and 4(DEH) are

congruent, a2 = EH. Thus the sides of the quadrilateral parallel to CB have lengths b
2 + a

2

and EC − EH = b
2 −

a
2 , whose difference is a. It follows that the four quadrilaterals may

be placed nonoverlapping in the c × c square leaving a “hole” of size a × a, proving the
Pythagorean Theorem.
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2. Several years before James Garfield became president of the United States, he devised an
original proof of the Pythagorean Theorem which was published in 1876 in the New England
Journal of Education. Starting with right triangle 4(ABC), place a congruent triangle
4(EAD) so that AD extends CA. Then draw EB to form a quadrilateral 3(EBCD).
Prove that a2 + b2 = c2 by relating the area of the quadrilateral to the area of the three
triangles 4(ABC), 4(EAD) and 4(EBA).

Recall that opposite angles of a right triangle are complementary ∠CAB + ∠ABC = 90◦.
Using the fact that the angles at A add up to 180◦, we have

∠BAE = 180◦ − ∠CAB − ∠DAE = 180◦ − ∠CAB − ∠ABC = 90◦

is a right angle. It follows that the area of of the triangle 4(EBA) is 1
2c

2. The area of a
trapezoid is the average of its bases times height

A(3(EBCD)) =
a+ b

2
· (a+ b) =

a2 + 2ab+ b2

2
.

On the other hand, it is also the sum of areas of its triangles

A(3(EBCD)) = A(4(ABC)) +A(4(EDE)) +A(4(BAE)) =
ab

2
+
ab

2
+
c2

2

The difference is

0 =
ab

2
+
ab

2
− c2

2

which is the Pythagorean theorem.
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3. Show that any rational solution of the polynomial equation with integer coefficients can only
have integral solutions.

xn + cn−1x
n−1 + cn−2x

n−2 + · · ·+ c1x+ c0 = 0 (1)

Use this fact to show that
√
n is irrational for any integer n that is not the square of another

integer.

Suppose that x = p
q is a rational solution where p and q are assumed to have no common

factors. By multiplying (1) by qn we get

pn = −cn−1qpn−1 − cn−2q2pn−2 − · · · − c1qn−1p− c0qn.

Hence q|pn (q divides pn). If q 6= 1 it has a prime divisor q1|q (q1 6= 1). Hence q1|pn. The
prime must divide one of the p’s, which are all the same so q1|p. But then both q and p
have the common divisor q1. Thus it must be the case that q = 1 and x is an integer.

Let n be a number that is not the square of an integer. Now, for contradiction, assume that
x =
√
n is rational. It satisfies

x2 − n = 0.

We just proved that for such equations, a rational solution x must be an integer. The
equation says that x2 = n, or that n is the square of an integer, contrary to what we
assumed about n. Thus the hypothesis that x be rational must be false.

4. Consider the regular pentagram, the symbol of the Pythagoreans. Show that A is a Golden
Section of the segment C ′B and that B is a Golden Section of the segment C ′E′.

First we show that the triangles 4(D′C ′E) and 4(A′C ′D′) are similar. Let us show that
the angles of these triangles coincide. The angles ζ + γ = ∠D′C ′E = ∠D′C ′A′ are equal
because they are vertices of both triangles in the figure.

The exterior angle at vertex A of the pentagon AEDCB is δ. We have adding all exterior
angles of the pentagon, 5δ = 360◦ so δ = 72◦. In the isosceles triangle, 4(D′AB) we have
γ = 180◦ − 2δ = 180◦ − 2 · 72◦ = 36◦. Since the triangle 4(D′AB) is similar to 4(A′C ′D′)
we have we have γ + ζ = δ = 72◦. It follows that ζ = δ − γ = 72◦ − 36◦ = 36◦. Finally,the
third angle in 4(C ′AE) is η = 180◦−γ− δ = 180◦−36◦−36◦ = 72◦. Hence both triangles
4(D′C ′E) and 4(A′C ′D′) have corresponding angles (ζ, ζ+γ, η) and (γ, γ+ ζ, γ+ ζ) both
equal to (36◦, 72◦, 72◦), thus are similar.

Now by rotation, the triangles 4(C ′BD′) and 4(C ′A′E′) are similar. Observing that the
segments D′A and BB′A are angle bisectors of the vertices D′ of 4(C ′BD′) and B′ of
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4(C ′A′E′), the corresponding lengths of the parts cut by the bisector on the opposite edge
have the same ratio, namely

φ =
b

a
=
b+ a

b
= 1 +

1

φ
. (2)

But this implies that
φ2 − φ− 1 = 0

or, taking the positive root of the quadratic equation

φ =
1 +
√

5

2
,

which is the Golden Ratio. Equations (2) verify that the lengths in the problem form Golden
sections.

5. For each of the five regular polyhedra, compute the ratio of the edge length to the diameter
of the circumscribing sphere. Euclid made these computations in book XIII of Elements.

The easiest way to do this is to consider the vertices of the polyhedron as vectors in three
space symmetrically placed about the origin. The radius of the circumscribing sphere is the
length of such vector. The edge length is the distance between two adjacent vectors.

The tetrahedron can be realized as the convex hull of the four vectors

v1 = (1, 1, 1), v2 = (−1,−1, 1), v3 = (1,−1,−1), v4 = (−1, 1,−1).

The circumradius is CT =
√

12 + 12 + 12 =
√

3. The edge length is

LT = |v1 − v2| =
√

[1− (−1)]2 + [1− (−1)]2 + [1− 1]2 =
√

8 = 2
√

2.

Thus the desired ratio

RT =
LT
DT

=
LT
2CT

=
2
√

2

2
√

3
=

√
2

3

The cube can be realized as the convex hull of the six vectors

v1 = (1, 1, 1), v2 = (1, 1,−1), v3 = (1,−1, 1),

v4 = (1,−1,−1), v5 = (−1, 1, 1), v6 = (−1,−1,−1).

The circumradius is CC =
√

12 + 12 + 12 =
√

3. The edge length is

LC = |v1 − v2| =
√

[1− 1]2 + [1− 1]2 + [1− (−1)]2 = 2.

Thus the desired ratio

RC =
LC
2CC

=
2

2
√

3
=

√
1

3
.

The octohedron can be realized as the convex hull of the six vectors

v1 = (1, 0, 0), v2 = (−1, 0, 0), v3 = (0, 1, 0),

v4 = (0,−1, 0), v5 = (0, 0, 1), v6 = (0, 0,−1).

The circumradius is CO =
√

12 + 02 + 02 = 1. The edge length is

LO = |v1 − v3| =
√

[1− 0]2 + [0− (1)]2 + [0− 0]2 =
√

2.
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Thus the desired ratio

RO =
LO
2CO

=

√
2

1
=
√

2.

By Pacioli’s construction as you verified in your homework, the icosohedron can be realized
as the convex hull of the twelve vectors

v1 = (φ, 1, 0), v2 = (−φ, 1, 0), v3 = (φ,−1, 0), v4 = (−φ,−1, 0),

v5 = (0, φ, 1), v6 = (0,−φ, 1), v7 = (0, φ,−1), v8 = (0,−φ,−1),

v9 = (1, 0, φ), v10 = (−1, 0, φ), v11 = (1, 0,−φ), v12 = (−1, 0,−φ).

where φ = 1
2 +

√
5
2 is the Golden section. The circumradius is CI =

√
φ2 + 12 + 02 =

√
2 + φ =

√
5
2 +

√
5
2 , using φ2 = φ+ 1. The edge length is

LI = |v1 − v3| =
√

[φ− φ]2 + [1− (−1)]2 + [0− 0]2 = 2.

Thus the desired ratio is

RI =
LI
2CI

=
2

2

√
5
2 +

√
5
2

=

√
50− 10

√
5

10
.

Finally, to get the twenty vertices of the icosahedron, we take the centers of the faces of
the icosahedron. Since each vertex of the icosahedron has five adjacent triangles, their
centers form the vertices of a pentagonal face of the dodecahedron. There are two types of
these triangles, those that include the other corner of the rectangle and those that don’t.
Prototypical of these types adjacent to v1, multiplying averages by three are

v1 + v3 + v9 = (φ, 1, 0) + (φ,−1, 0) + (1, 0, φ) = (1 + 2φ, 0, φ),

v1 + v5 + v9 = (φ, 1, 0) + (0, φ, 1) + (1, 0, φ) = (1 + φ, 1 + φ, 1 + φ).

Thus a list of vertices of a regular dodecahedron is

w1 = (1 + 2φ, 0, φ), w2 = (−[1 + 2φ], 0, φ),

w3 = (1 + 2φ, 0,−φ), w4 = (−[1 + 2φ], 0,−φ),

w5 = (φ, 1 + 2φ, 0), w6 = (−φ, 1 + 2φ, 0),

w7 = (φ,−[1 + 2φ], 0), w8 = (−φ,−[1 + 2φ], 0),

w9 = (0, φ, 1 + 2φ), w10 = (0,−φ, 1 + 2φ),

w11 = (0, φ,−[1 + 2φ]), w12 = (0,−φ,−[1 + 2φ]),

w13 = (1 + φ, 1 + φ, 1 + φ), w14 = (−[1 + φ], 1 + φ, 1 + φ),

w15 = (1 + φ,−[1 + φ], 1 + φ), w16 = (−[1 + φ],−[1 + φ], 1 + φ),

w17 = (1 + φ, 1 + φ,−[1 + φ]), w18 = (−[1 + φ], 1 + φ,−[1 + φ]),

w19 = (1 + φ,−[1 + φ],−[1 + φ]), w20 = (−[1 + φ],−[1 + φ],−[1 + φ]).

Using φ2 = φ+ 1, the circumradius is

CD = |w1| =
√

[1 + 2φ]2 + 02 + φ2 =
√

5φ2 + 4φ+ 1 =
√

6 + 9φ =

√
21 + 9

√
5

2

Also, for the other type of center,

CD = |w13| =
√

[1 + φ]2 + [1 + φ]2 + [1 + φ]2 =
√

3φ4 =
√

6 + 9φ =
√

3φ2.
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The edge length is

LD = |w1 − w13| =
√

[{1 + 2φ} − {1 + φ}]2 + [0− {1 + φ}]2 + [φ− {1 + φ}]2

=
√

4 + 4φ =
√

4φ2 = 2φ = 2 +
√

5.

Thus the desired ratio is

RD =
LD
2CD

=
2φ

2 ·
√

3φ2
=

1√
3φ

=
2√

3(1 +
√

5)
=

2(1−
√

5)√
3(1− 5)

=

√
15−

√
3

6
.

6. This problem describes Plato’s solution of the Delian Problem of cube duplication. Given
the side of the original cube a, suppose that the one can draw the figure. Prove that x
has the property that 2a3 = x3 which solves the cube doubling problem. The figure may be
obtained through the use of a mechanical gadget. Let EC have length a and EB have length
2a and that the angles at the A, D and E are right angles. Place the gadget in the first

quadrant such that B is on the x-axis, the ray
−→
EF passes through the origin and the ray

−→
EG

crosses the y-axis at D. Then rotate the gadget in such a way that D and C have the same
y-coordinate. This gadget construction cannot be done only with straightedge and compass
and is known as a verging solution.

The right triangles are all similar. ∠ABE = 90◦ − ∠EAB = ∠DAE = 90◦ − ∠EDA =
∠CDE = 90◦ − ∠ECD. Thus the right triangles 4AEB ∼ 4DEA ∼ 4CED are similar
by AAA. Thus the ratios of the long to short legs are equal

x

a
=
y

x
=

2a

y
,

which is the continued mean proportional of Hippocrates of Chios. It follows that

x2 = ay, y2 = 2ax

so
x4 = a2y2 = 2a3x

which doubles the cube
x3 = 2a3.
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7. This problem describes Nicomedes solution to the trisection of an angle α = ∠AOB. Let

a be the length of OB. Segment BC is perpendicular to the ray
−→
OA, and the ray

−→
BD is

parallel to the ray
−→
OA. The ray OPQ has been drawn so that the length of PQ is 2a. Then

β = ∠AOQ = 1
3α. [Hint: Consider the midpoint M of PQ.]

This is a verging solution. Mark on a straightedge a segment PQ of length 2a and then

slide P on CB and Q on
−→
BD until the straightedge passes through O.

First we claim that the length of BM is a. To see this, construct a line through M that is
perpendicular to CB. It crosses CB at a point N . Since CB is a mutual perpendicular, the
lines NM and BQ are parallel. Because the line OQ crosses three parallel lines BQ, NM

and
−→
OA, the angles ∠BQP = ∠NMP = ∠AOQ = β. It follows that the triangles 4BQP

and 4NMP are similar. Hence the ratio of lengths of short leg to hypotenuse are equal

`(PN)

`(PB)
=

a

2a
=

1

2
.

Thus the lengths of PN and NB are equal, so the triangles 4PNM and 4BNM are
congruent. Thus the lengths are equal `(BM) = `(PM) = a.

The result follows by computing the angle ∠BOM in two ways. In the first case it is the
difference of the two angles at O, namely, ∠BOM = α − β. Using the similar triangles,
∠BMO = ∠BMN + ∠PMN = 2β. Finally since the lengths of BO and BM are equal,
triangle 4BMO is isosceles, therefore ∠BOM = ∠BMO = 2β. Equating the two angle
computations we find α− β = 2β or α = 3β, as claimed.

8. Find two numbers x and y such that 3x + 17y = 1. Use this result to construct a regular
51-gon by combining a regular triangle with a regular 17-gon inscribed in the same circle.

3 and 17 are relatively prime (gcd(3, 17) = 1). We run the Euclidean algorithm

17 ≡ 2 mod 3 17 = 5 · 3 + 2

3 ≡ 1 mod 2 3 = 1 · 2 + 1.

Working backwards we find

1 = 3− 2 = 3− (17− 5 · 3) = 6 · 3− 1 · 17

thus x = 6 and y = −1. A compass set at the radius can walk about a circle in exactly six
steps. Taking every other step yields the vertices of a regular triangle. Gauss constructed
the regular 17-gon. To get the angle of a 51-gon we step off x arcs of a side of the triangle
and then y arcs of side of the 17-gon. Thus we end up at an angle

x
360◦

3
+ y

360◦

17
= (17x+ 3y)

360◦

51
=

360◦

51

which is the arc of side of the 17-gon if we take x = 6 and y = −1 so that 3x+ 17y = 1.
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9. Using the Euclidean algorithm, find gcd(1769, 2378) and integers x and y satisfying

gcd(1769, 2378) = 1769x+ 2378y.

Running the Euclidean Algorithm, we find

2378 = 1 · 1769 + 609

1769 = 2 · 609 + 551

1769 = 3 · 551 + 116

551 = 4 · 116 + 87

116 = 1 · 87 + 29

87 = 3 · 29 + 0.

Thus gcd(1769, 2378) = 29. Working backwards,

29 = 116− 87

= 116− (551− 4 · 116) = 5 · 116− 551

= 5 · (1769− 3 · 551)− 551 = 5 · 1769− 16 · 551

= 5 · 1769− 16 · (1769− 2 · 609) = 32 · 609− 11 · 1769

= 32 · (2378− 1769)− 11 · 1769 = 32 · 2378− 43 · 1769

thus x = 32 and y = −43.

10. Show if a|c and b|c with gcd(a, b) = 1, then ab|c.
We write 1 = ax+ by for some integers x and y. Multiplying by c yields

c = c · 1 = c(ax+ by) = acx+ bcy.

Now a|c and b|c imply c = ja and c = kb for some integers j and k so

c = acx+ bcy = a(kb)x+ b(ja)y = ab(kx+ jy)

so ab|c.

11. If a and b are integers such that 1 = ax+ by for some integers x and y, then gcd(a, b) = 1.

Suppose x is a common divisor, that is x|a and x|b. By the equation 1 = ax + by we see
that x divides the right side so x|1 which implies that x = 1. In other words, the every
common divisor including the greatest one is 1.

12. Use Eudoxus’s method of exhaustion to prove Archimedes theorem that the area of a circle
is the area of a triangle whose height is the radius and whose base is the circumference.

Let r be the radius and C be the circumference. Eudoxus’s method is to show that for any
two numbers β < 1

2rC < γ, the area of the circle A satisfies β < A < γ and hence A = 1
2rC

because β and γ may be taken as close to 1
2rC as we please. We have to show that the area

is greater than any number smaller than 1
2rC and less than any number greater than 1

2rC,
hence equal to 1

2rC. To do this we “exhaust” the circle by regular polygons which inscribe
and circumscribe the circle but are are sufficiently close to the circle.

For this purpose, let

α0 =
360◦

6
; αn =

360◦

6 · 2n
denote the central angle of the isosceles triangle of a regular 6 · 2n-gon In inscribed in
the circle. Thus αn+1 is half the angle αn and In+1 has twice the vertices of In. Let
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On be the circumscribing 6 · 2n-gon which is rotated αn/2 from In so that the midpoint
of a side of On is the vertex of In. Since In is inside C is inside On we have inequality
of areas a(In) ≤ Aa(On). Similarly the edge of In is a straight line segment inside the
corresponding arc of the circle is inside the union of two half edges of On. Since a straight
line is shorter than any curve connecting its endpoints we have by adding up all pieces,
the length `(In) ≤ C. Similarly since the to half-edges of On are outside of C and both
are concave toward the center, C ≤ `(On). These inequalities are taken as axioms by
Archimedes, but may be proved using calculus.

Let α = 1
2αn. Then consider a sector of angle α. Let w be half the edge of In. (Using

trigonometry, w = r sin 180α
π using conversion to radians.) Since the arc of the circle is

longer, w ≤ 60rα. (From calculus, sin 180α
π ≤ 180α

π for α ≥ 0. Also, π ≥ 3.) From the

Pythagoren theorem, the long leg s =
√
r2 − w2. Half the length of a side of On is v.

(v = r tan 180α
π ≥ 180rα

π .) Using similar triangles

v

r
=
w

s
=

w√
r2 − w2

.

It follows that the ratio of lengths is

`(On)

`(In)
=
v

w
=

r√
r2 − w2

.

Since areas are proportional to the square of the circumference,

a(On)

a(In)
=

r2

r2 − w2
.

It follows that the difference in areas is

a(On)− a(In) = a(In)

{
a(On)

a(In)
− 1

}
= a(In)

{
r2

r2 − w2
− 1

}
=
a(In)w2

r2 − w2
≤ Aw2

r2 − w2

which tends to zero as n gets large because w tends to zero. To see it, let us assume
2w2 < r2. Then

a(On)− a(In) ≤ Aw2

r2 − w2
≤ Ar2α2

r2 − 1
2r

2
= 2Aα2. (3)

Now, suppose we add up all areas of 2n halfsectors of In to get the area.

a(In) = 2n · 1

2
sw ≤ 1

2
rC

because s ≤ r and 2nw = `(In) ≤ C. Similarly

1

2
rC ≤ 2n · 1

2
rv = a(On)
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because 2nv = `(On) ≥ C.

In order to show that A exceeds any number less than 1
2rC, let us choose any number

β < 1
2rC. Now choose n so large that 2w2 ≤ 7200r2α2 < 1 and

2Aα2 ≤ 7200A

n2
<

1

2
rC − β.

This follows from the fact that 1
n may be made smaller than any positive number, provided

n is large enough. (This fact is called the Archimedean Axiom in real analysis. It is a
property of of the real numbers, and may be deduced from completeness. You’ll learn
about this in Math 3210.)

Now, with this number of sides, using (3),

A ≥ a(In) = a(On)− [a(On)− a(In)] =
1

2
r`(On)− [a(On)− a(In)]

≥ 1

2
rC − [a(On)− a(In)] >

1

2
rC − 2Aα2 >

1

2
rC −

[
1

2
rC − β

]
= β.

Similarly, to show that A is less than any number greater than 1
2rC, let us choose any

number γ > 1
2rC. Now choose n so large that 7200r2α2 < 1 and

2Aα2 ≤ 7200A

n2
< γ − 1

2
rC.

Then for polygons with this number of sides, using (3),

A ≤ a(On) = a(In) + [a(On)− a(In)] =
1

2
s`(In) + [a(On)− a(In)]

≤ 1

2
rC + [a(On)− a(In)] <

1

2
rC + 2Aα2 <

1

2
rC +

[
γ − 1

2
rC

]
= γ.

Thus we have verified Eudoxus conditions and the theorem is proved.

This is a standard way to operate in real analysis. The key idea is that if a number x satisfies
a(In) ≤ x ≤ a(On) then the errors x−a(In) ≤ a(On)−a(In) and a(On)−x ≤ a(On)−a(In).
One proves equalities by showing two numbers are arbitrarily close. As the text points out,
the Greeks had a modern handling of real quantities that doesn’t rely on formal properties
of limits but rather on rigorous ε− δ type definitions.

13. Find the greatest common divisor of 504 and 1188 in two ways.

Factoring into primes we find 792 = 23 · 32 · 7 and 756 = 22 · 33 · 11. The greatest common
divisor is 22 · 32 = 36.

Using the Euclidean algorithm we find

1188 = 2 · 504 + 180

504 = 2 · 180 + 144

180 = 1 · 144 + 36

144 = 4 · 36 + 0.

Hence gcd(504, 1188) = 36.
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14. Let APB be a segment cut from a vertical parabola. Let AC be the tangent line to the
parabola at A and BC a vertical line from B that meets the tangent line at C. Justify the
claims in Archimedes proof in The Method that the area enclosed by the parabola and the
line AB is one third of the area of the triangle 4ABC. Let D be the midpoint of AC and
extend the line AD to H so that the distance AD equals the distance DH. Archimedes idea
is to think of the segment AH as a lever with fulcrum D. His idea, anticipating integral
calculus, is that the triangle and parabola segment are made up of vertical line segments.
He wants to show that the total contribution of the segments from the parabola equals one
third of the contributions of the triangle. Consider an arbitrary vertical section EPG. he
claims that if a weight equivalent to the length EG is put at the point F of the lever, then it
is exactly balanced by a weight equal to the length PE at H. Summing up all vertical lines,
the total weight of the parabola at H balances the triangle. Now, observe that the triangle
acts as if its total weight were concentrated at the center of gravity, which is on the line
AD one third of the distance AD from D. Thus the lever arm of the triangle is on third of
the lever arm of the parabola at H, consequently, the total area of the parabola is on third
of the area of the triangle. (This was discovered as a palimpsest (overwritten book) in a
Constantinople library as late as 1908. The writing underneath the liturgical text turned out
be the lost book by Archimedes The Method of Mechanical Discovery in Geometry.)

Let us assume that the parabola has the equation y = −x2 and the points A and B are
located at x = a and x = b respectively. This imples that H is at x = b+ (b− a) = 2b− a.
Let x be the coordinate of EG, p(x) denote the length PE and t(x) be the length of EG.
We have to show that the torque from the triangle equals the torque from the parabola, or
t(x)(b− x) = p(x)(b− a).

To see this, let us write the equations of the lines. Since AC has slope −2a we have the
upper line AC and lower line AB are given by

u(x) = −a2 − 2a(x− a),

`(x) = −a2 +
−b2 + a2

b− a
· (x− a) = −a2 − (a+ b)(x− a).

12



Hence

t(x) = u(x)− `(x) = (b− a)(x− a),

p(x) = −x2 − `(x) = a2 − x2 + (a+ b)(x− a) = (b− x)(x− a).

The torques balance because

p(x)(b− a) = (b− a)(b− x)(x− a) = t(x)(b− x).

15. Let a and b be positive integers. What condition on a and b is required in order to find
integers x and y such that

ax+ by = 1?

Determine whether the condition to solve this Diophantine equation holds if a = 5500 and
b = 2457, and if it does, solve the equation.

The condition is that gcd(a, b) = 1. If instead gcd(a, b) = d > 1 then if there were a solution
we would have d | (ax+ by) because d | a and d | b, but d does not divide 1.

Let’s apply the Euclidean algorithm to find the greatest common divisor.

5500 = 2 · 2457 + 586

2457 = 4 · 586 + 113

586 = 5 · 113 + 21

113 = 5 · 21 + 8

21 = 2 · 8 + 5

8 = 1 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0

Thus gcd(5500, 2457) = 1 and the Diophantine equation can be solved. Working backwards,

1 = 3− 2

= 3− (5− 3) = 2 · 3− 5

= 2 · (8− 5)− 5 = 2 · 8− 3 · 5
= 2 · 8− 3 · (21− 2 · 8) = 8 · 8− 3 · 21

= 8 · (113− 5 · 21)− 3 · 21 = 8 · 113− 43 · 21

= 8 · 113− 43 · (586− 5 · 113) = 223 · 113− 43 · 586

= 223 · (2457− 4 · 586)− 43 · 586 = 223 · 2457− 935 · 586

= 223 · 2457− 935 · (5500− 2 · 2457) = 2093 · 2457− 935 · 5500

Since 2093 · 2457 = 5, 142, 501 and 935 · 5500 = 5, 142, 500, the solution checks. A solution
is thus x = −935 and y = 2093.
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16. Show that
√

3 is incommensurable with 1 by showing that the geometric version of the
Euclidean Algorithm, anthyphairesis, fails to converge.

Starting with the rectangle of sides
√

3 and 1, we subtract the shortest side from the
longest, and continue in this fashion. The procedure will not stop if after a few steps we
obtain a rectangle similar to the original one. Thus xi+1 = max{xi, yi} −min{xi, yi} and
yi+1 = min{xi, yi}.

x1 =
√

3 ≈ 1.732 y1 = 1
y1
x1
≈ 1.732

x2 =
√

3− 1 ≈ .732 y2 = 1
y2
x2
≈ 1.366

x3 = 1− (
√

3− 1) = 2−
√

3 ≈ .268 y3 =
√

3− 1 ≈ .732
y3
x3
≈ 2.732

x4 = (
√

3− 1)− (2−
√

3) = 2
√

3− 3 ≈ .464 y4 = 2−
√

3 ≈ .268
x4
y4
≈ 1.732

Note that
x4
y4

=
2
√

3− 3

2−
√

3
· 2 +

√
3

2 +
√

3
=

4
√

3 + 6− 6− 3
√

3 + 4
√

3

4− 3
=
√

3.

Thus after three steps, the rectangle has the same proportions. The purple rectangle is
similar to the red one. The Euclidean algorithm can’t stop because every third step we
return to a rectangle similar to the original one, so it repeats infinitely often without reaching
a square.
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17. Using the geometric Euclidean algorithm for
√

3, find a recursion formula that finds infinitely
many integer solutions of Pell’s equation given that (x1, y1) is an integer solution.

y2 − 3x2 = 1

In the cubic case, the third rectangle (instead of the second as for
√

2) is proportional to
the initial rectangle, as in Problem 16. The anthyphairesis diagram suggests the recursion

xn+1 = 2xn + yn

yn+1 = 3xn + 2yn

Assuming that
y2n − 3x2n = 1

we have

y2n+1 − 3x2n+1 = (3xn + 2yn)2 − 3(2xn + yn)2

= (9x2n + 12xnyn + 4y2n)− 3(4x2n + 4xnyn + y2n)

= −3x2n + y2n = 1

as desired. yn/xn approximates
√

3 ≈ 1.732051. A few iterates are

y2 = 7 x2 = 4
y2
x2
≈ 1.733333

y3 = 26 x3 = 15
y3
x3
≈ 1.732143

y4 = 97 x4 = 56
y4
x4
≈ 1.732057

y5 = 326 x5 = 209
y5
x5
≈ 1.732051

y6 = 5042 x6 = 2911
y6
x6
≈ 1.732051

Checking, 50422 − 3 · 29112 = 25421764− 3 · 8473921 = 25421764− 25421763 = 1.

18. Write 76
45 as a continued fraction.

The Euclidean algorithm finds the quotients.

76 = 1 · 45 + 31

45 = 1 · 31 + 1431 = 2 · 14 + 3

14 = 4 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0

15



Thus gcd(76, 45) = 1. Building up the continued fraction we get

76

45
= 1 +

31

45
= 1 +

1
45
31

But
45

31
= 1 +

14

31
= 1 +

1
31
14

.

But
31

14
= 2 +

3

14
= 2 +

1
14
3

.

But
14

3
= 4 +

2

3
= 4 +

1
3
2

.

But
3

2
= 1 +

1

2
.

Thus
76

45
= 1 +

1

1 +
1

2 +
1

4 +
1

1 + 1
2

19. Find the continued fraction expansion of
√

5.

The Euclidean algorithm gives √
5 = 2 + (

√
5− 2)

so
1√

5− 2
=
√

5 + 2 = 4 + (
√

5− 2)

From here on in it repeats, thus

√
5 = 2 +

1

4 +
1

4 +
1

4 +
1

. . .

20. Using Eudoxus’s Method of Exhaustion, prove Euclid’s Theorem that circles have area ratio
as the squares of their diameters.

We are to show that if two circles C ′ and C have areas A′ and A and diameters D′ and D,
resp., then

A′

A
=

(D′)2

D2
.

If this were not the case then circle C has area X such that

A′

X
=

(D′)2

D2

where X is not equal to A. Thus either X < A or X > A. Euclid shows that neither of
these hold, thereby establishing X = A. Let’s first suppose that X < A. The idea is to
construct regular polygons Pn and P ′n with 6 · 2n sides inscribed in the circles so Pn ≤ A
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and P ′n ≤ A′ such that area X < Pn. Since polygon areas are proportional to the squares
of their circumradii, it follows that

A′ ≥ P ′n =
(D′)2Pn
D2

>
(D′)2X

D2
= A′

which is a contradiction. Thus X < A is false.

We may do the analagous argument involving superscribing polyhedra, but Euclid finds a
short cut. If X > A we may find a Y < A′ such that

Y

A
=
A′

X
=

(D′)2

D2

Hence we are in the same position as before. Constructing an inscribed polygon P ′n such
that Y < P ′n we find

A ≥ Pn =
D2P ′n
(D′)2

>
D2Y

(D′)2
= A

whch is also a contradiction.

Let P0 be a hexagon inscribed in C with radius r. Pn+1 is constructed from Pn by doubling
the number of sides. Thus it remains to show that the area deficit is a reduced by a fraction
0 < γ < 1 for each step

A− Pn+1 ≤ γ (A− Pn)

It follows (from an induction argument) that

A− Pn ≤ γn(A− P0) (4)

which may be made smaller than A − X if n is taken large enough. For such a large n,
Pn = A− (A− Pn) > A− (A−X) = X as desired.

Finally, it remains to show that (4) holds for these polygons. Starting from P0, the regular
hexagon, Pn+1 has double the number of vertices as Pn. Consider one of the sectors of Pn
where α = ∠AOB = 360◦/vn where vn = 6 · 2n is the number of vertices. One of the sides
of Pn is AB. The area deficit A − Pn is at least vn times the area of the triangle 4ADB
because it is enclosed by the arc ADB and the segment AB. Let Qn be the circumscribing
vn-gon whose edges are tangent to the circle at the vertices of Pn. Thus one of the edges of
Qn+1 is the segment EC. The area deficit A−Pn+1 is less than the vn+1 times the area of
the triangle 4AED because the triangle contains the region bounded by the arc AD and
the segment DA. Thus

A− Pn+1

A− Pn
≤ vn+1A(4AED)

vnA(4ADB)
=

2A(4AEF )

A(4ADH)

since 4AEF is half of 4AED and 4ADH is half of 4ADB.
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The right triangles 4AEF and 4ADB are similar. To see it, since α = 360◦/vn is the
angle ∠AOB of a sector of Pn, then ∠DOA = α

2 so its complement is ∠HAO − 90◦ − α
2 .

∠EOA = α
4 . Since FA and FO are perpendicular, its complement is ∠FAO = 90◦ − α

4 .
Thus angle ∠FAG = ∠FAO − ∠HAO = α

4 . It follows that ∠EAF = 90◦ − ∠FAO = α
4

also, hence 4AEF and 4ADH are similar.

The areas of 4AEF and 4ADH are proportional to the squares of their longer legs. But
the length of AF is half of the length of AD which is the hypotenuse of 4ADH. Thus

2A(4AEF )

A(4ADH)
=

2L(AF )2

L(AH)2
=
L(AH)2 + L(DH)2

2L(AH)2
=

1

2

(
1 +

(
L(DH)

L(AH)

)2
)

(5)

Finally we notice that the ratio L(DH)/L(AH) (which is tan(α4 )) decreases monotonically
as ∠DAH = α

4 decreases so that the largest that ever is occurs for P0 where α = 60◦.

The biggest right side of (5) called γ, corresponds to α = 60◦. tan 15◦ = 2 −
√

3 may be
computed from triangles, for example by taking the slope of the line through the origin and

the midpoint of the points (1, 0) and (cos 30◦, sin 30◦) = (
√
3
2 ,

1
2 ) which are 30◦ apart. Thus

for α = 60◦,

γ =
1

2

(
1 +

(
L(DH)

L(AH)

)2
)

=
1

2

(
1 +

(
2−
√

3
)2)

= 4− 2
√

3 ≈ 0.536.

Euclid claims that γ = 1
2 works, although I haven’t been able to understand his proof of

this.

21. Diophantus gave ingenious solutions to a variety of problems in his book Arithmetica. Here
is one of them (Book 1, Problem 17). Find four numbers such that when any three of them
are added together, their sum is one of four given numbers, say 20, 22, 24, 27. [from Burton,
p. 220.]

Let a, b, c and d be the four numbers and x = a+ b+ c+d be their sum. Then the numbers
are a = x− 20, b = x− 22, c = x− 24 and d = x− 27. For example, if b+ c+ d = 20 then
adding a, x = a+ b+ c+ d = a+ 20. It follows that

x = (x− 20) + (x− 22) + (x− 24) + (x− 27) = 4x− 93

Hence 3x = 93 or x = 31. It follows that a = 31− 20 = 11, b = 9, c = 7 and d = 4.

22. Show that any two tetrahedra with the same base and height can be approximated arbitrarily
closely by the same prisms, differently stacked. Deduce that the tetrahedra of the same base
and height have equal volume. [Stillwell, problems 4.3.2 and 4.3.3 from your homework.]

Let ∆ denote the tetrahedron. Let us suppose that the on the bottom is a triangle T0
containing the origin of R3 whose base has length ` and width (height in the z = 0 plane)
w. Suppose that the apex has coordinates (a, b, h). Suppose that we slice the tetrahedron
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horizontally into n pieces. The slices are at heights
kh

n
where k = 0, 1, 2, . . . , n. The

intersections of the slice with the tetrahedron are smaller and smaller triangles Tk with

length
n− k
n

` and width
n− k
n

w.

The prisms Πk have bases Tk and heights
h

n
. Thus the volume of the kth prism is

V (Πk) = A(base) · height =
1

2
· (n− k)`

n
· (n− k)w

n
· h
n

=
(n− k)2h`w

2n3

The stack of prisms Pn consists of n− 1 prisms whose tops line up with the intersection of

the z =
hk

n
planes. The volume of the stack is

V (Pn) =

n−1∑
k=1

V (Πk) =

n−1∑
k=1

(n− k)2h`w

2n3
=

(n− 1)n(2n− 1)h`w

12n3

where we have used the formula from Calculus that

n−1∑
k=1

(n− k)2 = (n− 1)2 + (n− 2)2 + · · · 32 + 22 + 12 =
(n− 1)n(2n− 1)

6
.

If the volume of the stack approaches the volume of the tetrahedron, in modern terminology

V (∆) = lim
n→∞

V (Pn) =
h`w

6
=

1

3
A(T0)h.

The volume of the tetrahedron is one third that of the right prism with the same base T0.

We must show that V (Pn) approximates the volume of the tetrahedron. Notice, that if the
apex is not above the bottom triangle, then the stack may bulge out of the tetrahedron, as
in the second diagram. This adds complication but conceptually the same ideas occur in
the argument as if the apex was above the base. Let us assume this for now and finish the
argument in this case. The general case will be dealt with after that.

When the apex is above the base, then the triangular slices are nested. The first level has

base T1 with height
h

n
. On top of it is the prism with base T2 and so on. Thus Pn ⊂ ∆ and

(n− 1)n(2n− 1)h`w

12n3
= V (Pn) ≤ V (∆).

The outer polyhedron Qn starts with base T0, Then base T1 and so on up to the nth level
this time. Indeed Qn is Pn placed on top of the prism with base T0. Since ∆ ⊂ Qn we have
V (∆) ≤ V (Qn). Also, adding the volume of the bottom prism we find

V (Qn) = V (Pn) +
lwh

2n
=

(n(n+ 1)(2n+ 1)h`w

12n3
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The volume difference is the volume of the new bottom slab

V (Qn)− V (Pn) =
lwh

2n

which can be made arbitrarily small. This implies that the error made by approximating
with the stack is

V (∆)− V (Pn) ≤ V (Qn)− V (Pn) =
lwh

2n
;

V (Qn)− V (∆) ≤ V (Qn)− V (Pn) =
lwh

2n
.

which tends to zero as n tends to infinity.

Lets show that two tetrahedra ∆ and ∆′ with the same base, same height and apexes above
their bases have the same volume. Pn and P ′n have the same volume because they consist
of the same prisms that have been placed at different positions as they are stacked. Thus
V (Pn) = V (P ′n). Following Eudoxus to equate ratios, suppose that we select any rational
numbers p < V (∆) and V (∆) < q. We have to show that p < V (∆′) and V (∆′) < q. By
the Archmidean principle, we can find n so large that

V (Qn)− V (Pn) =
lwh

2n
< min{V (∆)− p, q − V (∆)}.

The same estimates apply for ∆′ as for ∆ because they depend only on n and the dimensions
of the bases T ′0 and T0 which are the same. Thus V (Q′n) = V (Qn) too since they are stacks
of the same prisms. It follows from Pn ⊂ ∆ that

V (∆′) = V (P ′n) + [V (∆′)− V (P ′n)]

≤ V (P ′n) + [V (Q′n)− V (P ′n)]

= V (Pn) + [V (Qn)− V (Pn)]

< V (∆) + [q − V (∆)] = q.

Similarly, since ∆ ⊂ Qn,

V (∆′) = V (Q′n)− [V (Q′n)− V (∆)]

= V (Qn)− [V (Qn)− V (∆)]

≥ V (Qn)− [V (Qn)− V (Pn)]

> V (∆)− [V (∆)− p] = p.

Since p and q were arbitrary, it follows that V (∆) = V (∆′), completing the argument for
the cases that the apex is above the base.

Now suppose that the apex is not necessarily over the base. We put the origin in the base
T0 and let V = (a, b, h) be the direction from the origin to the apex. Instead of using right
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Figure 1: Doubling a skew triangular prism yields a parallelopiped

angled prisms whose sides go vertically, we’ll use skew prisms whose sides are parallel to
V . Then the argument proceeds exactly as before by making leaning towers of skew prisms
instead of straight upward towers. This works if the volume of of a skew prism has the same
volume as the right prism, given by area of base times height.

Finally, we argue that the volume of a skew prism is the same as the straight prism. By
gluing a copy of the triangle to itself, we double the base. Then we show that a skew
parallelopiped, which has double the volume of a skew triangular prism because it is two
skew triangular prisms glued together and has volume equal to base times height, proving
that the volume of a triangular prism is base times height.

Figure 2: Top and front views of cutting and gluing a parallelopiped

First, we making sure the height is small enough so that the upper face is above the lower
one. The top of the skew prism is shifted by a small amount for n large enough. Otherwise,
we can cut the skew parallelopiped by horizontal slices with this property, and get the result
by adding the slices.

If the upper face is above the lower one, we can cut the parallelopiped in the vertical plane
parallel to one of the edges and re-glue the remnant on the other side to make another
parallelopiped with the same volume but with two sides vertical. By repeating in the other
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side direction we get a vertical prism over the same base with the same volume, proving
that the skew parallelopiped has volume equal to area of base times height.
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