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1. METRIC SPACES

The following definition introduces the most central concept in the course.
Think of the plane with its usual distance function as you read the definition.

Definition 1.1. A metric space (X, d) is a non-empty set X and a function
d : X ×X → R satisfying

(1) For all x, y ∈ X , d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.
(2) For all x, y ∈ X , d(x, y) = d(y, x).
(3) For all x, y, z ∈ X , d(x, z) ≤ d(x, y) + d(y, z) (called the triangle

inequality).

The function d is called the metric, it is also called the distance function.

Two notable properties of this definition are:

• Its simplicity.
• Its wide applicability, resulting from the large number and great va-

riety of examples.

The simplicity of the definition is clear from its statement. We proceed
to explain the second property by giving examples.

1.1. Examples of metric spaces. We now give examples of metric spaces.
In most of the examples the conditions (1) and (2) of Definition 1.1 are easy
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to verify, so we mention these conditions only if there is some difficulty
in establishing them. The difficult point is usually to verify the triangle
inequality, and this we do in some detail.

Example 1.2. LetX = R with the usual distance function d(x, y) = |x−y|.

The triangle inequality is easy to verify by looking at cases. First, it’s
clear if two of x, y, z are equal (and both sides of the triangle inequality are
equal), so we may assume all are different, and we keep this assumption
in all subsequent examples. Let’s assume x < z (the case z < x will be
similar. Then there are 3 possibilities: y < x < z, x < y < z, x < z < y.
In the first case d(x, z) < d(y, z) and in the third case d(x, z) < d(x, y), so
in both these cases we get the strict inequality d(x, z) < d(x, y) + d(y, z).
In the second case we get equality in the triangle inequality: d(x, z) =
d(x, y) + d(y, z). This proves the triangle inequality for (X, d). Moreover,
it also proves the following: Equality holds in the triangle inequality if and
only if y is between x and z.

Example 1.3. Let X = R2 with the usual distance function

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2,

where x = (x1, x2) and y = (y1, y2).

To verify the triangle inequality, write, as usual, u · v for the dot product
of vectors u = (u1, u2) and v = (v1, v2) in R2 (thus u · v = u1v1 + u2v2)
and |u| for the length

√
u · u. Given 3 points x, y, z ∈ R2, let u = x−y and

v = y−z. Then u+v = x−z, so d(x, z) = |u+v|, d(x, y) = |u|, d(y, z) =
|v|, therefore the triangle inequality is equivalent to

|u+ v| ≤ |u|+ |v| for all u, v ∈ R2.

squaring both sides this is equivalent to

|u+ v|2 ≤ |u|2 + 2|u||v|+ |v|2.
Using the properties of the dot product, we see that we want

|u+ v|2 = (u+ v) · (u+ v) = u · u+ 2u · v + v· ≤ u · u+ 2|u||v|+ v · v,
which is equivalent to

u · v ≤ |u||v|
which is half of the familiar Cauchy-Schwarz inequality |u · v| ≤ |u||v|.
Moreover, we have equality in the triangle inequality if and only if u · v =
|u||v|, which holds (assuming, as we may, that u and v are both non-zero),
if and only if u and v are positive multiples of each other. In terms of x, y, z
this means that d(x, z) = d(x, y) + d(y, z) holds if and only if y is in the
straight line segment joining x and z.
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Example 1.4. Let X = Rn with the usual distance function

d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2,

where x = (x1, . . . , xn) and y = (y1, . . . yn). The verifications are exactly
as for the case n = 2 just discussed.

Example 1.5. Let X = Rn and d(x, y) = |x1 − y1|+ · · ·+ |xn − yn|. For
n = 2 this is the usual distance we use when driving in a city laid out in
rectangular coordinates like Salt Lake City.

The triangle inequality is easy to verify. We need

d(x, z) =
n∑
i=1

|xi − zi| ≤
n∑
i=1

|xi − yi|+
n∑
i=1

|yi − zi|,

which follows from the fact that, for each i, from the triangle inequality in
R, |xi − zi| ≤ |xi − yi|+ |yi − zi|. Moreover,equality holds in the triangle
inequality for d if and only if, for all i, we have |xi−zi| = |xi−yi|+|yi−zi|,
which happens if and only if yi lies between xi and zi for each i = 1 . . . n.
Thus, given x and z, the set of all y for which d(x, z) = d(x, y) + d(y, z)
is a “box” given by these inequalities. See Figure 1 for n = 2. For any y
in the shaded region we have d(x, y) + d(y, z) = d(x, z). Thus there are
many more possibilities for equality than in the case of Example 1.3 and
Example 1.4 where equality occurs only on a line segment.

FIGURE 1. Equality Set for Taxicab Metric

Example 1.6. LetX = Rn and let d(x, y) = max{|x1−y1|, . . . , |xn−yn|}.

To prove the triangle inequality d(x, z) ≤ d(x, y) + d(y, z), suppose that
d(x, z) = max{xi − zi|} = |xk − zk| for some fixed k, 1 ≤ k ≤ n, that is,
the maximum is attained at k. Then |xk − zk| ≤ |xk − yk| + |yk − zk| and
|xk − yk| ≤ d(x, y) and |yk − zk| ≤ d(y, z). So d(x, z) ≤ d(x, y) + d(y, z)
follows. We will not discuss in detail the case of equality, but remark, just
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as in Example 1.5, there are in general many more possibilities than a line
segment.

One way to visualize these metrics is by looking at their unit spheres, that
is, {x ∈ Rn : d(0, x) = 1}. First, define the terminology:

Definition 1.7. Let (X, d) be a metric space, x ∈ X and r ∈ R, r > 0.

(1) The ball of radius r centered at x isB(x, r) = {y ∈ X|d(x, y) ≤ r}.
(2) The sphere of radius r centered at x S(x, r) = {y ∈ X|d(x, y) =

r}.

Figure 2 shows, for n = 2 the unit spheres for the the three metrics
d(1), d(2) and d(∞). The innermost the taxi-cab metric, then the Euclidean,
and the outer one is d(∞).

FIGURE 2. Unit Spheres of Examples 1.5, 1.4, 1.6 (ordered
from inner to outer).

Example 1.8. Let X = S2 = {x ∈ R3 : |x| = 1}, the unit sphere in R3.
Let d(x, y) be the length of the great-circle arc joining x and y. This is the
way we measure distances on the surface of the earth. An explicit formula
for d(x, y) is easy to find: Let φ be the angle between the unit vectors x
and y. The great circle containing x and y is the intersection with S2 of the
plane through the origin spanned by x and y. (This is well-defined provided
x 6= ±y, that is, x and y are nto antipodal points on S2). The great circle
arc connecting x and y is the shorter of the two arcs into which this circle is
divided by x and y.
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The length of this arc is φ, the radian measure of the angle (at the origin)
between x and y, see Figure 3. Thus cosφ = x · y (the usual dot product in
R3) so the formula for the spherical distance d(x, y) is

(1) d(x, y) = cos−1(x · y).

FIGURE 3. Spherical Distance

One way to verify the triangle inequality for the spherical metric is to
derive it from another geometric inequality. Let x1, . . . xm be vectors in
Rn, and assume m ≤ n. The Gram matrix of x1, . . . , xm is the m by m
matrix A whose i, j-entry is xi · xj . Note that A is a symmetric matrix,
since xi · xj = xj · xi. The inequality that we want is

Theorem 1.9. If A is the Gram matrix just defined of m vectors x1, . . . , xm
in Rn, then det(A) ≥ 0, and det(A) = 0 if and only if the set {x1, . . . , xm}
is linearly dependent.

Proof. To avoid complicated notation, we only prove the theorem in the
case that we need, namely m = n = 3, the proof being the same for all
m,n. Let

A =

 x · x x · y x · z
y · x y · y y · z
z · x z · y z · z


be the Gram matrix of 3 vectors x = (x1, x2, x3), y = (y1, y2, y3), z =
(z1, z2, z3) ∈ R3, and let B be the matrix

B =

 x1 y1 z1

x2 y2 z2

x3 y3 z3

 ,
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Clearly we have

 x · x x · y x · z
y · x y · y y · z
z · x z · y z · z

 =

 x1 x2 x3

y1 y2 y3

z1 z2 z3

 x1 y1 z1

x2 y2 z2

x3 y3 z3

 ,

in other words, A = (tB)B, where tB denotes the transpose matrix. Thus
det(A) = det(tB) det(B) = det(B)2 ≥ 0, and det(A) = 0 if and only if
det(B) = 0, which, by the definition of B, happens if and only if {x, y, z}
is linearly dependent.

�

Remark 1.10. It will be a homework problem for the course to derive the
triangle inequality for the spherical distance (1) from the case m = n = 3
of Theorem 1.9. Once you do this homework problem it should be clear
that we can use the same reasoning for the unit sphere Sn in Rn+1, any
n ≥ 2, by defining the distance d(x, y) by the same formula (1) we get the
spherical distance in Sn. The triangle inequality can be checked by applying
Theorem 1.9 with m = 3 in the same way it was applied in the homework
to the case m = n = 3 to prove the triangle inequality for dS2 .

Remark 1.11. Observe that in the case m = 2, that is, two vectors, say
x, y ∈ Rm, then Theorem 1.9 says that

det(A) = (x · x)(y · y)− (x · y)2 ≥ 0

which is the same as the Cauchy - Schwarz inequality. Recall from Ex-
amples 1.3 and 1.4 that this proves the triangle inequality for the ordinary
Euclidean metric. In the exercises you will see that the case m = 3 proves
the triangle inequality for the spherical metric of Example 1.8.

Example 1.12. Let X be any non-empty set and let d be defined by

d(x, y) =

{
0 if x = y

1 if x 6= y.

This distance is called a discrete metric and (X, d) is called a discrete metric
space.

It is easy to verify the triangle inequality: only need to consider the case
x 6= z, in which case at least one of the two inequalities x 6= y and y 6= z
must hold. Thus in the triangle inequality the left hand side = 1 and at least
one of the two summands on the right hand side = 1, so the right hand side
is ≥ 1.
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Example 1.13. Let X = R2 and let d be defined by

d(x, y) =

{
|x− y| if x and y are in the same ray from the origin
|x|+ |y| otherwise,

where |x| denotes the usual length of a vector x ∈ R2. See Figure 4. This
metric is called the French railway metric because it describes the following
hypothetical situation: a country (let’s call it France) in which there are
railway lines passing through every town but always ending at a fixed city
(let’s call it Paris). You can travel directly between any two towns that
happen to lie on the same railway line to Paris. Otherwise you have to go to
Paris and change to another line.

FIGURE 4. The French Railway Metric

There are two ways to verify the triangle inequality. One would be a
direct check distinguishing cases, depending on the number of rays in which
x, y and z lie and perhaps their relative positions on these rays. We will
choose a more roundabout way that illustrates a general reasoning that we
will often need in the future. Let us use the following terminology: given
two points x, y ∈ X , a path γ from x to y is a finite collection I1, . . . In
where

(1) Each Ii is an interval lying in a ray from the origin.
(2) The ending point of Ii is the beginning point of Ii+1.
(3) The beginning point of I1 is x and the ending point of In is y.

The length of a path is the sum of the lengths of the intervals Ii. We need
the following observation: d(x, y) = the length of the shortest path from x
to y. In fact, the shortest path consists of one interval in case x, y lie on the
same ray starting at the origin, and otherwise of two intervals.

The triangle inequality now follows: let γ1 be a shortest path from x to y
and let γ2 be a shortest path from y to z. Let γ1γ2 denote the path formed
by γ1 followed by γ2, see Figure 5. This is a path from x to z of length
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d(x, y) + d(y, z). Its length cannot be any shorter than that of the shortest
path from x to z, thus d(x, z) ≤ d(x, y) + d(y, z).

FIGURE 5. One Case of the Triangle Inequality

This example illustrates a very useful principle: existence of paths and a
reasonable notion of length of paths gives a metric space. We give another
example along the same lines. We will see more examples later on.

Example 1.14. Let S ⊂ R3 be a smooth surface. As a temporary definition
of smooth surface, let’s say that there is an open subset U ⊂ R3 a smooth
(meaning infinitely differentiable) function f : U → R so that S = {x ∈
U : f(x) = 0} and that the gradient ∇f 6= 0 at any point of S. We will
study later why this is a reasonable definition. For the moment, keep in mind
Example 1.8 where S2 ⊂ R3 is given as the zero set of f(x) = |x|2 − 1 =
x2

1+x2
2+x3

3−1. Then f : R3 → R is smooth and that∇f = (2x1, 2x2, 2x3)
which vanishes only at the origin. In particular, it does not vanish on S2.
Therefore S2 is a smooth surface in R3.

So let S ⊂ R3 be a smooth surface. If x, y ∈ S, let us define a path
from x to y to be a continuous, piecewise differentiable curve γ lying in S,
starting at x and ending at y. This means that for some interval [a, b] ⊂ R,
γ : [a, b] → S ⊂ R3 is a continuous, piecewise differentiable map. Its
length L(γ) is defined in the usual way :

(2) L(γ) =

∫ b

a

|γ′(t)|dt =

∫ b

a

√
(x′1)2 + (x′2)2 + (x′3)2dt

Assume that for all x, y ∈ S there is a path from x to y. This assump-
tion is called connectedness, a concept that will be discussed in detail later.
Define a distance function dS : S × S → R, called the intrinsic distance by

dS(x, y) = inf{L(γ) : γ a path from x to y}.

We use infimum because, in contrast with the last example, it is not clear
that a minimum exists (in fact, we will have to give conditions that ensure
the existence of a minimum).
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FIGURE 6. Intrinsic Metric on a surface S

To verify that (S, dS) is a metric space, we should first check that if
dS(x, y) = 0 then x = y. This follows from the fact that, if γ is a path
from x to y, then L(γ) ≥ L(λ) = |x − y|, where λ is the straight-line seg-
ment in R3 from x to y, of length |x−y| = dR3(x, y) is the usual distance in
R3. This implies that dS(x, y) ≥ |x−y|, so if dS(x, y) = 0 then |x−y| = 0,
so x = y. See Figure 6

Now to the triangle inequality. This follows the same pattern as the proof
in Example 1.13 except that, since we have an infimum rather than a min-
imum, we have to use some ε’s. Let x, y, z ∈ S be fixed, and let ε > 0
be given. Then, by the definition of infimum, there exists a path γ1 from
x to y with L(γ1) < dS(x, y) + ε

2
, and there exists a path γ2 from y to z

with L(γ2) < dS(y, z) + ε
2
. Let γ = γ1γ2 be the piecewise differentiable

path γ1 followed by γ2 from x to z, see Figure 7. Then dS(x, z) ≤ L(γ) =
L(γ1) + L(γ2) < dS(x, y) + dS(y, z) + ε. Thus for all ε > 0 we have
dS(x, z) < dS(x, y) + dS(y, z) + ε, thus dS(x, z) ≤ dS(x, y) + dS(y, z).
This completes the verification that dS is a metric.

FIGURE 7. Putting Paths Together

Remark 1.15. The metric dS just defined is called the intrinsic metric or
intrinsic distance because it only allows measurements within the surface
S, and does not allow measurement of paths in the surrounding R3 that are
not already in S. In the proof that dS is a metric we actually proved that for
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all x, y ∈ S, dS(x, y) ≥ dR3(x, y). Moreover, closer examination (and with
some reasonable assumptions and some facts we will prove later) shows
that for given x, y ∈ S, equality holds in this inequality if and only if the
straight line segment in R3 joining x and y already lies in S.

To make the meaning of intrinsic distance more concrete, imagine that
S is a piece of the surface of the earth containing a mountain pass and two
towns x and y on opposite sides of the mountain pass, see Figure 6. If you
walk along any path γ on S from x to y you have to travel a longer distance
than the length of the straight line segment λ in R3 from x to y. The latter
segment can only by realized by digging a tunnel connecting the two sides
of the pass.

Remark 1.16. We are all familiar with the statement that for any x, y ∈ S2

the great circle arc from x to y gives the shortest curve from x to y (this
curve is unique if x and y are not antipodal). This statement implies that
given x, y ∈ S2, the infimum of the length of curves in S2 from x to y
is realized by the length of this great-circle arc (the infimum is actually a
minimum). It therefore implies the spherical distance of Example 1.8 is the
same as the intrinsic distance in S2. In particular, the more conceptual proof
of the triangle inequality for dS in Example 1.14 applies to dS2 .

The statement that the great-circle arc is the shortest curve connecting its
endpoints requires proof. Later we will give general theorems (existence of
geodesic and their length-minimmizing properties) that immediately imply
the statement about great circles. But it is also worthwhile at this point to
prove it directly.

Theorem 1.17. Let x, y ∈ S2, let γ0 be the great-circle arc from x to y, and
let γ be any (piecewise differentiable) path from x to y. Then L(γ0) ≤ L(γ).

Proof. Given any two points in S2 we can apply a rigid motion of R3 fixing
the origin that takes x to the north-pole N = (0, 0, 1), y to a point on
P = (sinφ0, 0, cosφ0) on the x1x3-plane, and takes S2 to itself (since it
fixes the origin). It is therefore enough to show that the length of any curve
from N to P has length at least φ0.

Use spherical coordinates (θ, φ) related to the cartesian (x1, x2, x3) by

(x1, x2, x3) = (cos θ sinφ, sin θ sinφ, cosφ),

See Figure 8. Our curve γ(t) from N to P is determined by two functions
θ(t) and φ(t), t some interval [a, b] with φ(a) = 0 (the north pole, where θ
is indeterminate), θ(b) = 0 and φ(b) = φ0 (to end at P = (sinφ0, 0, cosφ0),
spherical coordinates (0, φ0). Then compute:

γ′ = (− sin θ sinφ θ′+cos θ cosφ φ′, cos θ sinφ θ′+sin θ cosφ φ′,− sinφ φ′)
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FIGURE 8. Spherical Coordinates

Then ||γ′||2 is the sum of squares of the three components in the right-hand
side. We see right away that the cross terms in the sum of the first two
squares cancel out, the sum has to terms with a factor of (θ′)2 that add to
sin2 φ (θ′)2 and three terms with a factor of (φ′)2 that add to (φ′)2. We thus
get

||γ′||2 = sin2 φ (θ′)2 + (φ′)2 ≥ (φ′)2

Therefore

L(γ) =

∫ b

a

||γ′(t)||dt ≥
∫ b

a

|φ′(t)|dt ≥
∫ b

a

φ′(t)dt = φ(t)|ba = φ0 = L(γ0)

�

Example 1.18. It is hard to resist the temptation of discussing briefly an-
other example, which we will not have time to develop in detail, but which
is the most important example for the study of topology and geometry of
surfaces. To follow the same pattern as the last two examples, we will con-
sider a surface in a three-dimensional vector space, except this time it will
be in Minkowski space rather than Euclidean space.

Definition 1.19. Minkowski Space is R3 with the Minkowski inner product,
defined as follows, If x, y ∈ R3, then

x � y = x1y1 + x2y2 − x3y3.

The notation x�y is not standard. Note that x�y is a variation of the usual
dot product x · y in R3. It is like x · y in that it is linear in each variable,
but unlike x · y in that it is not positive definite: x � x can be positive,
negative, or zero; x � x = 0 does not imply x = 0. The level sets of x � x
are visualized as follows: x � x = 0 is the cone x2

1 + x2
2 = x2

3 (the light
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cone) which separates the positive and negative vectors. For each non-zero
constant c, the set x � x = c is a hyperboloid. Figure 9 shows the levels
c = 1 (hyperbolid of one sheet), c = 0 (cone) and c = −1 (hyperboloid of
two sheets.)

��������

FIGURE 9. Level Sets of Minkowski Squared Norm

Since x � x is not positive definite, it seems like it would be impossible
to define an intrinsic metric on a surface S in Minkowski space by using
the same procedure as in Example 1.14. The problem is the definition of
length of a curve: if γ : [a, b] → S is a piecewise smooth curve, then the
integrand of the formula for the Minkowski length of γ (the Minkowski
analogue of (33)) would not make sense because

√
γ′ � γ′ would not be real

if γ′ � γ′ < 0.

It is a remarkable fact that there are surfaces S in Minkowski space with
the property that γ′ � γ′ > 0 for all γ : [a, b] → S. For such a surface one
can repeat almost verbatim the arguments of Example 1.14 and get a metric
space.

The most important example with this property is the upper sheet H of
the hyperboloid of two sheets x � x = −1, see Figure 10.

Here is a quick verification. Suppose γ : [a, b] → H is piecewise dif-
ferentiable. Then γ(t) satisfies γ(t) � γ(t) == 1 for all t. Differentiating
this equation we get γ(t) � γ′(t) = 0. The following lemma implies that
γ′(t) � γ′(t) ≥ 0 for all t:

Lemma 1.20. Let x and v satisfy x �x = −1 and v � v = 0. Then v � v ≥ 0
and v � v = 0 if and only if v = 0.
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FIGURE 10. Upper Sheet of Hyperboloid x � x = −1

Remark 1.21. Geometrically x � v = 0 means that v is a vector tangent
to H at x. The lemma thus says that all tangent vectors to H have positive
Minkowski square-norm.

Proof. This can be done by a simple computation. Suppose x = (x1, x2, x3)
and v = (v1, v2, v3). Then the assumptions are that x2

1 + x2
2 − x2

3 = −1 and
x1v1 + x2v2 − x3v3 = 0. We can solve

v3 =
x1v1 + x2v2

x3

because x3 > 0. Then using this expression for v3 in v2
1 + v2

2 − v2
3 and a

small computation gives the formula

v � v =
v2

1 + v2
2 + (x1v2 − x2v1)2

x2
3

which is positive, and = 0 if and only if v1 = v2 = 0, which in turn implies
v3 = 0. �

Definition 1.22. The hyperbolic plane is the surface H = {x : x � x =
−1 and x3 > 0} with distance function

(3) dH(x, y) = inf
{γ:[a,b]→H,γ(a)=x,γ(b)=y}

{
∫ b

a

√
γ′(t) � γ′(t)dt}.

Remark 1.23. The equation x2
1+x2

2−x2
3 = −1 ofH has a strange similarity

with the equation x2
1 + x2

2 + x2
3 = 1 of S2. There is a lot more to this
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similarity. For example, it can be proved that an equivalent formula for the
distance in H is

(4) dH(x, y) = cosh−1(x � y)

in close analogy with the formula (1) for the spherical distance dS2 .

Example 1.24. Let X = Z, the integers, and fix a prime number p. For
x, y ∈ Z, x 6= y, define n(x, y) to be the exponent of p in the prime factor-
ization of x − y, thus x − y = kpn(a,b) where p does not divide k. Define
d : X ×X → R by

d(x, y) =

{
0 if x = y,

p−n(x,y) if x 6= y.

Thus in this distance, called the p-adic metric, closeness means congruence
modulo a high power of p. For instance, if p = 5, d(0, 1) = d(0, 2) =
d(0, 8) = 1, while d(0, 5) = d(0, 15) = 1

5
, while d(0, 25) = d(0, 50) = 1

25
,

etc.

To check the triangle inequality observe that given x, y, z ∈ Z, we have

n(x, z) ≥ min{n(x, y), n(y, z)},

because p raised to the exponent on the right hand side divides both x − y
and y − z, so it certainly divides the sum x − z. We therefore have the
inequality

p−n(x,z) ≤ max{p−n(x,y), p−n(y,z)}
which is equivalent to

d(x, z) ≤ max{d(x, y), d(y, z)}.

This inequality is called the ultrametric inequality and it immediately im-
plies the triangle inequality because max{d(x, y), d(y, z)} ≤ d(x, y) +
d(y, z).

Example 1.25. We could modify the last example by taking X = Q, the
rational numbers. Each rational number has a prime factorization, where
the exponents may now be negative. Fix a prime number p as before, and
define n(x, y) in the same way, and use the same formula for the distance.
For instance, if p = 5 we have, in addition to the examples given above,
d(0, 1

2
) = 1, d(0, 1

5
) = d(0, 3

5
) = d(0, 2

15
) = 5, d(0, 3

50
) = 25, etc. For any

prime p we get, as before, a metric space, satisfying the stronger ultrametric
inequality.

Definition 1.26. We define the terminology and notation that we will use in
referring to some of the metric spaces just introduced.
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(1) The metric of Example 1.4 will be called the Euclidean metric and,
when there is need to distinguish it from other metrics on Rn, will
be denoted d(2). Thus

d(2)(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

(2) The metric of Example 1.5 will be called the taxicab metric or the l1

metric and denoted by d(1). Thus

d(1)(x, y) = |x1 − y1|+ · · ·+ |xn − yn|.
(3) The metric of Example 1.6 will be called the supremum metric or

sup metric or l∞-metric and denoted d(∞). Thus

d(∞)(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.
(4) The metric of Example 1.8 will be called the spherical metric and

denoted dS2 .
(5) The metric of Example 1.14 will be called the intrinsic metric on

S ⊂ R3, and denoted by dS .
(6) The metric of Example 1.18 will be called the hyperbolic metric and

denoted dH .
(7) The metrics of Examples 1.24 and 1.25 will be called p-adic metrics.

For a given prime p, the p-adic metric will be denoted dp.

1.2. Constructions of Metric Spaces. There are some standard construc-
tions of new metric spaces from given ones. The most common one is that
of subspaces:

1.2.1. Subspaces. Let (X, d) be a metric space and let Y ⊂ X . let d′ =
d|Y×Y (the restriction of d to Y × Y . Then (Y, d′) is a metric space, called
a subspace of (X, d). We usually write simply d for the restricted distance
d′.

Examples of Subspaces

(1) Q is a subspace of R.
(2) Any interval is a subspace of R, for instance (0,∞) is a subspace of

R.
(3) S2 is a subspace of R3. But the subspace metric is not the same as

the spherical metric of Example 1.8. If d′ is the restriction to S2×S2

of the Euclidean metric d(2) on R3 and dS2 is the spherical metric on
S2, then clearly d′(x, y) ≤ dS2(x, y) for all x, y ∈ S2, and equality
holds iff x = y.

(4) More generally, if S ⊂ R3 is a surface as in Example 1.14, then
we get two distance functions on S: the subspace distance d′ (re-
striction of the Euclidean distance) and the intrinsic distance d as
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defined in Example 1.14. We have again that d′(x, y) ≤ d(x, y) (in
fact, this is how the fact that d(x, y) = 0 ⇒ x = y was proved
in Example 1.14). The case of equality is more subtle, it certainly
holds if the straight line segment joining x and y lies in S.

1.2.2. Product Spaces. If (X1, d1) and (X2, d2) are metric spaces, their
product is the space (X1 ×X2, d) where

d((x1, x2), (y1, y2)) = max{d1(x1, y1), d2(x2, y2)}
for all (x1, x2), (y1, y2) ∈ X1×X2. A similar definition can be made for the
product of more than two factors. Note the analogy with the definition ((3)
of Definition 1.26)of the supremum metric. Other definitions of the metric
on the product are possible, but this is a convenient choice.

1.2.3. Functions of the distance. Suppose (X, d) is a metric space, and
suppose that f : [0,∞)→ R is a strictly increasing function with f(0) = 0
which is sub-linear: f(a + b) ≤ f(a) + f(b) holds for all a, b ∈ [0,∞).
Then it is not hard to see that f ◦ d : X × X → R is also a metric on X ,
that is, (X, f ◦ d) is a metric space. Details are in a homework problem.

1.3. Limits. One of the virtues of Definition 1.1 is that it allows the for-
mulation of many familiar concepts from real analysis, with essentially the
same definitions and proofs. We give some examples.

By a sequence in a metric space (X, d) we mean, as usual, a function
N→ X , written {xn}.

Definition 1.27. Let {xn} be a sequence in (X, d).

(1) Let x ∈ X . We say lim{xn} = x iff for all ε > 0 there is an
N(= N(ε)) ∈ N so that d(x, xn) < ε for all n > N .

(2) We say that {xn} converges iff there exists x ∈ X so that lim{xn} =
x.

(3) We say that {xn} is a Cauchy sequence iff for all ε > 0 there exists
N ∈ N so that d(xm, xn) < ε for all m,n > N .

Theorem 1.28. If {xn} converges, then {xn} is a Cauchy sequence.

Proof. Suppose lim{xn} = x and let ε > 0. Then by (1) of Definition 1.27
there exists N ∈ N so that d(xn, x) < ε

2
for all n > N . If m,n > N , by the

triangle inequality we have

d(xm, xn) ≤ d(xm, x) + d(x, xn) <
ε

2
+
ε

2
= ε,

hence {xn} is a Cauchy sequence. �
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Observe how this proof uses the defining properties of metric spaces. The
use of the triangle inequality is clear, also the symmetry of the distance ((2)
of Definition 1.1 is used. As another example, we give a proof that also uses
part (1) of Definition 1.1. In fact, this should be proved before the notation
of that definition is introduced, so that the notation makes sense.

Theorem 1.29. If {xn} converges, then its limit is unique.

Proof. Suppose lim{xn} = x and lim{xn} = y. Given ε > 0 there exits N1

so that d(xn, x) < ε
2

for all n > N1 and there existsN2 so that d(xn, y) < ε
2
.

Then, if n > max{N1, N2}, we have

d(x, y) ≤ d(x, xn) + d(xn, y) <
ε

2
+
ε

2
< ε.

Since d(x, y) < ε for all ε > 0, d(x, y) = 0, therefore (by (1) of Defini-
tion 1.1 we have x = y. Thus the limit is unique. �

Example 1.30. If we use the p-adic metric of Example 1.24 the convergent
sequences we get may be unexpected. For example, the sequence {pn}
converges to 0 since d(pn, 0) = p−n, thus, given ε > 0, d(pn, 0) < ε when
n > − logp(ε).

Going back to Theorem 1.28, a familiar fact from analysis is that the con-
verse holds for X = R (with usual distance) and X = Rn (with Euclidean
metric). But it need not hold for all metric spaces (X, d). For example, we
know that it does not hold for X = Q, the set of rational numbers, with the
usual distance d(x, y) = |x−y|. In fact, the validity of the converse is made
into a definition:

Definition 1.31. A metric space (X, d) is called complete if every Cauchy
sequence converges.

Thus R and Rn are complete, while Q is not complete (all with their usual
distances).

Another fact about metric spaces is that every metric space (X, d) has a
completion. This is a complete metric space (X̄, d̄) so that (X, d) is a dense
subspace of (X̄, d̄). A subspace X of a metric space Y is called dense if
every y ∈ Y is the limit of some sequence {xn} in X .

The standard example of a completion is R as a completion of Q (both
with their usual metrics). The construction of R from Q by using Cauchy
sequences can be used to construct a completion of any metric space. In
other words, given a metric space (X, d), let Ca(X, d) be the collection of
Cauchy sequences in X . If {xn}, {yn} ∈ Ca(X, d), define their distance
d({xn}, {yn}) = lim d(xn, yn). This is not a metric on Ca(X, d) because
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the distance between two sequences being zero does not imply that the se-
quences are equal.

To get a metric space, define an equivalence relation on Ca(X, d) by
{xn} ∼ {yn} if and only if lim d(xn, yn) = 0.

Definition 1.32. The completion of (X, d) is the set X̄ of equivalence classes
[{xn}] of elements ofCa(X, d). If [{xn}], [{yn}] ∈ X̄ , the distance d̄([{xn}], [{yn}]
is defined to be lim d(xn, yn).

It has to be checked that d̄ is well defined, independent of representatives:
if {x′n} ∼ {xn} and {y′n} ∼ {yn}, then lim d(x′n, y

′
n) = lim d(xn, yn). Then

it is clear that d̄ is a metric on X̄ . The set of constant sequences {xn} where
xn = x for all n is a subspace of (X̄, d̄) naturally identified with (X, d). It
also has to be checked that (X, d) is dense in (X̄, d̄).

Observe that it (X, d) is a complete metric space, then the elements of
X̄ are in one to one correspondence with their limits x ∈ X , so (X̄, d̄) =
(X, d). Thus, if (X, d) is complete, then it is its own completion.

Example 1.33. As already mentioned, if dQ is the usual distance in Q, then
(Q̄, d̄) = (R, dR), where dR is the usual distance on R

Example 1.34. Fix a prime number p. Then the completion (Z̄, d̄p) of
(Z, dp) is called the ring of p-adic integers and the completion (Q̄, d̄p) of
(Q, dp) is called the field of p-adic numbers.

1.4. Maps Between Metric Spaces. Let (X, d) and (Y, d′) be metric spaces,
and let f : X → Y .

Definition 1.35. (1) Let x ∈ X . The map f is continuous at x iff for all
ε > 0 there exists a δ > 0 so that for all y ∈ X , if d(x, y) < δ, then
d′(f(x), f(y)) < ε.

(2) The map f is continuous iff it is continuous at all x ∈ X . Explicitly,
f is continuous iff for all x ∈ X and ε > 0 there exists a δ(=
δ(x, ε)) so that d′(f(x), f(y)) < ε for all y ∈ X with d(x, y) < δ.

(3) The map f is uniformly continuous iff for all ε > 0 there exists a
δ(= δ(ε)) so that d′(f(x), f(y)) < ε for all x, y ∈ X with d(x, y) <
δ

(4) The map f is called Lipschitz iff there exists a constant C > 0 so
that d′(f(x), f(y)) ≤ Cd(x, y) holds for all x, y ∈ X . The con-
stant C is called a Lipschitz constant for f . If a smallest Lipschitz
constant exists, then it is called the Lipschitz constant for f .

(5) The map f is bi-Lipschitz iff there exist constantsC1, C2 > 0 so that
C1d(x, y) ≤ d′(f(x), f(y)) ≤ C2d(x, y) holds for all x, y ∈ X .
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(6) The map f is an isometry iff d′(f(x), f(y)) = d(x, y) for all x, y ∈
X .

Familiarity with the difference between continuity and uniform continu-
ity for real functions is assumed. For example, the continuous function
f(x) = 1

x
on (0,∞) is uniformly continuous on [1,∞) but not on (0, 1].

Remark 1.36. If (X, d) and (Y, d′) are metric spaces, we often use the
notation f : (X, d)→ (Y, d′) to mean:

(1) f : X → Y ,
(2) In the whole discussion we are using the metric d on the domain X

and the metric d′ on the target Y .

The notation does not imply that there is any relation among the three func-
tions f , d, d′. It is just a reminder of which metrics are being used in the
domain and the target. It is particularly important in the case that X = Y
but d 6= d′, we need to keep straight which metric we are using in domain
and target.

Note that the conditions in Definition 1.35 are listed in increasing order
of stringency, in the sense that (6) =⇒ (5) =⇒ . . . =⇒ (2) =⇒ (1). More-
over, none of these implications can be reversed. Most of these implications
are immediate, for example, for (6) =⇒ (5) just choose C = C ′ = 1. The
only implication that may not be immediately familiar is (4) =⇒ (3). This
is the content of the following theorem:

Theorem 1.37. If f : (X, d) → (Y, d′) is Lipschitz, then f is uniformly
continuos.

Proof. Suppose d′(f(x), f(y)) ≤ Cd(x, y) and let ε > 0. Let δ = ε
C

.
Then for all x, y ∈ X , d(x, y) < δ ⇒ d′(f(x), f(y)) < Cδ = ε, thus
f is uniformly continuous. (Thus Lipschitz means that in the definition of
uniform continuity, δ can be chosen as a linear function of ε). �

Here is a simple way to get Lipschitz functions. We state it for R, but
similar theorems can be formulated and proved in Rn.

Theorem 1.38. Suppose I ⊂ R is an interval, suppose f : I → R is
differentiable, and suppose that |f ′| is bounded on I: there exists C > 0
so that |f ′(x)| ≤ C for all x ∈ I . Then f is Lipschitz on I with Lipschitz
constant C.

Proof. Given x and y in I , by the Mean Value Theorem there exists ξ be-
tween x and y so that f(x) − f(y) = f ′(ξ)(x − y). Then |f(x) − f(y)| =
|f ′(ξ)||x− y| ≤ C|x− y|. �
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For example, we see readily that f(x) = 1
x

is Lipschitz on [1,∞) with
Lipschitz constant 1 since |f ′(x)| = |−1

x2
| ≤ 1 on [1,∞). In particular f is

uniformly continuous on [1,∞) as asserted earlier.

1.5. Equivalences Between Metric Spaces. We will define various equiv-
alences between metric spaces by assuming that the maps defined in the last
section are bijective, with suitable additional requirements when needed.

Definition 1.39. Let (X, d) and (Y, d′) be metric spaces, and let f : X → Y
be a map. We say that:

(1) The map f is a homeomorphism iff f is continuous, f−1 : Y → X
exists, and f−1 is continuous. If a homeomorphism f exists, we say
that (X, d) and (Y, d′) are homeomorphic.

(2) The map f is a bi-Lipschitz equivalence iff f is surjective and bi-
Lipschitz. If a bi-Lipschitz equivalence exists we say that (X, d) and
(Y, d′) are bi-Lipschitz equivalent.

(3) The spaces (X, d) and (Y, d′) are isometric iff there exists a surjec-
tive isometry f : (X, d)→ (Y, d′).

These equivalence relations go from loose to strict. More precisely, they
are related as follows:

Theorem 1.40. Let (X, d) and (Y, d′) be metric spaces.

(1) If (X, d) and (Y, d′) are isometric, then they are bi-Lipschitz equiv-
alent.

(2) If (X, d) and (Y, d′) are bi-Lipschitz equivalent, then they are home-
omorphic.

Proof. For the first part, observe that if the two spaces are isometric, this is
the same thing as saying that they are bi-Lipschitz equivalent with constants
C1 = C2 = 1.

For the second part, first observe that if f is a bi-Lipschitz equivalence,
then f is injective: If f(x) = f(y), then d′(f(x), f(y)) = 0, so C1d(x, y) =
0, so d(x, y) = 0, so x = y. Since f is surjective, then f−1 exists. More-
over, for all x, y ∈ Y , C1d(f−1(x), f−1(y)) ≤ d′(f(f−1(x)), f(f−1(y))) =
d′(x, y). This is the same as d(f−1(x), f−1(y)) ≤ 1

C1
d′(x, y), in other

words, f−1 is Lipschitz (with Lipschitz constant 1
C1

), thus f−1 is contin-
uous, thus f is a homeomorphism. �

Example 1.41. Recall the distances d(1), d(2), d(∞) on Rn of Definition 1.26.
They are related by the following inequalities (the first in a homework prob-
lem, the remaining two are similar but easier).
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(1) d(2)(x, y) ≤ d(1)(x, y) ≤
√
n d(2)(x, y).

(2) d(∞)(x, y) ≤ d(2)(x, y) ≤
√
n d(∞)(x, y).

(3) d(∞)(x, y) ≤ d(1)(x, y) ≤ n d(∞)(x, y).

These inequalities mean that the identity map is a bi-Lipschitz equivalence
between any pair of these metrics, and the constants displayed turn out to
be optimal. Moreover, it is easy to see that the identity map is not an isom-
etry between any pair. For instance, for each n > 1, the distance from the
origin to the point (1, 1, . . . , 1) is different in all three metrics on Rn. These
innequalities can be visualized by looking at how various spheres are re-
lated. See Figure 11, where the figures are presented in the same order as
the inequalities above.

FIGURE 11. Bi-Lipschitz equivalence of the 1, 2,∞ metrics

Example 1.42. A more delicate question is: can there be any isometry be-
tween two of these metrics? To see that to give a negative answer is not
as obvious as it may seem at first sight, and to see a non-trivial example
of an isometry, check the following: The map f : R2 → R2 defined by
f(x1, x2) = (x1 + x2, x1 − x2) is an isometry from (R2, d(1)) to (R2, d(∞)).

Example 1.43. The last example indicates that it may not be so easy to
prove that two spaces are not isometric, in other words, to prove that no
f satisfying (6) of Definition 1.35 can exist. This usually requires some
invariants that distinguish two metrics. For instance, it seems very clear to
the eye that (Rn, d(2)) and (Rn, d(1)) are not isometric. Here’s an possible
way to distinguish them: Given a metric space (X, d) and two points x, z ∈
X , define the equality set of the triangle inequality, Ed(x, z), by

Ed(x, z) = {y ∈ X : d(x, z) = d(x, y) + d(y, z)}.

It is not hard to prove that if f : (X, d) → (Y, d′) is an isometry, then
Ed′(f(x), f(z)) = f(Ed(x, z)). We know from Examples 1.4 and 1.5 that
these equality sets are different for d(2) and d(1). This can be used to prove
that they are not isometric. More details in the homework.
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Example 1.44. Here’s a closely related question. Are (R3, d(1)) and (R3, d(∞))
isometric? Note that the trick of Example 1.42 doesn’t work. Make a con-
jecture about the answer to this question, and then prove it. A look at Figure
12 may help.

FIGURE 12. Unit Spheres for d(1) and d(∞) in R3.

Remark 1.45. Neither of the implications in Theorem 1.40 can be reversed.
This can be seen by examples:

(1) Let f : R→ (−π
2
, π

2
) be defined by f(x) = arctan(x). Then f is a

homeomorphism, but cannot be bi - Lipschitz, say, because (−π
2
, π

2
)

is bounded but R is not. Could also say because R is complete but
(−π

2
, π

2
) is not. Observe that f is Lipschitz, since f ′(x) = 1

1+x2
is

bounded.
(2) The identitly map (Rn, d(2)) → (Rn, d(1) is bi-Lipschitz, but we

have seen in Example 1.43 that these are not isometric (at least for
n = 2. An analogous argument can be given for any n > 2).

Example 1.46. Let R∞ denote the space of sequences of real numbers that
are eventually zero:

(5) R∞ = {x = (x1, x2, . . . ) : xi ∈ R and ∃N so that xi = 0 for i > N}.

Note that N depends on the sequence x.

For each n there is a natural inclusion Rn ⊂ R∞ as

Rn = {(x1, x2, . . . , xn, 0, 0, . . . )} ⊂ R∞

In fact, with this convention for the meaning of the inclusion Rn ⊂ R∞, we
have

R ⊂ R2 ⊂ · · · ⊂ Rn ⊂ · · · ⊂ R∞ and R∞ = ∪nRn.

Given x, y ∈ R∞, we can define d(1)(x, y), d(2)(x, y) and d(∞)(x, y) by the
same formulas as in Definition 1.26. More precisely, we can take infinite
sums by taking the limit as n → ∞ in those formulas, and observe that
they make sense because the entries of x, y are eventually zero, so for each
x, ywe get finite sums.
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Consider the six inequalities of Example 1.41, illustrated for n = 2 in
Figure 11. Three of these inequalities, the ones on the left-hand side, are
independent of n, so they also hold in R∞. These are

(1) d(2)(x, y) ≤ d(1)(x, y),
(2) d(∞)(x, y) ≤ d(2)(x, y),
(3) d(∞)(x, y) ≤ d(1)(x, y).

These inequalities hold for all x, y ∈ R∞. They can be summarized in

d(∞)(x, y) ≤ d(2)(x, y) ≤ d(1)(x, y) for all x, y ∈ R∞.

These are the inequalities that for n = 2 are illustrated in Figure 2. We have
jsut proved that the same relation holds for all n, therefore for R∞; the unit
ball of d(1) is contained in the unit ball of d(2) which is in turn contained
in the unit ball of d(∞). Note the order in which the balls appear when
talking about containment seems to be opposite to the order in which the
inequalities appear. Some thought quickly shows that this is the case, but it
can be confusing.

The remaining three inequalities depend on n. In fact for each of these
inequalities equality hods at x0 = (0, 0, . . . , 0) and y0 = (1, 1, . . . , 1) in
Rn:

(1) d(1)((0, . . . , 0), (1, . . . , 1)) = 1 + · · ·+ 1 = n.
(2) d(2)((0, . . . , 0), (1, . . . , 1)) =

√
1 + · · ·+ 1 =

√
n

(3) d(∞)((0, . . . , 0), (1, . . . , 1)) = max(1, . . . , 1) = 1

So the inequalities in the right hand side of Example 1.41 become equalities:

(1) d(1)(x0, y0) = n =
√
n d(2)(x0, y0) =

√
n
√
n

(2) d(2)(x0, y0) =
√
n =
√
n d(∞)(x0, y0) =

√
n · 1

(3) d(1)(x0, y0) = n = n d(∞)(x0, y0) = n · 1

so the constants
√
n,
√
n, n in these three are best possible, that is, they are

the Lipschitz constants, and they go to infinity as n→∞. In summary, we
have proved:

Theorem 1.47. The identity map of R∞ is Lipschitz, with Lipschitz constant
one, as a map (R∞, d(1))→ (R∞, d(2)), as a map (R∞, d(2)),→ (R∞, d(∞))
and consequently as a map (R∞, d(1)) → (R∞, d(∞)). None of these three
maps is bi-Lipschitz.

It is easy to see that none of these spaces is complete. It is also fairly easy
to see what their completions should be:

(1) `1 = {(x1, x2, . . . ) : xi ∈ R and
∑∞

1 |xi| <∞}
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(2) `2 = {(x1, x2, . . . ) : xi ∈ R and
∑∞

1 |xi|2 <∞}
(3) `∞ = {(x1, x2, . . . ) : xi ∈ R and sup{|xi|} <∞}

with metrics defined by d(1)(x, y) =
∑∞

1 |xi−yi|, d(2)(x, y) =
√∑∞

1 |xi − yi|2
and d(∞)(x, y) = sup{|xi − yi|} respectively. This is the beginning of an-
other interesting subject that we will not be able to pursue.

2. GROUPS OF ISOMETRIES

Let (X, d) be a metric space and let f, g be isometries of (X, d) onto
itself. Then the composition f ◦ g is an isometry, since d(f ◦ g(x), f ◦
g(y)) = d(f(g(x)), f(g(y))) = d(g(x), g(y)) = d(x, y). Also the in-
verse f−1 is defined and is also an isometry, since d(f−1(x), f−1(y)) =
d(f(f−1(x)), f(f−1(y))) = d(x, y). This means that the set of all isome-
tries is a group under composition.

Definition 2.1. Let Isom(X, d) = {f : X → X : f is an isometry of (X, d)
onto itself} denote the set of all isometries of (X, d). If x ∈ X , let Isom(X, d)x
= {f ∈ Isom(X, d) : f(x) = x}, the set of isometries of X that fix the
point x. (This is often called the stabilizer of x, or the isotropy group of x.)

Theorem 2.2. The set Isom(X, d) is a group under composition. The sub-
set Isom(X, d)x is a subgroup of Isom(X, d) (under composition).

Proof. We have just verified that the composition of two isometries is an
isometry, and that the inverse of an isometry is an isometry. We thus have
a binary operation Isom(X, d) × Isom(X, d) → Isom(X, d) that assigns
to f, g ∈ Isom(X, d) their composition f ◦ g. It is easy to verify the group
axioms:

(1) The associative law f ◦ (g ◦ h) = (f ◦ g) ◦ h holds for all f, g, h ∈
Isom(X, d). This is always true for composition of maps.

(2) There exists e ∈ Isom(X, d) such that e ◦ f = f ◦ e = f for all
f ∈ Isom(X, d). Take e = id, the identity map id : X → X .

(3) For all f ∈ Isom(X, d) there exists f−1 ∈ Isom(X, d) such that
f−1 ◦ f = f ◦ f−1 = e. Take f−1 to be the usual inverse map.
Finally, if x ∈ X and f, g ∈ Isom(X, d) are such that f(x) = x and
g(x) = x, then f ◦ g(x) = f(g(x)) = f(x) = x, and f−1(x) = x
since f(x) = x. So f ◦ g and f−1 ∈ Isom(X, d)x, so this subset is
a subgroup.

�

The group of isometries of a metric space may be very small, in fact it
may consist just of the identity. But there are some important examples
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where this group is large. In fact, three if the metric spaces defined in §1,
namely Euclidean (Example 1.3), spherical (Example 1.8) and hyperbolic
(Definition 1.22 have the largest possible groups of isometries.

2.1. Isometries of Euclidean Space. We study first the group of isome-
tries of Rn with the Euclidean metric d(2). In this section we’ll write simply
d for d(2), since this is the only metric we consider. The goal is to find all
isometries of (Rn, d) and to describe the structure of this group of isometies.
In the case n = 2 we will also give a complete classification of the individ-
ual isometries.

2.1.1. Affine transformations. We first recall some facts from linear al-
gebra. A transformation L : Rn → Rm is called a linear transforma-
tion iff for all r ∈ R and for all x, y ∈ Rn we have L(rx) = rL(x) and
L(x + y) = L(x) + L(y). This is equivalent to saying that for all r, s ∈ R
and for all x, y ∈ R2, we have L(rx + sy) = rL(x) + sL(y). Such a
transformation is determined by its values on the standard basis vectors ei,
i = 1, . . . , n. For this purpose it is best to write the elements of Rn as col-
umn vectors, rather than row vectors. The transformation L is encoded in
an m by n matrix A: 

a11 a12 . . . a1n

·
·
am1 am2 . . . amn


with columns the vectors L(ei). Thus if y = L(x), then

y1

·
·
ym

 =


a11 a12 . . . a1n

·
·
am1 am2 . . . amn




x1

·
·
xn

 .

in other words, L(x) = Ax, where Ax is matrix multiplication. This gives
a one-to-one correspondence between linear transformations and matrices.
The reason for using column vecors is that composition then corresponds
to matrix multiplication: If L1(x) = A1x and L2(x) = A2x, then L1 ◦
L2(x) = L1(L2(x)) = A1A2x. So we should always write points in Rn as
column vectors rather than row vectors when using matrices to define linear
transformations.

.

Definition 2.3. A map f : Rn → Rn is called an affine transformation iff
there exist an n×n matrix A and a vector b ∈ Rn such that f(x) = Ax+ b.
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We by fA,b the affine transformation determined by A and b: fA,b(x) =
Ax+ b

Remark 2.4. (1) The transformation fA,b uniquely determinesA and b:
If Ax + b1 = A2x + b2 for all x, then (A1 − A2)x = b2 − b1 for
all x, so A1 − A2 is a constant linear transformation, thus the zero
transformation: A1 − A2 = 0, therefore b2 − b1 = 0, so A1 = A2

and b1 = b+ 2.
(2) Two special types of affine transformation:

(a) Linear: If b = 0: fA,0(x) = Ax.
(b) Translation: If A = I: fI,b(x) = x + b. It is convenient to

simplify the notation for translation: tb(x) = x+ b.
(3) Thus an affine transformation is the composition of a linear trans-

formation and a translation: fA,b = fI,b ◦ fA,0 = tbA. Therefore it
sends lines to lines, planes to planes, etc. but it need not preserve
the origin.

(4) Note the order of composition matters: fA,b = tbA = AtA−1b

2.1.2. Orthogonal matrices. It is natural to ask when an affine transfor-
mation = fA,bf : Rn → Rn as in Definition 2.3 is an isometry. Using
d(x, y) = |x− y|, were |x| = d(0, x) denotes the Euclidean norm of x, f is
an isometry if and only if d(f(x), f(y)) = |f(x) − f(y)| = |Ax − Ay| =
|A(x− y)| = |x− y| for all x, y in Rn. In other words, fA,b is an isometry
if and only if x→ Ax is an isometry. This is the same as saying |Ax| = |x|
for all x, or |Ax|2 = |x|2.

Now observe that x · y = (tx)y, matrix multiplication of the transpose
tx (a row vector) and y (a column vector). So the equation |Ax|2 = |x|2
becomes t(Ax)(Ax) =t xx. Using t(Ax) = tx tA we get that fA,b is an
isometry of and only if

(6) tx tA Ax = tx x, for all x ∈ Rn.

We have therefore proved the first statement of the following lemma:

Lemma 2.5. Let A be an n by n matrix. Then the linear transformation
x→ Ax of Rn is an isometry if and only if A satisfies (6) . This happens if
and only if tA A = I

Proof. The first statement has already been proved. For the second state-
ment, ifB = tAA, then tB = t(tAA) = tA t(tA)) = tAA is symmetric,
that is, if B = (bij) then bij = bji. Then (6) reads∑

i,j

bijxixj =
∑
i

biix
2
i + 2

∑
i<j

bijxixj =
∑
i

x2
i
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Comparing the coefficients of these two quadratic functions we see bii = 1
and bij = 0 for i 6= j, that is, B = I . (6) �

Definition 2.6. An n by n matrix A is called an orthogonal matrix if and
only if tAA = I .

Remark 2.7. (1) Note that tA A = I is equivalent to A−1 = tA, in
other words, A is invertible and its inverse is simply its transpose.

(2) Since AA−1 = I , we get that if A tA = I .
(3) If the equation tAA = I is written explicitly:

∑
k akiakjj = δij , it

says that the columns of A are orthogonal and of unit length. Since
A tA = I , we get that the rows are also orthogonal and of unit
length.

The combination of (6), Lemma 2.5 and Definition 2.6 proves the follow-
ing theorem:

Theorem 2.8. An affine transformation fA,b of Rn is an isometry if and only
if A is an orthogonal matrix.

2.1.3. Some isometries of the Euclidean plane. Let us find all the orthog-
onal 2 by 2-matrices. If

A =

(
a b
c d

)
then

tAA =

(
a c
b d

)(
a b
c d

)
=

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
which is the unit matrix if and only if a2 + c2 = 1, b2 + d2 = 1 (thus each
column is a vector on the unit circle) and ab + cd = 0 (so these vectors are
orthogonal). We can choose a number θ so that a = cos θ and c = sin θ.
Once we make this choice of θ, there are only two vectors on the unit circle
perpendicular to our choice: b = − sin θ, d = cos θ or b = sin θ, d =
− cos θ. So we get two possibilities for A, which we will denote Rθ, Sθ
respectively. The matrices, together with their geometric interpretation, are:

(1) A rotation about the origin counterclockwise by an angle θ, denoted
by Rθ.

(7) A = Rθ =

(
cos θ − sin θ
sin θ cos θ

)
(2) A reflection about the line {t(cos θ

2
, sin θ

2
)}, denoted by Sθ

(8) A = Sθ =

(
cos θ sin θ
sin θ − cos θ

)
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They are distinguished by their determinants:

(9) det(Rθ) = 1, det(Sθ) = −1,

in other words, Rθ is orientation preserving while Sθ is orientation revers-
ing

FIGURE 13. Rotations and Reflections

These are the linear transformations that are isometries of the Euclidean
plane, in other words, the affine isometries that preserve the origin. The
simplest isometry that moves the origin is a ttranslation by a vector b ∈ R2:

(10) tb(x) = x+ b.

See Figure 13 for a description of these transformations. A way to vi-
sualize these transformaitons is to choose an (asymmerical) object A and
show how it is moved buy each isometry.

Theorem 2.8 implies the following more precise theorem about affine
isometries of R2:

Theorem 2.9. Let f be an affine isometry of R2. Then there exists b ∈ R2

and θ ∈ R so that either

(1) f(x) = Rθx+ b
or

(2) f(x) = Sθx+ b.

In particular, all affine isometries of R2 are obtained by composing the
three types of Figure 13
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Remark 2.10. The formulas for the above transformations are sometimes
more convenient by identifying R2 with C and using complex operations.
In terms of the complex variable z real affine linear transformation is of the
form f(z) = az + b or f(z) = az̄ + b where a, b ∈ C. The formula for
translation tb is the same: tb(z) = z + b. The formula for (7) becomes

(11) Rθ(z) = eiθz

while (8) becomes

(12) Sθ(z) = eiθz̄

2.1.4. The main theorem. The reason we have looked at affine isometries
of Rn in so much detail is the remarkable fact that these are all the isome-
tries:

Theorem 2.11. Let f : (Rn, d(2)) → (Rn, d(2)) be an isometry. Then f is
affine: there exists a vector b ∈ Rn and an orthogonal n × n matrix A so
that f = fA,b, that is, f(x) = Ax+ b for all x ∈ Rn.

Proof. First observe that we can reduce to the case f(0) = 0. Namely,
given any isometry f : Rn → Rn be an isometry, define a new isometry g
by g(x) = f(x) − f(0), in other words, g(x) = t−f(0) ◦ f . Then g is an
isometry with g(0) = 0, so if there exists an orthogonal matrix A so that
g(x) = Ax, then f(x) = Ax+ b, where b = f(0).

Suppose g is an isometry with g(0) = 0. If we can prove that g is a linear
transformation, then g(x) = Ax for some matrix A, and A is necessarily
orthogonal by Lemma 2.5. It thus sufficed to prove g(x+ y) = g(x) + g(y)
and g(rx) = rg(x) holds for all x, y ∈ Rn and for all r ∈ R. This will
follow from the nature of the equality sets for the triangle inequality.

FIGURE 14. Typical Element of Ea,b

More precisely, given two positive real numbers a, b, define the following
set Ea,b of triples of points in Rn, that is, Ea,b ⊂ (Rn)3 (see Figure 14):
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E(a, b) = {(x, y, z) : x, y, z ∈ R2, d(x, y) = a, d(y, z) = b and d(x, z) = a+b}.

In other words, these are the triples (x, y, z) for which equality holds in the
triangle inequality, and where the distances are given fixed values a, b, a+b.
Note that, since a, b > 0, the three elements of any triple are distinct, so
they lie in a unique line L, and this line is determined by any two of them.
Moreover, any two of x, y, z determine the third Suppose (x, y, z) ∈ Ea,b
and we know:

Lemma 2.12. Fix positive real numbers a, b and let Ea,b be as just defined.

(1) Suppose x, z ∈ Rn and d(x, z) = a + b. Then there is a unique
y ∈ Rn iso that (x, y, z) ∈ Ea,b.

(2) Suppose x, y ∈ Rn and d(x, y) = a. Then there is a unique z ∈ Rn

so that (x, y, z) ∈ Ea,b.
(3) Suppose y, z ∈ Rn and d(y, z) = b. Then there is a unique x ∈ Rn

so that (x, y, z) ∈ Ea,b.

Proof. We use the following terminology: if L ⊂ Rn is a line and p, q, r ∈
L are distinct, then we say that

r is between p abd q if r is in the line segment joining p and q.

r lies on the side of q opposite to p if q lies in the line segment joining p
and r.

To prove the Lemma, given the twp points in Rn, let L be the line through
them. Then the third pont must be:

(1) y is the point on L between x and z at distance a from x.
(2) z is the point on L distance b from y on the side of y opposite to x,
(3) x is the point on L distance a from y on the side of y opposite to z.

�

Lemma 2.13. Suppose g : Rn → Rn is an isometry and (x, y, z) ∈ Ea,b.
Then (g(x), g(y), g(z)) ∈ Ea,b

Proof. Clear since g preserves all the distances. �

Now go back to the proof that an isometry g : Rn → Rn with g(0) = 0
must be linear:

(1) Proof that g(rx) = rg(x) for all r ∈ R and x ∈ R2: It is clear for
r = 0, 1, so let us assume r 6= 1 and consider three cases
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FIGURE 15. Checking Linearity

(a) 0 < r < 1: Let a = rd(0, x) and b = (1 − r)d(0, x). Then
(0, rx, x) ∈ Ea,b. Since g is an isometry with g(0) = 0, by
Lemma 2.13 (0, g(rx), g(x)) ∈ Ea,b. But also (0, rg(x), g(x)) ∈
Ea,b). By the uniqueness part of (1) of Lemma 2.12, get g(rx) =
rg(x),

FIGURE 16. Additivity

(b) r > 1: Let a = d(0, x) and b = (r − 1)d(0, x). Then get in a
similar way that (0, g(x), g(rx)), (0, g(x), rg(x) ∈ Ea,b, so by
(2) of Lemma 2.12 get g(rx) = rg(x).
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(c) r < 0: Let a = |r|d(0, x) and b = d(0, x). Then (g(rx), 0, g(x))
and (rg(x), 0, g(x)) ∈ Ea,b, so, by (3) of the same lemma,
g(rx) = g(x).

Thus g(rx) = rg(x) for all r ∈ R and for all x ∈ Rn.
(2) Proof that g(x+ y) = g(x) + g(y) for all x, y ∈ R2: Let x, y ∈ R2

Then (x, x+y
2
, y)) ∈ E(a, a), where a = d(x, y)/2 > 0 (since x+y

2
is the midpoint of the segment from x to y). Since g is an isometry
(g(x), g(x+y

2
), g(y)), and (g(x), g(x)+g(y)

2
, g(y)) ∈ E(a, a) (Lemma

2.13. By Lemma 2.12, g(x+y)
2

= g(x)+g(y)
2

, and, since g(0) = 0,
by the first part (with r = 1

2
) we have g(x+y

2
) = g(x+y)

2
. Thus

g(x+y)
2

= g(x)+g(y)
2

, and cancelling the denominators we get g(x +
y) = g(x) + g(y) as desired. See Figure 16 This finishes the proof
of Theorem 2.11.

�

2.2. The Euclidean and Orthogonal Groups. We have seen that orthog-
onal matrices are invertible, in fact , A being orthogonal is equivalent to.
A−1 =t A The product AB of two orthogonal matrices A,B is orthogo-
nal since t(AB) (AB) = tB tA AB = tB B = I . The unit matrix
I is orthogonal. This means that the set of orthogonal matrices forms a
group under matrix multiplication. Also, if A is orthogonal, then det(I) =
det(AtA) = det(At) det(A) = det(A)2, so det(A) = ±1. Moreover, since
det(AB) = det(A) det(B), we have that det is a homomorphism. Thus the
following definition makes sense:

Definition 2.14. We denote by O(n) the set of orthogonal matrices, by
SO(n) the set of orthogonal matrices with determinant one, by E(n) the
set of isometries of Rn and by SE(n) the set of isometries Ax + b of Rn

with det(A) = 1. The elements of SE(n) are called the proper isome-
tries (or the orientation preserving isometries) of Rn. The elements of E(n)
which are not in SE(n) are called the improper isometries (or the orienta-
tion reversing isometries) of Rn.

Remark 2.15. The notation O(n), SO(n) is standard. Unfortunately there
does not seem to be a standard notation for what we call E(n), SE(n).

Recall the notation fA,b for the isometry fA,b(x) = Ax+ b of Rn.

Definition 2.16. Define a map l : E(n) → O(n) by l(fA,b) = A. The
matrix l(f) is called the linear part of f .
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Theorem 2.17. (1) The sets E(n), SE(n), O(n), SO(n) are groups
(under composition or matrix multiplication as the case may be).

(2) The map l : E(n) → O(n) is a group homomorphism with kernel
the group of translations of Rn, which is a group isomorphic to the
group Rn (vector addition).

(3) The map det : O(n) → {1,−1} is a group homomorphism with
kernel SO(n).

(4) The map det ◦l : E(n) → {1,−1} is a group homomorphism with
kernel SE(n)

Proof. We know, by Theorem 2.2, that the set of isometries of any metric
space is a group, thus E(n) is a group. We have just verified directly that
O(n) is a group. This also follows from the second part of Theorem 2.2
since O(n) is the subgroup of E(n) that fixes the origin. That SO(n) and
SE(n) are groups will follow from (3) and (4).

To prove (2), note that fA1,b1 ◦fA2,b2(x) = A1(A2x+b2)+b1 = A1A2x+
b1 + A1b2, thus

(13) fA1,b1 ◦ fA2,b2 = fA1A2,b1+A1b2

From this we see that l(fA1,b1 ◦ fA2,b2) = A1A2 = l(A1)l(A2), thus l is a
homomorphism. Its kernel is {fA,b : A = I} = {fI,b : b ∈ Rn} which
is a sub-group of E(n), the group of translations {tb : b ∈ Rn}, which is
isomorphic to Rn since tb1 ◦ tb2 = tb1+b2 . This proves (2). Then (3) and (4)
are clear since det is a homomorphism and kernels of homomorphisms are
subgroups. �

Remark 2.18. Note that the fourth part of this Theorem says that SE(n)
is a subgroup of index 2 of E(n), so its complement in E(n), the set of
improper isometries, is a coset. This also means : the composition of two
proper or two improper isometries is proper, while the composition of a
proper and an improper isometry (in either order) is improper.

Remark 2.19. Observe that the set E(n) is in one-to-one correspondence
with the set O(n)× Rn, namely fA,b ∈ E(n)↔ (A, b) ∈ O(n)× Rn. This
one-to-one correspondence takes the product of Equation 13 to the product

(14) (A1, b1)(A2, b2) = (A1A2, b1 + A1b2).

This is a group structure on the product O(n)×Rn, but it is not isomorphic
to the product group structure

(15) (A1, b1)(A2, b2) = (A1A2, b1 + b2).

The group structure of Equations 13 and 14 is called a semi-direct product
of O(n) and Rn.
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Remark 2.20. The subgroup Rn of translations is a normal subgroup of
E(n) since it is the kernel of a homomorphism. The group E(n) contains
many subgroups isomorphic to O(n), but none of these are normal sub-
groups. For instance the subgroup O(n) itself, namely O(n) = {fA,0} ⊂
E(n) of isometries that preserve the origin 0 is not a normal subgroup, be-
cause, for any fixed b 6= 0, we see that tb ◦ fA,0 ◦ t−1

B (x) = A(x− b) + b =
fA,b−Ab /∈ O(n). We will shortly discuss this in more detail for the case
n = 2.

2.3. The Euclidean Group in 2 Dimensions. Next we classify the isome-
tries of R2 by dividing them into 4 classes according to properness (= sign
of determinant of the linear part) and fixed points.

2.3.1. Classification of Proper Isometries. Let f ∈ SE(2) be a proper
isometry of R2, and assume f 6= id. A point x ∈ R2 is called a fixed point
of f iff f(x) = x. To find fixed points it will be convenient to use the
complex notation of Equation 11 To solve f(z) = eiθz + b = z is the same
as solving z − eiθz = (1 − eiθ)z = b, which can be solved iff eiθ 6= 1. So
there are two cases:

(1) f has no fixed points. This happens if and only if eiθ = 1, which is
the same as f(z) = z+b, which is the same as f being a translation.
Thus f ∈ SE(2) has no fixed points if and only if f is a translation.

(2) f has a fixed point. This happens if and only if eiθ 6= 1, in which
case the fixed point, which we denote by c, is given by c = b

1−eiθ .
Thus we see that in this case the fixed point c is unique. The in-
terpretation of this fixed point is that f is a rotation with center
c. This can be seen as follows: A rotation by angle θ with cen-
ter c is obtained from the rotation Rθ about origin by first trans-
lating the whole plane by t−c (t−1

c ) so that c moves to the ori-
gin, then applying Rθ, then translating the whole plane back by
tc so that the origin goes back to c, see Figure 17 In formulas,
f(z) = eiθ(z − c) + c = eiθz + (c − eiθc) = eiθ + b, thus our
solution for the fixed point found the center of rotation. In sum-
mary: f ∈ SE(2), f 6= id, has a fixed point if and only if f is a
rotation (by a non-trivial angle) about a center c ∈ R2, and c is the
unique fixed point of f .

In summary:

Theorem 2.21. Let f 6= id be a proper isometry of R2. Then either

(1) f has not fixed points. Then f is a translation.
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(2) f has a unique fixed point c and f is a rotation by an angle θ (not a
multiple of 2π) with center c.

Remark 2.22. The interpretation of conjugation of a rotation by a transla-
tion as translating the center of rotation gives a very clear picture of why the
subgroup SO(2) ⊂ SE(2) cannot be a normal subgroup: if it were, then
rotations about any point c would be the same collection of transformations
as the rotations about any other point c′, which we know by experience not
to be true, see Figure 17. This explains why the group structure of SE(2)
must follow the pattern of Equation (14) rather than that of (15). Note also
that SO(2) and R2 are both abelian groups, so if SE(2) had the group law
of (15), then it would be abelian, which is not the case.

FIGURE 17. Conjugate Rotations

Remark 2.23. This example illustrates what conjugacy of isometries means.
Roughly speaking, two isometries are conjugate if they act in the same way
but maybe in different locations (as rotations by the same angle but with
two different centers, as in Figure 17) or in reference to different objects,
like reflections in different mirrors that we will see below.

Remark 2.24. Here’s a familiar consequence of the group law of Equa-
tions (13) and (14). Take rotations about different centers, but with opposite
angles, say f1(x) = R−θ(x) and f2(x) = Rθ(x) + b. Then f1 ◦ f2(x) =
x + R−θb which is a translation. Thus composing rotations with different
centers (but angles adding to zero) produces a translation. This should be
familiar to anybody who has parallel-parked a car.
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2.3.2. Classification of Improper Isometries. We now study the fixed
points of improper isometries f ∈ E(2) \ SE(2). These isometries are
of the form f(x) = Sθ(x) + b in real notation (8), or f(z) = eiθz̄ in com-
plex notation (12). We need first to understand the linear part Sθ. It is easy
to check that for all θ we have S2

θ = id, thus its eigenvalues are ±1, and
since their product is the determinant, which is −1, we must have that one
eigenvalue is 1, the other is −1. This means that there is an orthonormal
basis {w1, w2} for R2 so that Sθw1 = w1 and Sθw2 = −w2.

The usual way to find this basis would be to solve linear equations for
eigenvectors, which should be familiar. An alternative way would be to use
complex notation: For instance, observe that z = ei

θ
2 solves z = eiθz̄. This

justifies the claim made in Figure 13 that the fixed line of Sθ makes an angle
θ
2

with the x1 axis. Similarly z = −eiθz̄ has solution z = iei
θ
2 . This would

be an orthonormal basis w1, w2 as above.

The following terminology for the fixed line of a reflection is very appro-
priate (see Figure 19:

Definition 2.25. Let Sθ be as in (8). The fixed line tei
θ
2 = (t cos θ

2
, t sin θ

2
), t ∈

R, is called the mirror of Sθ. (More generally, for any reflection, its fixed
line is called its mirror.)

Remark 2.26. Notice that we just used row vectors to represent points in
R2. We continue to do this For the rest of this chapter.

To classify all improper isometries f(x) = Sθx+ b, it is convenient, and
also a good exercise in conjugacy of isometries, to first make the follow-
ing reduction: it suffices to classify the isometries with linear part S0 (in
other words, with the orthonormal basis w1, w2 above bien the standard ba-
sis e1, e2): Given f , let g = R− θ

2
fR θ

2
. Then g(x) = S0x + c for c = R θ

2
b.

In other words,
g(x1, x2) = (x1 + c1,−x2 + c2).

The equations for (x1, x2) to be fixed are:

x1 + c1 = x1 and 2x2 = c2.

There are two possibilities:

(1) c1 6= 0: No soultions, since the first equation is never satisfied. This
means that g has no fixed points. We get g(x1,

c2
2

) = (x1 + c1,
c2
2

).
In other words the line x2 = c2

2
is invariant under g, and their

restriction of g to this line is translation by c1 6= 0, see Figure 18

Observe that the line x2 = c2
2

is parallel to the mirror x2 = 0 of
S0 and g interchanges the two sides of this mirror. This is easiest to
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see if c2 = 0. Then g is simply

(16) g(x1, x2) = (x1 + c1,−x2)

This is called a glide reflection along the x1-axis, see the first picture
in Figure 18 If c2 6= 0, we get the same picture relative to the line
x2 = c2

2
, namely we can rewrite the formula for g as

g(x1, (x2 −
c2

2
) +

c2

2
) = (x1 + c1,−(x2 −

c2

2
) +

c2

2
)

which is the conjugate of (16) by translation by (0, c2
2

), as in the
second picture in Figure 18

(2) c1 = 0. Then the line the solutions to the fixed-point equations
are (x1,

c2
2

with x1 arbitrary. In other words, the line x2 = c2
2

is
pointwise fixed by g, and g is a reflection in this line., see Figure 19
In other words, g is a reflection with mirror x2 = c2

2
, see Definition

2.25.

Finally, the special case of linear part S0 implies the following theorem:

FIGURE 18. Glide Reflections

Theorem 2.27. Let f(x) = Sθx+ b be an improper isometry of R2. Let M
denote the mirror of Sθ (see Definition 2.25) and let b = b‖ + b⊥ denote the
components of b parallel, respectively perpendicular, to M .Then either:



5510 NOTES 39

(1) b is not perpendicular to M . Then f has no fixed points, it is a glide
reflection along the translate M + b⊥

2
of M by the vector b‖, see

Figure 18
(2) b is perpendicular to M . Then the translate M + b/

2
of M is fixed

by f , and f is a reflection with mirror M + b/2, see Figure 19

FIGURE 19. Reflections and their Mirrors

We can summarize the classification of isometries (different from the
identity) in the following table. In the case of fixed points, the name of
the fixed point set is included:

Proper Improper
With fixed points Rotations (center) Reflections (mirror)
Without fixed points Translations Glide Reflections

The reflections are in some sense the most basic isometries of R2 in the
sense that all isometries may be obtained by composing reflections. More
precesily:

Theorem 2.28. The composition of two reflections is:

(1) A translation if the mirrors of both reflections are parallel. Pre-
cisely, if b is a vector perpendicular two both mirrors and of length
the distance between them, then their composition is t±2b (sign de-
pending on the order).

(2) A rotation by angle ±2α and centered at the intersection of their
mirrors if they meet at an angle α (the sign depending on the order)

The composition of three reflections is either a reflection or a glide-
reflection. Every glide reflection can be obtained by composing three re-
flections, two of the mirrors being parallel and the third perpendicular to
both.
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Proof. The two statements about composition of two reflections are easy to
verify. Since the composition of three reflections must be an improper mo-
tion, the next statement follows from the classification. The last statement
follows by taking one mirror to be the invariant line (axis) of the glide re-
flection and the other two mirrors perpendicular to the axis placed so as to
obtain the necessary translation. �

Corollary 2.29. Every isometry of R2 can be obtained by composing one,
two or three reflections. In particular, the group E(2) is generated by re-
flections.

See Section 1.4 of [12] for another proof of this Corollary, and Section
1.5 for another proof of the classification theorem.

2.4. Isometries of the sphere. Observe that the elements of the orthogonal
group O(n+1) are isometries of Rn+1 that preserve the origin, so they map
the unit sphere Sn = {|x| = 1} ⊂ Rn+1 to itself. (Recall |x| = d(0, x).)
These are isometries of (Sn, dextr), the extrinsic metric on Sn, restriction
of the metric dRn+1: of Rn+1, that is, dextr(x, y) = |x − y|. But they also
isometries of the intrinsic metric dSn(x, y) = cos−1(x · y) of Example 1.8.

One way to see this is the following reasoning. A matrix A is orthogonal
if and only if it satisfies (6), which is the same as Ax · Ax = x · x tor all
x ∈ Rn+1. Therefore A(x + y) · A(x + y) = (x + y) · (x + y) for all
x, y ∈ Rn+1. Expanding both sides of this equation, we get

Ax · Ax+ 2Ax · Ay + Ay · Ay = x · x+ 2x · y + y · y for all x, y.

Since the corresponding first and last terms on each side of this equality are
equal (by (6)), so ate the middle terms, in other words, Ax · Ay = x · y for
all x, y, as desired.

For the spherical metric this says dSn(Ax,Ay) = cos−1(Ax · Ay) =
cos−1(x · y) = dSn(x, y). Therefore A is an isometry of (Sn, dSn), as
claimed.

Theorem 2.30. Let A ∈ O(n + 1). Then the map x → Ax of Rn+1 re-
stricts to an isometry restr(A) of (Sn, dSn). The map restr : O(n + 1)→
Isom(Sn, dsn) so defined is a group isomorphism.

Proof. We have just checked that the map restr : O(n + 1) → Isom(Sn)
is defined, and it is easy to check that it is a group homomorphism. It is
clearly injective. It remains to check that it is surjective, this will not be
easy to do now. Hope to return to this at the end of the semester.

�
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Remark 2.31. It is appropriate to mention, without details, that there is a
similar theorem for the isometries of hyperbolic space of Example 1.18. For
n = 2 (similarly for any n > 2) there is the Lorentz group of matrices that
preserve the Minkowski inner product, and they restrict to isometries of H ,
giving an analogous isomorphism of groups

3. TOPOLOGICAL SPACES

3.1. Topology of Metric Spaces. Let (X, d) be a metric space. We define
the following objects, with a terminology motivated by the familiar con-
cepts in the Euclidean plane:

Definition 3.1. Suppose (X, d) is a metric space.

(1) If x ∈ X and r > 0, the set B(x, r) = {y ∈ X : d(x, y) < r} is
called the ball of radius r centered at x. This set is sometimes called
the open ball of radius r centered at x.

(2) If x ∈ X and r ≥ 0, the set B̄(x, r) = {y ∈ X : d(x, y) ≤ r} is
called the closed ball of radius r centered at x. .

(3) If x ∈ X and r ≥ 0, the set S(x, r) = {y ∈ X : d(x, y) = r} is
called the sphere of radius r centered at x. .

Definition 3.2. A subset U ⊂ X is called an open set if and only if, for
every x ∈ U there exists r(= r(x)) > 0 so that B(x, r) ⊂ U .

Theorem 3.3. For any x ∈ X and r > 0, B(x, r) is an open set.

Proof. Let y ∈ B(x, r). We have to find ρ > 0 so that B(y, ρ) ⊂ B(x, r).
Guided by the picture in the Euclidean plane, we choose ρ = r−d(x, y). To
checkB(y, ρ) ⊂ B(x, r), let z ∈ B(y, ρ), that is, d(y, z) < ρ = r−d(x, y).
Then, by the triangle inequality, d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) +
(r − d(x, y)) = r, thus d(x, z) < r, in other words, B(y, ρ) ⊂ B(x, r) as
desired. �

Example 3.4. If (X, d) = R2 with the usual Euclidean metric d(2), then the
balls and spheres are the usual balls and spheres, the open sets are the usual
open sets. Same holds for Rn, any n.

Example 3.5. If (X, d) = R2 with the taxicab metric d(1), then the balls
and spheres are not the usual Euclidean balls and spheres, but they give the
same open sets. One general principle at work here is: bi-Lipschitz metrics
give the same open sets. By this we mean (see Definition 1.35): Suppose
d, d′ are metrics on X and that there exist constants C1, C2 > 0 so that
C1d

′(x, y) ≤ d(x, y) ≤ C2d
′(x, y). Then using B for d-balls and B′ for

d′-balls, we get B′(x, r) ⊂ B(x,C2r) and B(x, r) ⊂ B′(x, r/C1). Then,
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if U ⊂ X is d-open, x ∈ U and r > 0 is such that B(x, r) ⊂ U , then
B′(x, r/C1) ⊂ U , so U is d′-open, similarly in the other direction. We will
see shortly that the necessary and sufficient condition for two metrics to
give the same open sets is that they be homeomorphic (see Def 1.35).

Example 3.6. Suppose X is any non-empty set and let d : X ×X → R be
the discrete metric of Example 1.12. Then

B(x, r) =

{
{x} if 0 < r ≤ 1

X if r > 1.

Thus every subset of X is open: if S ⊂ X is any subset and x ∈ S, then,
say, B(x, 1

2
) = {x} ⊂ S, so S is open.

Example 3.7. If (X, d) is any metric space, the empty set is open. This is
a “vacuously true” statement, namely, the negation of Definition 3.2 would
begin: there exists x ∈ U so that . . . which could never be true for U = ∅.
Definition 3.8. A subset F ⊂ X is called a closed set if and only if its
complement X \ F is an open set.

Theorem 3.9. For all x ∈ X and for all r ≥ 0, the closed ball B̄(x, r) is a
closed set.

Proof. Just as with the proof of Theorem 3.3, we guide ourselves by the
Euclidean picture. Let x ∈ X and r ≥ 0. We have to prove that the
complement X \ B̄(x, r) = {y ∈ X : d(x, y) > r} is an open set. Given
y ∈ X \ B̄(x, r) we need to find ρ > 0 so that B(y, ρ) ⊂ X \ B̄(x, r).
Drawing the picture in R2 suggests trying ρ = d(x, y) − r. So suppose
z ∈ B(y, ρ), that is, d(z, y) < d(x, y) − r. Then the triangle inequality
gives d(x, y) ≤ d(x, z)+d(z, y), equivalently, d(x, z) ≥ d(x, y)−d(z, y) >
d(x, y) − (d(x, y) − r) = r, as desired (where the last inequality uses the
assumption d(y, z) < d(x, y) − r, and the inequality gets reversed when
subtracting).

�

Remark 3.10. This proof would be slightly shorter if we use an equivalent
form of the triangle inequality:

|d(x, z)− d(y, z)| ≤ d(x, y).

Geometrically, in any triangle the difference of the lengths of two sides is
at most the length of the third side. This inequality is easily derived from
the usual triangle inequality: Start from d(x, z) ≤ d(x, y) + d(y, z) and
subtract d(y, z) from both sides, getting d(x, z) − d(y, z) ≤ d(x, y). Then
interchange x, y to get d(y, z)− d(x, z) ≤ d(x, y), which together give the
above inequality.
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3.1.1. Review of some set theory. We briefly review some concepts and
notations from set theory that we will need often. See the first chapter of
[8] for more information.

If X is any set, we write 2X for the set of all subsets of X , what is often
called the power set of X . If X and Y are any sets and f : X → Y is any
function, we the function f−1 : 2Y → 2X is defined by

(17) f−1(A) = {x ∈ X : f(x) ∈ A}.
The set f−1(A) is called the inverse image of A or the pre-image of A.
Observe that it is defined for any function, it is by no means implied nor
needed that the original function f : X → Y be invertible. There is another
function associated to f , denoted by the same letter, namely f : 2X → 2Y ,
defined by

(18) f(A) = {f(x) : x ∈ A}

The pre-image function behaves very nicely with respect to all the set
operations, for example:

Theorem 3.11. If f : X → Y , then the following hold for all A,B ⊂ Y :

(1) f−1(A ∪B) = f−1(A) ∪ f−1(B),
(2) f−1(A ∩B) = f−1(A) ∩ f−1(B),
(3) Same for unions and intersections of arbitrary families of subsets.
(4) f−1(A \B) = f−1(A) \ f−1(B),

If, in addition, g : Y → Z, then we also have:
(5) (g ◦ f)−1 = f−1 ◦ g−1

Proof. The proofs of all these statements are straightforward verifications
using the definitions of the objects involved. We verify the last statement:
If A ⊂ Z, then x ∈ (g ◦ f)−1(A) ⇔ (g ◦ f)(x) ∈ A ⇔ g(f(x)) ∈ A ⇔
f(x) ∈ g−1(A)⇔ x ∈ f−1(g−1(A))⇔ x ∈ f−1 ◦ g−1(A). �

We do not give corresponding statements for the image of sets f : 2X →
2Y because they are less useful, more complicated, and harder to remember.
They usually involve inclusions rather than equalities.

3.1.2. Continuous maps. Let (X, d) and (Y, d′) be metric spaces. Recall
from Definition 1.35(1) what it means for a map f : X → Y to be continu-
ous. The following theorem gives a very useful characterization of contin-
uous maps:

Theorem 3.12. A map f : (X, d)→ (Y, d′) is continuous if and only if the
following holds: for each open set U ⊂ Y , its pre-image f−1(U) ⊂ X is
also open.
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Proof. One implication: Suppose f is continuous in the sense of Defini-
tion 1.35, suppose U ⊂ Y is open, and let x ∈ f−1(U). Since f(x) ∈ U
and U is open, there exists ε > 0 so that B′(f(x), ε) ⊂ U , where B′ de-
notes a d′-ball. Since f is continuos, there exists δ > 0 so that if y ∈ X
and d(x, y) < δ, then d′(f(x(, f(y)) < ε, in other words, B(x, δ) ⊂
f−1(B′(f(x), ε) ⊂ f−1(U), so f−1(U) is open.

The opposite implication: Suppose that for all open subsetsU ⊂ Y , f−1(U) ⊂
X is open. Given x ∈ X and ε > 0, since B′(f(x), ε) ⊂ Y is open, thus
f−1(B′(f(x), ε) ⊂ X is open. Since x ∈ f−1(B′(f(x), ε), there exists
δ > 0 so that B(x, δ) ⊂ f=1(B′(f(x), ε). But this says exactly that for all
y ∈ X , if d(x, y) < δ, then d′(f(x), f(y)) < ε. Therefore f is continuous.

�

Here are some immediate and useful consequences:

Corollary 3.13. A map f : (X, d)→ (Y, d′) is continuous if and only if the
following holds: for each closed set F ⊂ Y , its pre-image f−1(F ) ⊂ X is
also closed.

Proof. By definition, F ⊂ Y is closed if and only if X \ F is open and by
Theorem 3.11, f−1(Y \ F ) = f−1(Y ) \ f−1(F ) = X \ f−1(F ) is open,
which happens if and only if f−1(F ) is closed. Hence all pre-images of
closed sets are closed if and only if all pre-images of open sets are open, as
asserted. �

Corollary 3.14. The composition of continuos maps is continuous. Pre-
cisely, suppose f : (X, d) → (Y, d′) and g : (Y, d′) → (Z, d′′) are continu-
ous. Then the composition g ◦ f : (X, d)→ (Z, d′′) is continuous.

Proof. Using the last part of Theorem 3.11, if U ⊂ Z is open, then (g ◦
f)−1(U) = f−1(g−1(U)) which is open because g−1(U) is open (continuity
of g) and thus f−1(g−1(U)) is open (continuity of f ). �

Corollary 3.15. Let f : (X, d) → (Y, d′) be a continuos map. Then f
is a homeomorphism if and only if f is bijective, and for all open subsets
U ⊂ X , f(U) ⊂ Y is open. The last condition can be replaced by: for all
closed subsets F ⊂ X , f(F ) ⊂ Y is closed.

Proof. If f is bijective, then f−1 : Y → X is defined, and if U ⊂ X is
open, then (f−1)−1(U) = f(U) is open, thus f−1 is also continuous and f
is a homeomorphism. Same reasoning with closed sets. �

Another variation of the same reasoning is:
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Corollary 3.16. Let f : (X, d) → (Y, d′) be a bijective map (not assumed
continuous). Then f is a homeomorphism if and only if the following holds:
A subset A ⊂ X is open if and only if f(A) ⊂ Y is open. Equivalently: a
subset A ⊂ X is closed if and only if f(A) ⊂ Y is closed.

The following examples show some immediate applications of the theo-
rems and corollaries just proved.

Example 3.17. One familiar example of how these characterizations of
continuity are used is the following. Suppose f : Rn → R is a con-
tinuous function. Then the following sets are open: {x : f(x) 6= 0},
{x : f(x) > 0}, {x : 1 < f(x) < 3}, etc, since they are pre-images
of open sets in R, namely they are f−1((−∞, 0) ∪ (0,∞)), f−1((0,∞)),
f−1((1, 3)), etc. Similarly, the following sets are closed: {x : f(x) = 0},
{x : 0 ≤ f(x) ≤ 1}, etc, since they are the pre-images of closed subsets of
R, namely f−1({0}), f−1([0, 1]), etc.

Example 3.18. Let (X, d) be a discrete metric space as in Example 1.12
and let (Y, d′) be any metric space. Then any map f : (X, d) → (Y, d′) is
continuous, because, as we saw in Example 3.6, every subset of X is open.
If (Y, d′) is also discrete, then f : (X, d) → (Y, d′) is a homeomorphism if
and only if it is bijective.

Example 3.19. Let d, d′ be two metrics on X . Then they have the same
open sets if and only if the identity map is a homeomorphism, as mentioned
at the end of Example 3.5.

3.1.3. The Collection of Open Sets.

Theorem 3.20. Let (X, d) be a metric space.

(1) Let {Uα}α∈A be a collection of open subsets of X indexed by a set
A. Then the union ∪α∈AUα is an open set.

(2) Let U1, · · · , Un be a finite collection of open subsets of X . Then
their intersection U1 ∩ · · · ∩ Un is an open set.

Proof. For (1), suppose x ∈ ∪α∈AUα. By definition of union, there exists
α0 ∈ A so that x ∈ Uα0 . Since Uα0 is open, there exists an r > 0 so that
B(x, r) ⊂ Uα−0. Then B(x, r) ⊂ ∪α∈AUα, so this last set is open.

For (2), suppose x ∈ U1 ∩ · · · ∩ Un. Then, by definition of intersection,
x ∈ Ui for i = 1, · · · , n. Since each Ui is open, there exists ri > 0 so
that B(x, ri) ⊂ UI for i = 1, · · · , n. Let r = min{r1, · · · , rn}. Then
B(x, r) ⊂ U1 ∩ · · · ∩ Un, so this last set is open. �

There is of course a corresponding theorem for closed sets:
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Theorem 3.21. Let (X, d) be a metric space.

(1) Let {Fα}α∈A be a collection of closed subsets of X indexed by a set
A. Then the intersection ∩α∈AFα is a closed set.

(2) Let F1, · · · , Fn be a finite collection of closed subsets of X . Then
their union F1 ∪ · · · ∪ Fn is a closed set.

Proof. This follows directly from the last theorem and the properties of
complements of unions or intersections as intersections or unions of com-
plements. For example, to prove ∩α∈AFα is closed if each Fα is closed,
need to show that X \ ∩Fα is open. But X \ ∩Fα = ∪(X \ Fα) which
is a union of open sets (since each Fα is closed), hence open by the last
theorem. �

3.2. Topologies and Continuity. It turns out that a very good way of dis-
cussing continuity is to turn the last theorems into definitions.

Definition 3.22. Let X be any non-empty set. A subset T ⊂ 2X is called a
topology on X if and only if the following hold:

(1) ∅ ∈ T and X ∈ T .
(2) If A is any index set and for each α ∈ A, Uα ∈ T , then ∪α∈AUα ∈
T .

(3) If U1, · · · , Un ∈ T , then U1 ∩ · · · ∩ Un ∈ T .

Briefly, a topology on X is a collection of subsets of X that contains
∅ and X , and which is closed under the operations of arbitrary union and
finite intersection.

Definition 3.23. A topological space is a pair (X, T ) where X is a non-
empty set and T is a topology on X .

Definition 3.24. Let (X, T ) be a topological space. A subset U ⊂ X is
called an open set (or, if more than one topology is being discussed, a T -
open set) if and only if U ∈ T . A subset F ⊂ X is called a closed set (or a
T -closed set if needed) if and only if X \ F ∈ T .

In other words, the elements of T ⊂ 2X are the subsets of X that we
decide to call open sets. Their complements in X are the subsets that we
decide to call closed sets.

Remark 3.25. An equivalent way of defining a topology on X would be to
give the collection of its closed sets. Namely, suppose we have a collection
C ⊂ 2X with the properties:

(1) ∅ ∈ C and X ∈ C.
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(2) IfA is any index set and for each α ∈ A, Fα ∈ C, then ∩α∈AFα ∈ C.
(3) If F1, · · · , Fn ∈ C, then F1∪, · · · , Fn ∈ C.

(briefly, C contains ∅, X , and is closed under arbitrary intersections and
finite unions), then C is the collection of open sets of a unique topology T
on X , namely

T = {X \ F : F ∈ C}.
Sometimes it is more convenient to define a topology on X by defining the
collection of closed sets rather than the collection of open sets.

Definition 3.26. Let (X, T ) and (Y, T ′) be topological spaces. A map f :
X → Y is called continuous if and only if, for all U ∈ T ′, we have that
f−1(U) ∈ T . A map f : X → Y is called a homeomorphism if and only if
it is continuous, f−1 exists, and f−1 is continuous.

Thus a map f : X → Y is called continuous if and only if the pre-image
of each T ′-open set in Y is a T -open set in X .

Remark 3.27. Just as in the notation we explained in Remark 1.36, we use
the notation f : (X, T )→ (Y, T ′) to mean:

(1) f : X → Y ,
(2) In the whole discussion, the topology T is being used in the domain

X and the topology T ′ is being used in the target Y .

Just as in the case of metric spaces, this notation is particularly important
when X = Y but T 6= T ′.

Just as with Corollary 3.13, we have the following characterization of
continuity (with the same proof):

Theorem 3.28. A map f : (X, T ) → (Y, T ′) is continuous if and only if
the preimage f−1(F ) of each T ′-closed set F ⊂ Y is a T -closed subset of
X .

Just as with Corollary 3.14. we have that the composition of continuous
maps is continuous (again with the same proof):

Theorem 3.29. Let (X, T ), (Y, T ′) and (Z, T ′′) be topological spaces. Let
f : (X, T ) → (Y, T ′) and g : (Y, T ′) → (Z, T ′′) be continuous maps.
Then the composition g ◦ f : (X, T )→ (Z, T ′′) is continuous.

3.2.1. Examples of Topological Spaces.

Example 3.30. Let (X, d) be any metric space, and let Td be the collec-
tion of open sets as defined in Definition 3.2. Then, by Theorem 3.20, the
collection Td ⊂ 2X is a topology on X .
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Example 3.31. In the special case that X = Rn and d is the Euclidean met-
ric of Example 1.4 we call the resulting metric topology Td the Euclidean
topology and denote it by TE .

Example 3.32. Let X be any non-empty set and let Tdisc = 2X . This is
called the discrete topology on X . Every subset of X is open. Note that this
is a special case of the last example, namely Tdisc is the same as the metric
topology of the discrete metric, see Examples 1.12 and 3.6.

Example 3.33. Let X be any non-empty set and let Tind = {X, ∅}. This
example is at the opposite extreme of the last one: it is the smallest col-
lection in 2X that satisfies Definition 3.22, while the last example gave the
largest one. This is often called the indiscrete topology.

Example 3.34. Let X = {a, b} be a two element set. Then besides the dis-
crete and indiscrete topologies on X there are precisely two other topolo-
gies: {∅, {a}, X} and {∅, {b}, X}, see Example 4 in p. 72 of [8].

Example 3.35. Let X be any infinite set and let TCF ⊂ 2X be defined by

U ∈ TCF if and only if

{
U = ∅ or
X \ U is a finite set.

The subscript CF stands for “complement of finite sets”. This topology is
perhaps more natural to define in terms of it closed sets, namely F ⊂ X is
TCF -closed if and only if either F = X or F is a finite subset of X .

It is instructive to check that TCF is a topology. It is more natural to
check that the collection of TCF -closed sets satisfies the properties of Re-
mark 3.25. In this paragraph, let “closed” always mean TCF -closed. Clearly
X and ∅ are closed. Suppose {Fα}α∈A is a collection of closed sets. If
there exists α0 ∈ A so that Fα0 6= X , then Fα0 is a finite set, and hence
∩αFα ⊂ Fα0 is finite, hence closed. Otherwise, ∩αFα = X , which is also
closed. Similarly, if F1, · · · , Fn is a finite collection of closed sets, then its
union is either X (if one of the Fi = X) or a finite set (otherwise), hence
also closed.

Example 3.36. In the special caseX = R we will call the topology TCF the
Zariski topology and denote it TZ . This is a special case of the Zariski topol-
ogy widely used in algebraic geometry, in which closed sets are common
zeros of polynomials.

3.2.2. Examples of Continuous Maps. Let (X, T ) and (Y, T ′) be topo-
logical spaces. It should be reasonable from the definition of continuity
that, for a map f : X → Y , having many open sets in T or few open sets in
T ′ should make it easy for f to be continuous, while having few open sets
in T or many in T ′ should make continuity hard. Let’s see some examples.
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Example 3.37. Let T be the discrete topology Tdisc. Then for any T ′
and for any map f : X → Y , we have that f : (X, Tdisc) → (Y, T ′) is
continuous. For, given any U ∈ T ′, we have that f−1(U) ⊂ X , hence
f−1(U) ∈ Tdisc, and f is continuous.

Example 3.38. Let T ′ be the indiscrete topology Tind. Then for any topol-
ogy T and for any map f : X → Y , we have that f : (X, T )→ (Y, Tind) is
continuous. For, if U ∈ Tind, then either U = ∅ or U = Y , so f−1(U) = ∅
or X , in both cases elements of T , so f is continuous.

Example 3.39. Let (X, T ) and (Y, T ′) be arbitrary, and let f : X → Y be
a constant map: f(x) = y0 for all x ∈ X . Then f is continuous: If u ∈ T ′,
then

f−1(U) =

{
X if y0 ∈ U,
∅ otherwise.

In either case f−1(U) ∈ T and f is continuous.

Example 3.40. Sometimes the only continuous maps are constant. For
example, let X be any set but T = Tind, and let (Y, T ′) = (R, TE). If
f : (X, T ) → (R, TE) is continuous, then, for any y ∈ R, f−1({y}) is
either ∅ or X . Since f is a function, this means that for some y0 ∈ R,
f−1({y0}) = X , in other words, f(x) = y0 for all x ∈ X and f is a con-
stant function. We will later see (after the discussion of connectedness) that
if T ′ = Tdisc, then any continuous map f : (R, TE)→ (Y, Tdisc) is constant.

Example 3.41. Suppose X = Y . Then id : (X, T ) → (X, T ′) is con-
tinuous if and only if T ′ ⊂ T . For example, id : (R, TE) → (R, TZ) is
continuous (since finite sets are closed in the Euclidean topology), while
id : (R, TZ)→ (R, TE) is not continuous (since there are Euclidean closed
sets that are neither finite nor all of R).

Example 3.42. Let f, g : R → R be defined by f(x) = x2 and g(x) =
sin(x). Both are continuous functions (R, TE) → (R, TE). Check the fol-
lowing: both are continuous functions (R, TE) → (R, TZ); f : (R, TZ) →
(R, TZ) is continuous, while g : (R, TZ)→ (R : TZ) is not continuous.

3.3. Limits.

3.3.1. Neighborhoods and Limits. Let (X, T ) be a topological space.

Definition 3.43. Let x ∈ X . A subset U ⊂ X is called a neighborhood of
x if and only if U is open and x ∈ U .

Remark 3.44. Many authors use the terminology open neighborhood for
what we have called a neighborhood, and use the word neighborhood of x
to mean a set which contains an open set containing x.
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Neighborhoods can be used much as balls to extend the definitions of
various familiar concepts of metric spaces. But some care is needed. For
example, we could be tempted to make the following definition:

Definition 3.45. Let {xn} be a sequence in (X, T ). (Recall that this means
that we have a function N → X that to n ∈ N assigns xn ∈ X .) If x ∈ X ,
we say that {xn} converges to x if and only if for every neighborhood U of
x there exists N ∈ N so that xn ∈ U whenever n > N .

Then we are tempted to write lim{xn} = x. We have to be careful with
this notation, since this definition need not give us what we think it does. If
we write lim{xn} = x, we are tacitly assuming that limits are unique, that
is, if {xn} converges to x and converges to y, then x = y, as we know to
be true for metric spaces, see Theorem 1.29. Now consider the following
example:

Example 3.46. Consider (R, TZ) as in Example 3.36, and let xn = n. Pick
any x ∈ R, say pick x = 7. Then {n} converges to 7: ifU is a neighborhood
of 7 and U 6= R, then U = R\F for some finite set F ⊂ R, and 7 6= F . Let
M be the largest element of F . Then, if n > M , then n /∈ F , thus n ∈ U .
So {n} converges to x = 7. The same argument holds for any x ∈ R. So
for any x ∈ R, {n} converges to x. Thus limits are not unique, and the
notation lim{n} = x does not make sense.

3.3.2. Hausdorff Spaces, Metrizable Spaces. The proof of Theorem 1.29
could be rephrased so that it depends on the following: if (X, d) is a metric
space, x, y ∈ X and x 6= y, and c = d(x,y)

2
, then B(x, c)∩B(y, c) = ∅. This

suggests the following condition for the uniqueness of limits:

Definition 3.47. A topological space (X.T ) is called a Hausdorff space if
and only if given any two points x, y ∈ X , x 6= y, there exists a neighbor-
hood Ux of x and a neighborhood Uy of y so that Ux ∩ Uy = ∅.
Theorem 3.48. Let (X, T ) be a Hausdorff space, and let {xn} be a se-
quence in X . If {xn} converges to x and converges to y, then x = y.

Proof. Suppose {xn} converges both to x and y and x 6= y. Then there
exist neighborhoods Ux, Uy of x, y respectively so that Ux ∩ Uy = ∅. Since
{xn} converges to x and y there exist N1, N2 ∈ N so that xn ∈ Ux for all
n > N1 and xn ∈ Uy for all n > N2. Thus for all n > max(N1, N2) we
have xn ∈ Ux ∩ Uy, contradicting Ux ∩ Uy = ∅ �

Finally, the following terminology is useful and standard:

Definition 3.49. A topological space (X, T ) is metrizable if and only if
there exists a metric d on X so that T = Td, the metric topology.
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Theorem 3.50. Suppose (X, T ) is a metrizable topological space. Then it
is Hausdorff.

Proof. Let d be a metric on X so that Td = T . If x, y ∈ X and x 6= y, then
d(x, y) > 0 and if 2c = d(x, y), then, by the triangle inequality, B(x, c) and
B(y, c) are disjoint neighborhoods of x and y. �

Example 3.51. The discussion of Example 3.46 shows that (R, TZ) is not a
Hausdorff space. In fact, if U and V are any two non-empty open sets, then
U ∩ V 6= ∅ since it is the complement of a finite set.

3.3.3. Interior, Closure, Boundary.

Definition 3.52. Let (X, T ) be a topological space and let A ⊂ X .

(1) The interior of A, denoted by A◦ is defined by

A◦ = ∪{U ⊂ X : U is open in X and U ⊂ A}.
Equivalently, A◦ is the largest open set contained in A.

(2) The closure of A, denoted by Ā is defined by

Ā = ∩{F ⊂ X : F is closed and A ⊂ F}.
Equivalently, Ā is the smallest closed set containing A.

(3) The boundary (also called frontier of A), denoted by ∂A, is defined
by ∂A = Ā \ A◦.

These sets have the following alternative characterizations:

Theorem 3.53. Let A ⊂ X .

(1) x ∈ A◦ if and only if there exists a neighborhood U of x with U ⊂
A.

(2) x ∈ Ā if and only if for every neighborhood U of x, U ∩ A 6= ∅.
(3) x ∈ ∂A if and only if for every neighborhood U of x, U ∩ A 6= ∅

and U ∩ (X \ A) 6= ∅.
(4) A is open if and only ifA = A◦ andA is closed if and only ifA = Ā.

Proof. For the first part, the definition x ∈ A◦ ⇔ x ∈ U for some U open,
U ⊂ A, which is equivalent to U being a neighborhood of x contained in
A. For the second part, from the definition we see that x /∈ Ā⇔ x ∈ X \F
for some F closed so that A ⊂ F ⇔ x has a neighborhood U (namely,
X \ F ) so that U ∩ A = ∅, which is the negation of the second statement,
thus proving this statement. The third statement is equivalent, by the first
two statements, to x ∈ Ā \ A◦, thus x ∈ ∂A. The fourth statement is clear
from the definitions. �
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Definition 3.54. If A ⊂ X and x ∈ X , then x is called a limit point
of A if and only if it satisfies condition (2) of Theorem 3.53: for every
neighborhood U of x, U ∩ A 6= ∅.
Remark 3.55. Thus a set is closed if and only if it contains all its limit
points. This is sometimes taken as the definition of closed set. It has a more
immediate appeal than the definition we have chosen. It says that a set is
closed if and only if you cannot get outside it by the process of taking limit
points. Perhaps the most immediate way to see the equivalence is to say
that x is not s limit point of A if and only if x has a neighborhood U with
U ∩ A = ∅, in other words, x is in the interior of X \ A. Thus A contains
all its limit points if and only if every point of X \ A is an interior point.
Thus A is closed (in the sense of containing all its limit points) if and only
if X \ A is open. We chose X \ A open as the definition of A being closed
mostly for convenience: properties of closed set immediately translate to
properties of open sets by usual rules for operations on complements.

In a metric space, if x is a limit point of A, for every n ∈ N we could
take U = B(x, 1

n
) and obtain that for each n ∈ N there exists xn ∈ A with

d(x, xn) < 1
n

. Thus x is the limit of the sequence {xn}.
Remark 3.56. Note that in Definition 3.54 we do not require that U ∩ A
contain a point y ∈ A with y 6= x. So, by this definition, every x ∈ A is
a limit point of A. If every neighborhood U of x contains y ∈ U ∩ A with
y 6= x then x is sometimes called an accumulation point of A.

3.4. Basis for a Topology. Let (X, T ) be a topological space.

Definition 3.57. A subset B ⊂ T is called a basis for T if and only if every
element of T is a union of elements of B. More explicitly, B is a basis if and
only if, for each open set U ∈ T and for every x ∈ U there exists B ∈ B
such that x ∈ B and B ⊂ U .

Example 3.58. Suppose (X, d) is a metric space. Then

B = {B(x, r) : x ∈ X, r > 0}
is a basis for Td, the metric topology, and so is

B′ = {B(x,
1

k
) : x ∈ X, k ∈ N}.

The fact that B is a basis is immediate from the definition of open sets in
(X, d). To show that B′ is a basis, it is enough to show that for each U open
in (X, d) and for each x ∈ U there exists k ∈ N so that B(x, 1

k
) ⊂ U .

This is easy to do: by the definition of open set, there exists r > 0 so that
B(x, r) ⊂ U . Choose k ∈ N so that 1

k
< r. Then B(x, 1

k
) ⊂ B(x, r) ⊂ U ,

so we are done. This shows that B′ is also a basis for Td.
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Example 3.59. Specializing the above example to Rn with d each of the
metrics d(1), d(2), d(∞) we obtain a basis Bd for the topology of Rn by balls
of different shapes and all possible radii, and the corresponding balls B′d of
radii reciprocals of natural numbers. Moreover, for each of these metrics d
could also use the collection

B∗d = {Bd(x,
1

k
) : x ∈ Qn, k ∈ N}.

Note that the centers of the balls have all their coordinates rational. The
interest of these collections is that it each is a countable collection that
generates the uncountable collection of open sets in Rn.

We now prove that B∗d is a basis for the Euclidean topology TE on Rn.
To prove this it is enough to prove that any ball B(x, r) in the metric d is a
union of elements of B∗d, in other words, given any y ∈ B(x, r) there exists
z ∈ Qn and k ∈ N so that y ∈ B(z, 1

k
) ⊂ B(x, r). Since there exists an

r′ so that B(y, r′) ⊂ B(x, r) (can take r′ = r − d(x, y), see the proof of
Theorem 3.3), it enough to find z, k so that y ∈ B(z, 1

k
) ⊂ B(y, r′), in

other words, just need to check the statement for y = x the center of the
ball. To reiterate, it suffices to prove that for all x ∈ Rn and for all r > 0
there exists z ∈ Qn and k ∈ N so that x ∈ B(z, 1

k
) ⊂ B(x, r).

Suppose we know the density of Qn in Rn: for all x ∈ Rn and for all
ε > 0 there exists z ∈ Qn so that d(x, z) < ε. Then the above statement is
easy to prove: Given x and r, there exists z ∈ Qn such that d(x, z) < r

2
and

there exists k ∈ N so that 1
k
< r

2
. Then, if d(y, z) < 1

k
, then

d(y, x) ≤ d(y, z) + d(z, x) <
r

2
+
r

2
= r

Thus x ∈ B(z, 1
k
) ⊂ B(x, r), as desired, so B∗d is a basis for Rn.

We assume that the density statement is known for R: for all x in R
and all ε > 0 there exists z ∈ Q so that |x − z| < ε. The statement
immediately follows for Rn and the metric d(∞) by applying the statement
for R in each coordinate: for any x = (x1, · · · , xn) ∈ Rn and ε > 0, for
each i there exists zi ∈ Q so that |xi−zi| < ε, thus, letting z = (z1, · · · , zn),
d(∞)(x, z) = max{|xi − zi|} < ε. Finally, it d is d(1) or d(2), then use the
comparisons of Example 1.41. For example, given x and ε, to find z ∈ Qn

with d(2)(x, z) < ε, find z ∈ Qn with d(∞)(x, z) < ε√
n

, then by (2) of
Example 1.41, d(2)(x, z) < ε.

Remark 3.60. One use of a basis is that many statements have only to be
checked for elements of the basis. For example, if we are given a basis
BY for Ty, to check that a map f : (X, TX) → (Y, Ty) is continuous it is
enough to check that f−1(B) is open for all B ∈ BY . Namely, if U is open
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in Y , then U = ∪αBα for some collection {Bα} of elements of B, thus
f−1(U) = f−1(∪αUα) = ∪αf−1(Bα) is open in X since it is a union of
open sets.

Another example of the same principle: x is a limit point of A if and only
if B ∩ A 6= ∅ for all B ∈ B so that x ∈ B.

3.4.1. Defining a Topology from a Basis. It is important to be able to
reverse the above procedure. In other words: take a non-empty set X and a
collection B ⊂ 2X , and try to define a topology on X by declaring B to be
a basis. More precisely, given B, define T ⊂ 2X to be the set of all unions
of elements of B, that is, define U ⊂ X to be an element of T if and only
if for all x ∈ U there exists B ∈ B so that x ∈ B and B ⊂ U . We need to
know that this is a topology, namely that it satisfies the three properties of
Definition 3.22. It is clear that half of (1) and (2) are satisfied: ∅ ∈ T and
T is closed under arbitrary unions. But it need not be true that X ∈ T or
that (3) is satisfied: T need not be closed under finite intersections. But if
we add these as an assumption, then T is a topology with basis B:

Theorem 3.61. Let X be a non-empty set and let B ⊂ 2X be a collection
of subsets that satisfies:

(1) For every x ∈ X there exists B ∈ B such that x ∈ B.
(2) For every B1, B2 ∈ B and for every x ∈ B1∩B2 there exists B ∈ B

such that x ∈ B and B ⊂ B1 ∩B2.

Let T = {U ⊂ X : for all x ∈ U there exists B ∈ B with x ∈ B and B ⊂
U} ∪ {∅}. Then T is a topology on X and B is a basis for T .

Proof. The first condition says thatX ∈ T and the second condition implies
that T is closed under intersections of two sets: if U1, U2 ∈ T and x ∈
U1∩U2, then there existB1, B2 ∈ B so that x ∈ B1 ⊂ U1 and x ∈ B2 ⊂ U2.
Since x ∈ B ⊂ B1 ∩ B2 ⊂ U1 ∩ U2, we have that U1 ∩ U2 ∈ T whenever
U1, U2 ∈ T . A straightforward induction argument then implies that (3) of
Definition 3.22 holds. By the definition of T , ∅ ∈ T . If for all α ∈ A we
have Uα ∈ T , and if x ∈ ∪α∈AUα, then x ∈ Uα0 for some α0 ∈ A, so there
exists B ∈ B so that x ∈ B ⊂ Uα0 ⊂ ∪α∈AUα, thus ∪α∈AUα ∈ T and
(2) of Definition 3.22 is also satisfied. Thus T is a topology on X . By the
definition of T it is clear that B is a basis for T . �

3.4.2. The Product Topology. Let (X, TX) and (Y, TY ) be topological spaces.
There is a natural way to topologize the productX×Y , but this natural way
requires the concept of basis. Let

(19) B = {U × V : U ∈ TX and V ∈ TY }
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It is easy to check that B satisfies the conditions of Theorem 3.61. Namely,
if (x, y) ∈ X×Y , sinceX×Y ∈ B, (1) is clearly satisfied. IfB1 = U1×V1

and B2 = U2×V2 and (x, y) ∈ B1∩B2, then x ∈ U1∩U2 and y ∈ V1∩V2,
so letting B = (U1 ∩ U2)× (V1 ∩ V2), we have that (x, y) ∈ B ⊂ B1 ∩B2,
thus (2) is also satisfied, and B is the basis for a unique topology TX×Y on
X × Y . This topology is called the product topology on X × Y .

Note that this collection B is actually closed under finite intersections,
because of the identity (which holds for arbitrary subsets of X and Y , not
just open sets):

(20) (U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2)

that we used above to prove (2). But B is not closed under unions. This is
easily visualized in R2 = R × R. The elements of B are “rectangles ” but
unions of rectangles need not be rectangles.

Remark 3.62. We could modify the definition of B in Equation 21 by let-
ting BX be a basis of TX and TY be a basis for TY and defining B′ ⊂ B
by

B′ = {U × V : U ∈ BX and V ∈ BY }
It is easy to check that B′ also satisfies the conditions of Theorem 3.61 and
that B′ is also a basis for the product topology TX×Y . These verifications
are left as an exercise. They depend, of course, on the above identity (20)
for intersections of products.

Remark 3.63. In Subsection 1.2.2 we defined the cartesian product of met-
ric spaces. The metric topology resulting from that definition and the prod-
uct topology just defined are the same topology. It would be an instruc-
tive exercise to verify this. Keep in mind the basic example of R × R and
(R2, d(∞)).

Here are two useful properties of the product topology. We use the no-
tation pX and pY for the projection maps pX : X × Y → X and pY :
X × Y → Y defined by pX(x, y) = x and pY (x, y) = y.

Theorem 3.64. Let (X, TX), (Y, TY ) and (Z, TZ) be topological spaces.

(1) The product topology TX×Y is the smallest topology that makes both
projections pX and pY continuous.

(2) A map f : Z → X × Y is continuous with respect to the product
topology if and only if both compositions pX ◦ f and pY ◦ f are
continuous.

Proof. For the first part we note that pX : X × Y → X is continuous if and
only if for all open U ⊂ X , U × Y is open in X × Y . Since this is open in
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the product topology, pX is continuous. Similarly, pY is continuous if and
only if for all open V ⊂ Y , X × V is continuous, so pY is also continuous
in the product topology. Moreover, if T is any topology which makes pX
and pY continuous, then it must contain all the sets {U × Y : U ∈ TX} and
{X×V : V ∈ TY }, therefore T must contain all their two-fold intersections
{U × V : U ∈ TX and V ∈ TY }. Since this is a basis for TX×Y we must
have TX×Y ⊂ T , thus proving the first statement.

For the second part, first note that f continuous certainly implies that
pX ◦f and py◦Y are continuous, since compositions of continuous maps are
continuous. For the converse, if pX ◦f is continuous, then (pX ◦f)−1(U) =
f−1◦p−1

X (U) = f−1(U×Y ) is open for eachU ∈ TX and similarly f−1(X×
V ) is open for all V ∈ TY , thus the same is true for their intersections:
all f−1(U × V ) are open. Since these sets form a basis for TX×Y , f is
continuous.

�

3.4.3. Sub-basis for a topology. One natural way to phrase the last proof
is to use the notion of sub-basis for a topology. Briefly, a sub-basis for T is
a collection B ⊂ T with the property that every U ∈ T is a union of finite
intersections of elements of T :

Example 3.65. The collection of sets

{p−1
X (U) | U ∈ TX} ∪ {p−1

Y (V ) | V ∈ TY }

is a sub-basis for the product topology on X × Y .

To check that a map f : X → Y is continuous, it is enough to check
that f−1(B) ∈ TX for all B in a sub-basis for TY , since any open set in
Y is a union of intersection B1 ∩ · · · ∩ Bk, therefore f−1(V ) is a union of
sets f−1(B1 ∩ · · · ∩ Bk) = f−1(B1 ∩ Bk) ∩ · · · ∩ f−1(Bk) which is open
in X . This is the principle we used in the proof of the second statement of
Theorem 3.64.

3.5. Infinite Products. We now define the product of an arbitrary collec-
tion of topological spaces. First, we need to define the product of an arbi-
trary collection of sets.

Definition 3.66. Let A be a set and let {Xα}α∈A be a collection of sets
indexed by A. The product of the collection is defined by∏

α∈A

Xα = {f : A→
⋃
α∈A

Xα | ∀α ∈ A, f(α) ∈ Xα}
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Note that this is a definition purely in set theory. The sets A and Xα are
not assumed to have any topology, and the functions f : A →

⋃
αXα are

arbitrary functions on sets.

Example 3.67. SupposeA = {1, 2}. Then a function f : {1, 2} → X1∪X2

with f(1) ∈ X1 and f(2) ∈ X2 is completely determined by the pair of
values f(1) = x1 ∈ X1 and f(2) = x2 ∈ X2. thus∏

α∈{1,2}

Xα = {(x1, x2) | x1 ∈ X1, x2 ∈ X2} = X1 ×X2,

the usual definition of the Cartesian product X1 ×X2.

Similarly, for a finite set A = {1, 2, . . . , n},
∏

α∈AXα gives the usual
product {(x1, x2, . . . , xn}| xi ∈ Xi} = X1 . . . Xn.

Example 3.68. If A = N, the natural numbers, and Xi = X for all i ∈ N,
then ∏

i∈N

X = XN = { Sequences {xi}i∈N}

the set of all sequences in X .

One formulation of the Axiom of Choice is the following statement:

If A 6= 0 and or all α ∈ A, Xα 6= ∅, then
∏

α∈AXα 6= ∅.
In other words, the functions f : A →

⋃
α∈AXα with f(xα) ∈ Xα

“choose”, for each α ∈ A, an element of Xα. The axiom of choice is the
statement that these choices are always possible. Note that there is no issue
here if A is a finite set. The axiom is only needed for arbitrary cardinality.

3.5.1. Topology on an Infinite Product Space. Assume now that A is an
arbitrary set and that each of the sets Xα has a topology Tα. For each finite
subset F = {α1, . . . αk} ⊂ A choose sets Uαi ∈ Tαi and let

UF = Uα1 × · · · × Uαk ×
∏
α 6=αi

Xα,

in other words,

(21) UF = {f : A→ ∪αXα | f(α) ∈ Uα for all α ∈ F}

Theorem 3.69. Let B∏Xα denote the collection of all the UF . Then B∏Xα

satisfies the conditions of Theorem 3.61, hence is the basis for a topology
on
∏

α∈AXα.

Proof. The proof is very similar to the proof of the case of two factors in
§3.4.2. We replace equation (20) by the following formula: given two finite
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subsets F, F ′ ⊂ A and open sets {Uα |α ∈ F} and {U ′α′ | α′ ∈ F ′}, let
F ′′ = F ∪ F ′. Then, for β ∈ F ′′, let

Vβ =

{
Uβ if β ∈ F,
Xβ otherwise.

and V ′β =

{
U ′β if β ∈ F ′,
Xβ otherwise.

Then let VF ′′ =
∏

β∈F ′′ Vβ×
∏

β/∈F ′′ Xβ and V ′F ′′ =
∏

β∈F ′′ V
′
β×
∏

β/∈F ′′ Xβ .
Then

UF ∩ U ′F ′ = VF ′′ ∩ V ′F ′′ =
∏
β∈F ′′

(Vβ ∩ V ′β)×
∏
β/∈F ′′

Xβ

Denoting the last space V ′′F ′′ , we get UF ∩ U ′F ′ = V ′′F ′′ , so B is closed under
finite intersections and therefore is a basis for a topology.

�

Definition 3.70. The topology on
∏
Xα defined by the basis B consisting

of all the sets UF is called the product topology.

Just as in the case of two factors we have projections, for each α ∈ A

pα :
∏
α′∈A

Xα′ → Xα defined by pα(f) = f(α) ∈ Xα

In this definition we have used the notation of Definition 3.66: an element
of
∏

α∈AXα is a function f : A →
⋃
Xα with the property that, for each

α ∈ A, f(α) ∈ Xα.

Theorem 3.71. Let (Xα, Tα)α∈A be a family of topological spaces, let X =∏
α∈AXα, and, for each α ∈ A, let pα :

∏
Xα′ → Xα be the projection

(1) The product topology is the smallest topology on X that makes all
projections pα : X → Xα continuous.

(2) If (Z, TZ) is any topological space, a map f : Z → X is continuous
if and only if all compositions pα ◦ f are continuous.

Proof. Similar to the proof of Theorem 3.64. Here we use the fact that the
collection of all sets p−1

α (U), where U is open in Xα, is a sub-basis (see
§3.4.3) for the topology of the product space. �

Remark 3.72. The most important feature of the definition of the product
topology is that the open UF in the basis restrict only finitely many factors.
Looking at the formula in Definition 3.66 makes this very clear: f(α) ∈ Uα
for all α ∈ F puts no restriction on the values of f on A \ F . If A is an
infinite set, then the elements of UF are arbitrary on most of their domain.
One could define other topologies making more restrictions, for instance,
we could choose open sets Uα ⊂ Xα for each α ∈ A and take for a basis
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the sets {f : A → ∪Xα |f(α) ∈ Uα for all α ∈ A}. This would define a
topology (called the “box topology”). It makes all the pα continuous, but
it’s larger than the product topology, so (1) of Theorem 3.71 is true. Part
(2) of the same theorem is also false. See, for example, [4, 9] for a more
detailed discussion of the product topology.

3.6. The Cantor Set. A very interesting example of an infinite product
space is provided by the Cantor set. We first recall its construction as a
subset of the unit interval [0, 1] ⊂ R:

Start with the unit interval [0, 1], divide it into three equal intervals, and
remove the open middle interval. What remains is C1 = [0, 1

3
] ∪ [2

3
, 1].

Iterate this construction: to each interval apply the same process: divide it
into three equal intervals, remove the open middle interval. For instance,
the next step is

C2 = [0,
1

9
] ∪ [

2

9
,
1

3
] ∪ [

2

3
,
7

9
] ∪ [

8

9
, 1]

Continue. At the nth stage we get Cn a union of 2n intervals. Moreover the
Cn are nested: C1 ⊃ C2 ⊃ . . . . Consequently

C =
∞⋂
n=1

Cn 6= ∅

This is the Cantor set C. See Figure 20

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 20. Constructing the Cantor Set
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Observe that, by definition of the ternary expansion of a real number

C = {
∞∑
i=1

ai
3i
| ai = 0 or 2}

Removing the middle thirds removes all points with a one in their ternary
expansions, except for right hand endpoints of the intervals, which have two
ternary expansions: a finite one ending with a one, or an infinite one with
2 repeated infinitely often. In particular, the elements of C have a unique
ternary expansion using only 0 and 2. In other words, the map

(22) t : {0, 2}N → C defined by t({ai}) =
∞∑
i=1

ai
3i

is bijective.

Theorem 3.73. Give {0, 2} the discrete topology, give {0, 2}N the product
topology and give C the topology as a subspace of [0, 1] (equivalently, the
metric topology from [0, 1]). Then the map t : {0, 2}N → C defined by
equation (22) is a homeomorphism.

Proof. We will prove that t is continuous. The continuity of t−1 will be
done later. Fix a sequence a0 = {a0

i } ∈ {0, 2}N and let ε > 0. Then choose
i0 so that 1

3i0
< ε If {ai} ∈ {0, 2}N and ai = a0

i for i ≤ i0, then

(23) |t({ai})− t({a0
i })| ≤

∞∑
i0+1

|ai − a0
i |

3i
≤

∞∑
i0+1

2

3i
=

1

3i0
< ε

where we used the geometric series to compute
∞∑
i0+!

2

3i
=

2

3i0+1

∞∑
0

1

3i
=

2

3i0+1

3

2
=

1

3i0

Thus if we let

(24) U = {{ai} ∈ {0, 2}N | ai = a0
i for i ≤ i0}

then U is an open set with a0 ∈ U ⊂ t−1(B(t(a0), ε). Since a0 and ε are
arbitrary, t is continuous. �

Remark 3.74. Observe how the inequality (23) leads to the open set U in
the product topology described by equation (24). Restricting the “tail end”
of the geometric series

∑
ai
3i

can be achieved by restricting only finitely
many ai.
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4. SUBSPACES AND QUOTIENT SPACES

Let X and Y be sets and let f : X → Y be a map. We know from
Examples 3.37 and 3.38 that f is continuous if either the discrete topology
is given to X (the largest possible topology) or if the indiscrete topology
is given to Y (the smallest possible topology). We want to find optimal
intermediate topologies that make f continuous under the assumption of a
given topology on the domain or target.

Theorem 4.1. Let X and Y be sets and let f : X → Y .

(1) Given a topology TY on Y there is a smallest topology TX onX that
makes f continuous, namely TX = {f−1(U) : U ∈ TY }.

(2) Given a topology TX onX there is a largest topology TY that makes
f continuous., namely TY = {U ⊂ Y : f−1(U) ∈ TX}. (In this
case we usually only consider the case where f is surjective.)

Proof. To prove (1), note that if we let TX be as in the statement, then
X = f−1(Y ) ∈ TX and ∅ = f−1(∅) ∈ TX . Since f−1(∪Uα) = ∪f−1(Uα)
and f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) it follows that TX is closed under
arbitrary unions and finite intersections (since TY is), thus TX is a topology
onX . If T is any topology onX so that f is continuous, then for all U ∈ TY
we have that f−1(U) ∈ T . Therefore TY ⊂ Y , in other words, TY is the
smallest topology making f continuous.

To prove (2), we check, using the same ingredients as in the first part, that
TY is a topology on Y . If T is any topology on Y so that f is continuous,
then, given U ∈ T , we must have that f−1(U) ∈ TX , in other words,
U ∈ TY , therefore T ⊂ TY and TY is the largest topology that makes f
continuous.

Note that if U ⊂ Y \ f(X) is any subset, then f−1(U) = ∅ ∈ TX , thus
U ∈ TY . Thus TY gives Y \ f(X) the discrete topology. Since this has
nothing to do with the map f , it is only reasonable to consider the case
where f is surjective in part (2).

�

Remark 4.2. By taking complements, we could equally well have defined
the topologies of Theorem 4.1 in terms of closed sets. In other words, for
part (1), we could have defined TX as the topology whose closed sets are
{f−1(F ) : F ⊂ Y is closed in TY }. Recall that this means that TX =
{X \ f−1(F ) : F ⊂ Y is closed in TY }. Then TX is a topology on X and it
is the smallest topology that makes f continuous.
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Similarly, for part (2) of Theorem 4.1, we could define TY as the topology
whose closed sets are {F : f−1(F ) is closed in TX}. The equivalence of
the two definitions in both parts follows, as usual, from the identity f−1(Y \
F ) = X \ f−1(F ).

4.1. The Subspace Topology. We specialize the first part of Theorem 4.1
to the case that X ⊂ Y and f is the inclusion. The resulting topology of
X is called the subspace topology. More explicitly, observing that in this
case, for U ⊂ Y , f−1(U) = U ∩X , we get the following description of the
topology:

Definition 4.3. Let (Y, TY ) be a topological space, and let X ⊂ Y . The
subspace topology TX on X is defined to be TX = {U ∩X : U ∈ TY }.

The subspace topology can be hard to picture. We give a couple of situa-
tions where it is a familiar topology.

Recall that in (1.2.1) we defined a subspace of a metric space. in the
present context, suppose TY is the metric topology of a metric d on Y and
let d′ = d|X×X be the subspace metric on X .

Theorem 4.4. Let (Y, d) be a metric space, let X ⊂ Y and TY = Td the
metric topology. Then the subspace topology TX agrees with the metric
topology Td′ of the subspace metric d′ = d|X×X .

Proof. Observe that if x ∈ X and r > 0, then BX(x, r) = {y ∈ X :
d(x, y) < r} = {y ∈ Y : d(x, y) < r}∩X = BY (x, r)∩X , thus BX(x, r)
is open in the subspace topology, thus any open set in the metric topology
is open in the subspace topology. Conversely, if U ⊂ X is open in the
subspace topology and x ∈ U , then there exists an open set V ⊂ Y so that
U = V ∩ X . Since V is open, there exists r > 0 so that BY (x, r) ⊂ V .
ThenBX(x, r) = BY (x, r)∩X ⊂ U = V ∩X , thus U is open in the metric
topology of X . �

Another situation where it is simple to see the subspace topology is the
following:

Theorem 4.5. Suppose X is open in Y . Then a subset U ⊂ X is open in X
if and only if it is open in Y . Similarly, if X is closed in Y , a subset F ⊂ X
is closed in X if and only if it is closed in Y .

Proof. Suppose X is open in Y and U ⊂ X is open in X . Then there exists
an open set V ⊂ Y such that U = X∩V . SinceX is open in Y , so isX∩V ,
so U is open in Y . Conversely, if U ⊂ X is open in Y , then U = X ∩ U is
open in X . The proof for closed subsets is similar. �
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4.2. Compact Spaces. Let (X, T ) be a topological space. An open cover
U of X is a collection U = {Uα}αıA of open sets (elements of T ), so that⋃
β∈B Uβ

X =
⋃
α∈A

Uα

A finite subcover of U means a finite subcollection Uα1 , . . . , Uαn of U so
that

X = Uα1 ∪ · · · ∪ Uαn .

Using this language, we have the following definition:

Definition 4.6. A topological space (X, T ) is called compact if and only
if every open cover of X has a finite subcover. A subset Y ⊂ X of a
topological space (X, T ) is called compact if and only if it is a compact
topological space when given the subspace topology (Definition 4.3) from
(X, T )

Explicitly: (X, T ) is compact if and only if, whenever U = {Uα}α∈A is a
collection of open sets such that X =

⋃
α Uα, there is a finite subcollection

Uα1 , . . . , Uαn of U so that X = Uα1 ∪ · · · ∪ Uαn . If Y ⊂ X , then, using the
definition (Definition 4.3) of the subspace topology, it is easy to see that Y
is compact if and only if whenever U = {Uα} is a collection of open sets in
X with

Y ⊂
⋃
α

Uα,

then there exists a finite subcollection Uα1 , . . . , Uαn of U with

Y ⊂ Uα1 ∪ · · · ∪ Uαn .

Example 4.7. (1) Let X be finite. Then X is compact.
(2) Let (X, Tdisc) be infinite and have the discrete topology. Then X is

not compact. In fact, the open cover U = {{x} : x ∈ X} is an open
cover of X that has no proper sub-cover.

(3) R is not compact: The open cover U = {(−n, n) | n ∈ N} has no
finite subcover.

(4) Let X = { 1
n
|n ∈ N} ∪ {0} ⊂ R. then X is compact. Reason:

(a) Let U = {Uα} be open in R and X ⊂
⋃
α Uα.

(b) There is α0 such that 0 ∈ Uα0 .
(c) There is N ∈ N such that 1

n
∈ Uα0 for all n > N .

(d) For 1 ≤ n ≤ N , choose Uαn with 1
n
∈ Uαn .

(e) Then X ⊂ Uα0 ∪ · · · ∪ UαN .

It is difficult to apply Definition 4.6 directly to prove that a space is com-
pact. The above examples are not typical in this respect. It is easier to
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prove that a space is not compact. It is also easier to derive some proper-
ties of compact spaces, and to prove compactness of some spaces given the
compactness of some other space. Here are some examples.

Theorem 4.8. (1) Let X be compact and C ⊂ X be closed. Then C is
compact.

(2) Let X ba a Hausdorff space and let C ⊂ X be compact. Then C is
closed.

(3) Let X be a compact metric space. Then X is bounded: there exists
a constant C > 0 such that d(x, y) ≤ C for all x, y ∈ X .

Proof. (1) Let U be a collection of open sets in X with C ⊂
⋃
U , and

let V = U ∪ {X \C). Then V is an open cover of X , hence it has a
finite sub-cover which consists of finitely many elements of U and
possibly X \C. Since the latter is disjoint from C, the finitely many
elements of U cover C.

(2) Suppose X is Hausdorff, C ⊂ X is compact, and x /∈ C. For
each y ∈ C there exist neighborhoods Uy of y and Vy of x so that
Uy∩Vy = ∅. Since c ⊂ ∪yUy andC is compact, there exist y1, . . . yn
so that

C ⊂ Uy1 ∪ · · · ∪ Uyn
Let

V = Vy1 ∩ · · · ∩ Vyn
Then V is a neighborhood of x and V ∩ Uyi = ∅ for i = 1, . . . , n.
Thus

V ∩ (Uy1 ∪ · · · ∪ Uyn) = ∅
Since C ⊂ Uy1 ∪ · · · ∪ Uyn , it follows that V ∩ C = ∅. Therefore
X \ C is open, thus C is closed.

(3) Fix x0 ∈ X and let U = {B(x0, n) | n ∈ N}. Then U is an open
cover of X . Take a finite subcover and let N be the largest radius of
a ball in this subcover. Then, for all x ∈ X, d(x0, x) < N , thus for
all x, y ∈ X , d(x, y) < 2N .

�

We recall the statement of the Heine-Borel theorem characterizing com-
pact subsets of Rn (with Euclidean topology). We hope this is a familiar
theorem whose proof you have seen in a previous course.

Theorem 4.9. Let X ⊂ Rn. Then X is compact if and only if X is closed
and bounded.
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4.2.1. Continuous maps and compactness. One reason for the definition
of compactness is that it makes the following theorem almost obvious:

Theorem 4.10. Let X, Y be topological spaces, let f : X → Y be contin-
uous, and let C ⊂ X be compact. then f(C) is compact.

Proof. Take an open cover U = {Uα} of f(C), then f−1(U) = {f−1(Uα)}
is an open cover of C. Choose a finite subcover {f−1(Uαi}, i = 1, . . . n of
C. Then {Uαi}, i = 1, . . . , n covers f(C). �

This theorem, combined with the Heine-Borel theorem and other facts
about compactness (say, as in Theorem 4.8) has many traditional applica-
tions. For example, a continuous real valued function on a compact set
attains its maximum and its minimum. Here are some other applications:

Theorem 4.11. Let X be a compact space, let Y be a Hausdorff space, and
let f : X → Y be continuous.

(1) If C ⊂ X is closed, then f(C) ⊂ Y is also closed. (terminology: f
is a closed map).

(2) Suppose, in addition, that f is bijective. Then f is a homeomor-
phism.

Proof. (1) By (2) of Theorem 4.8 C is compact, by Theorem 4.10 f(C)
is compact, by (1) of Theorem 4.8 C is closed.

(2) If f is bijective, then f−1 : Y → X exists and (f−1)−1(C) = f(C)
is closed in Y for all C closed in X , hence f−1 is continuous.

�

4.2.2. Compactness and Products. In the homework you are asked to
prove that if X and Y are compact topological spaces, so is X × Y . This is
not too difficult to prove, but it takes a litle bit of work. It is a remarkable
feature of the product topology that this remains true of infinite products,
with the product topology as defined in §3.5.1. This is known as Tychonoff’s
Theorem:

Theorem 4.12. Let A 6= ∅ and let {Xα}α∈A be a collection of non-empty
spaces indexed by A. Then, if all the Xα are compact,

∏
α∈AXα is also

compact.

Proof. This would take us too far from our path. See [4, 9] for proofs. �

If we accept this fact, then we can finish the proof of Theorem 3.73.
Recall we had a map t : {0, 2}N → C from the infinite product space
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{0, 2}N to the Cantor set C ⊂ [0, 1], and we proved that t is a continuous
bijection. Now we know by Theorem 4.12 that {0, 2}N is compact, and from
Theorem 4.11 we know that t must be a homeomorphism. This finishes the
proof of Theorem 3.73.

4.3. The Quotient Topology. We now turn to the second part of Theo-
rem 4.1. This theorem justifies making the following definition:

Definition 4.13. Let (X, TX) be a topological space and let q : X → Y be
surjective.

(1) The quotient topology, also called the identification topology on Y
is the topology TY = {U ⊂ Y : q−1(U) ∈ TX}.

(2) A surjective continuous map q : X → Y between topological
spaces (X, TX) and (Y, TY ) is called an identification if TY is the
quotient (or identification) topology just defined.

In other words, a surjective map q : X → Y is an identification if and
only if U ⊂ Y is open if and only if q−1(U) is open in X . Equivalent
formulation: a surjective map q : X → Y is an identification if and only if
F ⊂ Y is closed in Y iff and only if q−1(F ) is closed in X .

Let us keep some concrete examples in mind as we develop this concept.

Example 4.14. Let S1 ⊂ R2 be the unit circle. Define f : R → S1 by
f(t) = (cos t, sin t). Let f1 = f |[0,2π] : [0, 2π] :→ S1 and let f2 = f |[0,2π) :
[0, 2π) → S1. All three of f , f1 and f2 are continuous surjections. Let’s
prove that f and f1 are identifications, but f2 is not. To show that a contin-
uous map f is an identification is the same as showing that for all subsets
A of the target, f−1(A) open implies that A is open. For f this is true,
because f has the property that for any open V ⊂ R, f(V ) is open in S1.
This is clear because it is clear that small (meaning, say, of length less than
π) open intervals in R have open image in S1, and all open sets are unions
of small intervals. So, if A ⊂ S1 has the property that f−1(A) is open in
R, then f(f−1(A)) is open in S1. But for a surjective map we have that
f(f−1)(A) = A, thus A is open.

To prove that f1 is an identification, let A ⊂ S1 and suppose f−1
1 (A) is

open in [0, 2π]. If t ∈ f−1
1 (A), we consider two cases:

(1) t ∈ (0, 2π). Then there exists ε > 0 so that (t − ε, t + ε) ⊂ (0, 2π)
and f1((t− ε, t+ ε)) is a neighborhood of f(t) contained in A.

(2) t = 0 or t = 2π. Then we must have that the other endpoint 2π
or 0 is also in f−1

1 (A), since f1(0) = f1(2π) = (1, 0) ∈ S1. Then
there is an ε > 0 so that [0, ε) ∪ (2π − ε] ⊂ f−1

1 (A), therefore
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f1([0, ε) ∪ (2π − ε, 2π]) = f((−ε, ε)) is a neighborhood of f1(t)
which is contained in A.

Therefore, in both cases we found a neighborhood of each point of A which
is contained in A, so A is an open set and f1 is an identification.

But for f2 the situation is different: If A = {(cos t, sin t) : 0 ≤ t < π},
then A is not open in S1 but f−1

2 (A) = [0, π) which is open in [0, 2π).
Therefore f2 is not an identification.

Let us formalize the proof just given that f is an identification:

Definition 4.15. A map f : X → Y of topological spaces is called an open
map if and only if, for all open U ⊂ X , f(U) ⊂ Y is open. Similarly, f is
called a closed map if and only if, for all closed F ⊂ X , f(F ) ⊂ Y is a
closed set.

Example 4.16. Let f : R2 → R be defined by f(x, y) = x (projection to the
first factor). Then f is an open map (because f(B(x, y), r) = (x− r, x+ r)
is open in R and the collection {B((x, y), r) : (x, y) ∈ R2, r > 0} is a basis
for the topology of R2). But f is not a closed map: let F = {xy = 1} (a
hyperbola). As the zero set of a continuous function it is a closed set, but
f(F ) = {x 6= 0} which is not closed in R.

The argument given for f in Example 4.14 shows the following:

Theorem 4.17. Let X and Y be topological spaces and let f : X → Y
be a continuous surjection and an open map. Then f is an identification.
Similarly, if f : X → Y is a continuous surjection and a closed map, then
f is an identification.

Proof. We have to prove that U ⊂ Y is open if and only if f−1(U) is open.
Since f is continuous, U open implies that f−1(U) is open. Since f is an
open map, f−1(U) open implies that f(f−1(U)), and since f is surjective,
f(f−1(U)) = U , thus U is open. Similarly, if f is a continuous surjection
and a closed map, we prove in the same way that F ⊂ Y is closed if and
only if f−1(F ) is closed, hence, by Remark 4.2, Y has the quotient topology
and f is an identification.

�

Remark 4.18. Theorem 4.17 gives sufficient conditions for f to be an iden-
tification. But these are not necessary conditions. For example, the map f1

of Example 4.14 is not an open map: [0, π) is open in [0, 2π] but f1([0, π))
is not open in S1. Also the map f of the same example is open but not
closed: Let F = { 1

n
+ 2πn : n ∈ N}. Then F is a discrete subset of R,
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hence closed, but f(F ) = {(cos( 1
n
), sin( 1

n
))} is not closed since it does not

contain its limit point (1, 0).

The reason that the terms “quotient” or “identification” topology are used
is that we often apply this to quotients by equivalence relations. We could
also think of quotients as making suitable identifications. We could say the
following:

Remark 4.19. LetX and Y be two sets. Then the following are equivalent:

(1) A surjective map fqX → Y .
(2) A partition of X into disjoint sets indexed by Y , that is, a collection
{Xy}y∈Y where, for each y, Xy ⊂ X , X = ∪y∈YXy, and Xy1 ∩
Xy2 = ∅ whenever y1 6= y2.

(3) An equivalence relation onX with equivalence classes in one to one
correspondence with the elements of Y .

The equivalences are easy to see: Given (1), define the partition in (2) by
Xy = q−1(y), and given the partition (2), define q : X → Y by q(x) = y
if and only if x ∈ Xy. Thus (1) is equivalent to (2). Similalrly, given a
partition (2), define an equivalence relation on X by x1 ∼ x2 if and only
if there is a y ∈ Y so that x1 ∈ Xy and x2 ∈ Xy. This is easily checked
to be an equivalence relation, and its equivalence classes are in one to one
correspondence with the elements of Y , thus we have (3). Finally, given
(3), define the partition of X to be the equivalence classes. Since these are
in one to one correspondence with Y , we can label them as {Xy}y∈Y , and
this gives (2).

The following theorem gives a useful characterization of the quotient
topology.

Theorem 4.20. Let X, Y and Z be topological spaces. Suppose that maps
q and g are given as in the following diagram, and that q is an identification.

X
g◦q−→ Z

q
y ↗ g

Y

(25)

Then g is continuous if and only if g ◦ q is continuous.

.

Proof. If g is continuous then certainly g◦q is continuous by Corollary 3.14.
What is specific to the identification topology is the converse, which is
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proved as follows: if g ◦ q is continuous, then for each open U ⊂ Z,
(g ◦ q)−1(U) is open in X . But (g ◦ q)−1(U) = q−1(g−1(U)), thus, since q
is an identification, g−1(U) is open in Y , so g is continuous. �

.

This theorem is usually applied in the following equivalent form. Sup-
pose that q : X → Y is an identification as in the theorem, and suppose
we are given a continuous map h : X → Z with the property that h is
constant on the fibers of q (the sets q−1(y), y ∈ Y ). In other words, sup-
pose that h(x) = h(x′) whenever q(x) = q(x′). Then we can define a map
g : Y → Z as follows: given y ∈ Y , choose x ∈ X so that q(x) = y, and
define g(x) = h(x). The above condition implies that this is well=defined:
Given y ∈ Y , if we choose x′ so that q(x′) = y, then q(x) = q(x′), so,
by the assumption on h, h(x) = h(x′), so the point g(y) depends just on
y, and not on the representative x chosen to define g(y). We then have the
following theorem:

Theorem 4.21. In the following diagram, suppose that X, Y and Z are
topological spaces, q is an identification and h is constant on the fibers of
q, so that the map g as in the above discussion is well-defined.

X
h−→ Z

q
y ↗ g

Y

(26)

Then g is continuous if and only if h is continuous.

Proof. Since, by the definition of g, h = g ◦ q, this is the same as Theo-
rem 4.20. �

Example 4.22. We can apply this Theorem to the identification f : R→ S1

of Example 4.14. Say we take Z = R, then we obtain the familiar fact that
there is a one-to-one correspondence between continuous periodic functions
on R, with period 2π, and continuous functions on the circle S1.

Example 4.23. One word of warning: it can easily happen that q : X →
Y is an identification, X is Hausdorff, yet Y is not Hausdorff. Here is a
standard example. Let X = R× 0∪R× 1, the disjoint union of two copies
of R. It can be visualized as the subspace {(x, 0) : x ∈ R} ∪ {(x, 1) : x ∈
R} ⊂ R2. Let

x× 0 ∼ x× 1 if x < 0

and let Y = X/ ∼. In other words, the equivalence classes have two
elements (x × 0 and x × 1) for x < 0, one element (either x × 0 or x × 1)
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for x ≥ 0. One attempt to picture it would be as in Figure 21. The figure
suggests that the two points 0 × 0 and 0 × 1 are distinct (as they are in
the identifcation space, that cannot be drawn in the plane). If U is any
neighborhood of 0× 0 in Y , then q−1(U) ⊂ X contains

(−ε, ε)× 0 ∪ (−ε, 0)× 1 for some ε > 0

Similarly, if V is any neighborhood of 0× 1 in Y , then q−1(V ) contains

(−ε, 0)× 0 ∪ (−ε, ε)× 1 for some ε > 0

thus U ∩ V contains q((−ε, 0)× 0)) 6= ∅. Thus Y is not Hausdorff.

FIGURE 21. A non-Hausdorff Identification

This should be compared with a Hausdorff identification that looks very
similar. Start from the same X , call it X1, but change the equivalence rela-
tion to x × 0 ∼ x × 1 for x ≤ 0. Then the “bad ” points 0 × 0 and 0 × 1
are no longer distinct in the quotient Y1, and Y1 is indeed Hausdorff. See
Figure 22

Example 4.24. A more extreme example would be the identification q :
R→ R/Q. What is the quotient topology on R/Q (from the usual topology
on R)? Here R/Q is the usual quotient group, the set of cosets {x+Q | x ∈
R}. In other words, the equivalence relation on R is x ∼ y if and only if
x− y ∈ Q.
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FIGURE 22. A Hausdorff Identification

4.4. Surfaces as Identification Spaces. We now apply Theorem 4.21 to
define various surfaces. The procedure is in some cases similar to what we
saw in Example 4.14 when we saw the circle could be described either as
a quotient of R or as a quotient of [0, 2π]. See Chapter 4 of [6] for more
discussion (and pictures) of this procedure.

Example 4.25. We can picture the torus (= surface of a doughnut) as a
surface of revolution in R2, obtained by rotating a circle of radius one
centered at (2, 0, 0) about the z-axis. As such it has parametric equations
(x, y, z) = ((2 + cosφ) cos θ, (2 + cosφ) sin θ, sinφ), 0 ≤ θ, φ ≤ 2π. In
the same way that we showed in Example 4.14 that S1 is an identification
space of R, we can show that the torus is an identification space of R2,
where the equivalence relation on R2 is (x, y) ∼ (x+ 2πm, y+ 2πn) for all
m,n ∈ Z. We can picture the equivalence classes as translating (x, y) by
any element of 2πZ2, where Z2 ⊂ R2 is the integral lattice. From now on
it would be convenient to reparametrize to get rid of the factors of 2π, and
let’s agree that by torus we mean the quotient of R2 by the equivalence rela-
tion (x, y) ∼ (x+m, y+n) for allm,n ∈ Z. This quotient space is denoted
R2/Z2, and we write p1 : R2 → R2/Z2 for the natural map (“projection”)
that to (x, y) assigns its equivalence class (x, y) + Z2.

Now, there is a more economical way to represent the torus, just as we did
with S1 in Example 4.14. Namely, let S = [0, 1]× [0, 1] be the unit square.
Then the composition of the inclusion of S in R2 with the projection of R2

to R2/Z2 is surjective, and identifies certain points on the boundary of S:
let ∼ be the equivalence relation (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y) on S
(meaning that these are the equivalence classes with more than one element,
the points (x, y) with 0 < x, y < 1 are equivalent just to themselves). Note
also that (0, 0) ∼ (0, 1) ∼ (1, 0) ∼ (1, 1), thus this one equivalence class
has 4 elements, while the equivalence classes (x, 0) ∼ (x, 1) for 0 < x < 1
and (0, y) ∼ (1, y), for 0 < y < 1 have two elements. We write p : S →
S/ ∼ for the natural map that to (x, y) assigns its equivalence class.
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The conventional way of describing this identification space is to draw a
square and indicate by arrows which sides are identified and how. Sides
with similar arrows are identified, imagining that we travel at the same
speed on both sides in direction of the arrow, and identify corresponding
points. The identfication space T = S/ ∼ just defined would be indicated
as follows:

FIGURE 23. Torus

We will see more examples below of how these conventions are used to
define identification spaces.

The above convention describes the set S/ ∼. The topology on this set is
the identification topology resulting from the topology on S. This just fol-
lows from the definitions, but, if we want to picture the topology explicitly,
we picture the sets p−1(U). It is enough to give a basis. If (x, y) ∈ So, the
interior of S, then we can take balls B((x, y), ε) ⊂ So for small enough ε.
If we take a point (x, 0) with 0 < x < 1, then any set p−1(U) that contains
(x, 0) must also contain the equivalent point (x, 1) and a neighborhood of
that point. So in our basis we could choose neighborhoods of p((x, 0)) to
have pre-image BS((x, 0), ε) ∪ BS((x, 1), ε) for ε(x) sufficiently small. By
BS we mean a ball in the metric space S as a subspace of R2. Similarly for
(0, y) we could choose BS((0, y), ε) ∪BS((1, y), ε). The picture is:

FIGURE 24. Neighborhoods in Identification Space

Finally for a corner we get BS((0, 0)ε) ∪ BS((1, 0), ε) ∪ BS((0, 1), ε) ∪
BS((1, 1), ε):

The two description we have given of the torus T can be summarized in
the following commutative diagram
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FIGURE 25. Neighborhood of the Corner

S
p1|S−→ R2/Z2

p ↓ ↓ id
T = S/ ∼ g−→ R2/Z2

By Theorem 4.21 we see that g is continuous. Moreover, from the very
definition of S/ ∼, we see that g is a bijection: each point of S contains at
least one member of each equivalence class in R2/Z2, thus g is surjective.
And two points in S are equivalent under∼ if and only if they are equivalent
in R2 under translation by the integral lattice Z2, so g is injective. From the
definitions of the topologies we see that g is an open map: The images of
the basic open sets just described for T are the sets whose pre-image under
p1 are the sets ∪{B((x + m, y + n)ε) : m,n ∈ Z}, which are open in R2.
Since an open continuous bijection is a homeomorphism, we see that g is a
homeomorphism.

Since we have these two descriptions of the torus, we choose the more
economical one as the official definition:

Definition 4.26. The torus T is the identification space T = S/ ∼ of the
unit square S as just defined in the previous example.

We can use the same pattern to define other surfaces. For example:

Definition 4.27. The Klein Bottle K is the identification space K = S/ ∼
of the unit square S where (x, 0) ∼ (x, 1) and (0, y) ∼ (1, 1− y), with the
quotient topology.

Thus using the convention we explained above when describing the torus,
K can be described by the diagram

Note that the horizontal arrows go in the same direction indicating (x, 0) ∼
(x, 1) while the vertical arrows go in the opposite direction indicating (0, y) ∼
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FIGURE 26. The Klein Bottle

(1, 1 − y). The quotient topology can be explicitly defined and illustrated
in a fashion analogous to the discussion of the torus in Example 4.25.

While the identification of the torus T with a surface in R3 is easy to
visualize (see, for example, p. 300 of [7]), the Klein bottle can only be
realized as a surface with self-intersections. See p. 308 of [7] for pictures
and explanation.

Here’s a more familiar surface. Make sure you make a paper model to
make the definition concrete.

Definition 4.28. The Möbius Band M is the identification space M =
[0, 1] × [−1, 1]/(0, y) ∼ (1,−y), with the quotient topology. (This is also
called the closed Möbius band. A variation of the definition would be the
open Möbius band, the quotient [0, 1]× (−1, 1)/(0, y) ∼ (1,−y))

Thus the identification picture for M would be

FIGURE 27. The Möbius Band

Follow the identifications to verify that the top and bottom line combine
to give a closed curve (homeomorphic to a circle). In fact, the horizontal
line in the middle, {(x, 0) : 0 ≤ x ≤ 1}, is a circle, and every pair of
horizontal lines equidistant from this central line also gives a circle (twice
as long as the middle one). Verify this in the identification picture, and also
in a paper model.
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Finally, as a more challenging exercise in visualization, we could define
the surface of genus two as the quotient of an octagon in the plane by the
identifications in the boundary indicated in Figure 28. See the pictures in

FIGURE 28. A Surface of Genus Two

pp. 300–301 of [7] to see in more detail how the identifications on the
boundary of the octagon indicated on the top picture leads to the surface in
the bottom picture.

5. CONNECTED SPACES

A topological space X is said to be disconnected if there exist open sets
U, V ⊂ X , both non-empty, so that U ∩ V = ∅ and X = U ∪ V . If such
open sets exist, we say that U, V disconnect X . A topological space is said
to be connected if it is not disconnected, in other words:

Definition 5.1. A topological space X is connected if and only if, whenever
U, V ⊂ X are disjoint open sets such that X = U ∪ V , then either U = ∅
or V = ∅.

Theorem 5.2. The following conditions on a topological spaceX are equiv-
alent:

(1) X is connected.
(2) If E,F ⊂ X are disjoint closed subsets so that X = E ∪ F , then

either E = ∅ or F = ∅.
(3) The only subsets of X that are both open and closed are X and ∅.
(4) Every continuous map f : X → {0, 1}, (where {0, 1} has the dis-

crete topology) is constant.
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Proof. By taking complements it is clear that (1) and (2) are equivalent. A
subset A ⊂ X is both open and closed if and only if both A and X \ A are
open, and these two sets are disjoint and their union is X , so (1) and (3) are
equivalent. If f : X → {0, 1} is a continuous function, then U = f−1({0})
and V = f−1({1}) are disjoint open sets whose union is X , and if U, V
are disjoint open sets whose union is X , then the function which is 0 on U
and 1 on V is a continuous function from X to {0, 1}, so (1) and (4) are
equivalent. �

One reason for the choice of definition of connectedness is to make the
following theorem clear:

Theorem 5.3. Let X, Y be topological spaces and let f : X → Y be a
surjective continuous map. If X is connected, then Y is connected.

Proof. Suppose Y is not connected and suppose U, V disconnect Y . Then
f−1(U) and f−1(V ) disconnect X , since they are disjoint open sets whose
union is X , and the surjectivity of f guarantees that they are both non-
empty. �

Corollary 5.4. Suppose f : X → Y is a homeomorphism. Then X is
connected if and only if Y is connected.

Example 5.5. It is easy to give examples of disconnected spaces: A discrete
space with more than one point, R \ {0} = (−∞, 0) ∪ (0,∞), etc, are
disconnected spaces. It is harder to give examples of connected spaces.
One non-trivial example of a connected space would be the space (R, TZ)
of Example 3.36, because, as we saw in Example 3.51, any two non-empty
open sets in (R, TZ) have non-empty intersection, so we cannot possibly
disconnect this space.

The main non-trivial example of a connected space is the unit interval.
Note that the proof of connectedness has to use the completeness of R,
which we do in the form of the existence of the infimum of a non-empty set
which is bounded below.

Theorem 5.6. The interval [0, 1] ⊂ R is connected.

Proof. Suppose [0, 1] = U ∪V where U, V are disjoint open sets with union
[0, 1], and label them so that 0 ∈ U . If V 6= ∅, then a = inf(V ) ∈ R exists.
Moreover, a must be a limit point of V (if this is not a familiar fact, prove
it as an exercise in the definitions). In particular, since [0, 1] is closed in R,
a ∈ [0, 1] We cannot have a ∈ U because U would be a neighborhood of a
disjoint from V , contradicting that a is a limit point of V . We cannot have
a ∈ V because, if so, we would first have a > 0 because 0 ∈ U , and then,
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since V is open, there would be an ε > 0 so that (a−ε, a] ⊂ V , contradicting
that a is a lower bound for V . Thus V = ∅ and [0, 1] is connected. �

Once we have this example of a connected space we can derive many
others. In order to do this, it is useful to use the following concept:

Definition 5.7. A topological space X is said to be path connected if and
only if, for all x, y ∈ X there exists a continuous map φ : [0, 1] → X with
φ(0) = x and φ(1) = y. We call such a map φ a path from x to y.

Theorem 5.8. Suppose X is path connected. Then X is connected.

Proof. Suppose X is not connected, and let U, V be disjoint, non-empty
open sets whose union is X . Pick x ∈ U and y ∈ V . If X were path
connected there would be a continuous map φ : [0, 1] → X with φ(0) =
x ∈ U and φ(1) = y ∈ V , thus φ−1(U) and φ−1(V ) would be non-empty,
disjoint open sets with union [0, 1], contradicting the connectedness of [0, 1].
Thus X is not path connected, proving the theorem. �

Examples of path connected spaces are plentiful, so we get many exam-
ples of connected spaces.

Definition 5.9. A subset C ⊂ Rn is called convex if and only if, for all
x, y ∈ C, the straight line segment xy ⊂ C.

Theorem 5.10. Let C ⊂ Rn be convex. Then C is path connected, in
particular, C is connected.

Proof. Let x, y ∈ C. Since xy ⊂ C, the map φ : [0, 1] → Rn defined by
φ(t) = (1− t)x+ ty has image contained in C and is therefore a path from
x to y in C. �

This gives many examples of connected subspaces of Rn:

Example 5.11. The following spaces are convex, hence connected:

(1) Rn for any n
(2) Any interval in R.
(3) Any half-space in Rn: let l : Rn → R be any linear function and

c ∈ R, then {x : l(x) > c} as well as {x : l(x) ≥ c}.
(4) Any ball (open or closed) in any of the metrics d(1), d(2), d(∞) of

Definition 1.26.

The class of convex sets is relatively small, we can visualize many other
path connected spaces. In order to systematically do this, it is useful to have
a concept of concatenation of paths. There are many ways to do this, for
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instance, for many purposes we do not need the domain of our paths to be
[0, 1], any interval would do. For other purposes we will see later, it is useful
to always use the domain [0, 1]. Let us make the following definition:

Definition 5.12. Let φ, ψ : [0, 1] → X be continuous maps, and assume
that φ(1) = ψ(0). We define the concatenation of φ and ψ, (also called the
composition of φ and ψ), denoted φ · ψ, to be the map [0, 1] → X defined
by

φ · ψ(t) =

{
φ(2t) if 0 ≤ t ≤ 1

2
,

ψ(2t− 1) if 1
2
≤ t ≤ 1.

Also, let the inverse path of φ to be the map φ−1 : [0, 1]→ X defined by

φ−1(t) = φ(1− t).

In particular, φ−1 is a path from φ(1) to φ(0).

Warning: The meaning of inverse path is different from the meaning of
inverse function, even though the same notation is used. It should be clear
from the context what is meant.

This definition is easy to visualize. Say φ(0) = x, φ(1) = ψ(0) = y and
ψ(1) = z. Then we are saying that a path from x to y can be followed by
a path from y to z to form a path from x to z. Note that this is the same
construction that we used in Example 1.14 to define a distance function of a
surface in R3, except that now we are making the construction more precise.
Since we choose to parametrize the paths by [0, 1], in order to concatenate
the two paths, we re-parametrize φ to have domain [0, 1

2
] and ψ to have

domain [1
2
, 1] and then literally put the re-paremetrized paths next to each

other. The inverse path means running along the same path in the opposite
direction. Clearly the inverse path is continuous, and for the continuity of
the concatenation we just need to check the following:

Lemma 5.13. If φ, ψ : [0, 1] → X are continuous, and φ(1) = ψ(0), then
φ · ψ : [0, 1]→ X is also continuous.

The proof follows immediately from the following useful general princi-
ple, that we state explicitly for future use:

Lemma 5.14. Suppose X, Y are topological spaces, X = A ∪ B, where
A and B are closed subsets. Suppose we are given maps f : A → Y and
g : B → Y such that f |A∩B = g|A∩B. Define a map F : X → Y by

F (x) =

{
f(x) if x ∈ A,
g(x) if x ∈ B.
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Then F is well defined, and it is continuous if and only if f and g are both
continuous (in the subspace topology). The same statement holds if A and
B are both open sets.

Proof. It is clear that F is well-defined, since f and g agree on A ∩ B.
Since F |A = f and F |B = g, the continuity of F implies that of f and
g. Conversely, if f and g are both continuous and C ⊂ Y is a closed set,
then F−1(C) = (F−1(C) ∩ A) ∪ (F−1(C) ∩ B) = f−1(C) ∪ g−1(C).
By Theorem 4.5 we have that f−1(C) and g−1(C), which by hypothesis
of continuity are closed in A, B respectively, are also closed in X . Thus
F−1(C) is closed in X , so F is continuous. The proof for the case in which
A and B are open sets is similar.

�

Lemma 5.13 follows immediately by taking X = [0, 1] = [0, 1
2
]∪ [1

2
.1] =

A∪B and f , g the restrictions of the definition of φ ·ψ to the two subinter-
vals.

Example 5.15. The space (R2, dFR) of Example 1.13 (the French railway
metric) is clearly path connected: given x, y ∈ R2, if they are in the same
ray from the origin the straight line segment joining them gives a path be-
tween them, otherwise we concatenate the path from x to 0 with the path
from 0 to y to join them by a path.

Example 5.16. A simple application of Lemma 5.13 is to show that for
n ≥ 2, Rn \ {0} is path connected. Let x, y ∈ Rn \ {0}. If 0 /∈ xy, then
φ(t) = (1− t)x+ ty is a path from x to y. If 0 ∈ xy, then y is a (negative)
multiple of x. Since n ≥ 2, we can choose a vector z linearly independent
from x, hence also linearly independent from y. Let φ(t) = (1 − t)x + tz
and let ψ(t) = (1 − t)z + ty. Then φ(t) and ψ(t), being linear non-trivial
combinations of x and z, are never 0, so these are paths in Rn \ {0} from
x to z and from z to y respectively, so by Lemma 5.13, φ · ψ is a path in
Rn \ {0} from x to y, thus this space is path connected.

Question: Why doesn’t the above argument work for n = 1?

We finally have a way to distinguish some topological spaces that should
“obviously” not be homeomorphic :

Theorem 5.17. There is no homeomorphism between R and Rn for n ≥ 2.

Proof. Suppose f : Rn → R were a homeomorphism, n ≥ 2. Then
f |Rn \ {0} : Rn \ {0} → R \ {f(0)} would be a homeomorphism. But
Rn\{0} is connected for n ≥ 2 while R\{f(0)} = (−∞, f(0))∪(f(0),∞)
is disconnected, contrary to Corollary 5.4. �
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Remark 5.18. It is more difficult to prove that Rn and Rm are not home-
omorphic for m 6= n, m,n ≥ 2. More subtle topological invariants are
needed to distinguish these spaces.

Remark 5.19. Using the same ideas as in the proof of Theorem 5.17 it
is not hard to prove that [0, 1] and [0, 1] × [0, 1] are not homeomorphic.
This of course means that a segment and a rectangle are not homeomor-
phic. This can be used, together with the calculations of the equality sets
in the triangle inequality for the Euclidean and Taxicab distances in R2 (see
Examples 1.3 and 1.5) to complete a proof in the homework problems that
these two metric spaces are not isometric (since the equality sets Ed(x, z)
are not homeomorphic, see the discussion in Example 1.43).

5.1. Connected Components. Let X be a topological space. Define a re-
lation on X by x ∼ y if and only if there is a connected subset C ⊂ X
so that x ∈ C and y ∈ C. This is an equivalence relation: It is clearly
reflexive (x ∼ x since {x} is connected), it is clearly symmetric (x ∼ y
if and only if y ∼ x). It requires a proof to show that it is transitive. To
show that x ∼ y and y ∼ z implies x ∼ z, it would be natural to take con-
nected subsets C1, C2 ⊂ X so that x, y ∈ C1 and y, z ∈ C2 and argue that
C1∪C2 is connected. The first part of the following lemma (for a collection
of two connected sets) shows that this is indeed the case, proving this is an
equivalence relation:

Lemma 5.20. (1) Let {Cα}α∈A be a collection of connected subsets of
X , and assume that ∩Cα 6= ∅. Then ∪Cα is connected.

(2) Let C ⊂ X be connected. Then its closure C̄ is connected.

Proof. We use the fourth characterization of connectedness from Theo-
rem 5.2. L For the first part, let ∪Cα → {0, 1} be continuous, and x0 ∈
∩Cα. Then f |Cα is a constant, which must be f(x0). Thus f(x) = f(x0)
for all x ∈ ∪Cα, thus f is constant and ∪Cα is connected.

For the second part, suppose f : C̄ → {0, 1} is a continuous function, let
x ∈ C̄, and let a = f(x). Then f−1({a}) is an open set containing x, thus,
by part (2) of Theorem 3.53, f−1({a}) ∩ C 6= ∅. Let y ∈ C ∩ f−1({a}).
Then f(y) = a. Since C is connected, f |C is constant, so this constant must
be a, so f(x) = a for any x ∈ C̄, thus C̄ is connected. �

We are therefore justified in making the following definition:

Definition 5.21. Let X be a topological space. Define two equivalence
relations on X:
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(1) Let x be equivalent to y if and only if there is a connected subset
C ⊂ X containing x and y. The equivalence classes are called the
connected components of X .

(2) Let x be equivalent to y if and only if there exists a path in X from
x to y. The equivalence classes are called the path components of
X .

For the second part of the definition, note that the relation in question
is clearly reflexive. The inverse path shows that it is symmetric, and con-
catenation of paths shows that it is transitive. Thus it also is an equivalence
relation. It is clear that path components are contained in connected com-
ponents, and in many, but not all, situations they coincide. See Chapter 4,
Section 6 of [8] for an example where the two notions differ.

Example 5.22. Connected components (and path components) can be used
to distinguish topological spaces. It is clear that homeomorphic spaces have
the same number of connected components, and the same is true for path
components. This can be used, for example, to prove that the subsets of
R2 in the shape of the letter X and the shape of the letter Y are not home-
omorphic. There is a point p ∈ X with the property that X \ {p} has 4
connected components, while for every q ∈ Y , Y \ {q} has at most 3 con-
nected components. So there could be no homeomorphism between X and
Y . It is a standard exercise to use similar reasoning to classify the letters of
the Roman alphabet up to homeomorphism.

Example 5.23. Connected components can also be used to derive proper-
ties of homeomorphisms of spaces. Continuing with the previous example,
look again at the subset of the plane in the shape of the letter X . It has 5
distinguished points:

• The point p0 at the center or the letter X . It is the unique p ∈ X
with the property that X \ {p} has four connected components.
• The points q1, q2, q3, q4 the extremities of the four edges emanating

from p0. They are the only p ∈ X with the property that X \ {p} is
connected.

Thus, if f : X → X is a homeomorphism, then f(p0) = p0. Thus
p0 is a fixed point of every self-homeomorphism of X . Similarly, the 4
points q1, . . . q4 must be permuted by any homeomorphism f : X → X .
In particular q0, . . . q4 are periodic points of f , meaning f 4(p) = p for
p ∈ {q1, . . . q4}. The period of a periodic point p of f is defined to be the
smallest k ∈ N such that fk(p) = p. The possibilities for the periods of
q1, . . . , q4 are the divisors of 4, namely 1, 2, 4.

Here are some general properties of connected components:
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Theorem 5.24. Let X be a topological space and let x ∈ X , and let Cx
denote the connected component of X containing x.

(1) Cx is the largest connected subset of X containing x: If A ⊂ X is
connected and x ∈ A, then A ⊂ Cx.

(2) Cx is closed in X .

Proof. By definition,Cx = {y ∈ X : there exists a connected setB such that
x, y ∈ B} = ∪{B ⊂ X : B is connected and x ∈ B} is a union of con-
nected sets with non-empty intersection. By Lemma 5.20, Cx is connected.
Moreover, if A is any connected set containing x, then A is an element of
this collection, so A is contained in its union, in other words, A ⊂ Cx, as
asserted. To prove the second part, use the second part of Lemma 5.20: C̄x
is connected, hence C̄x ⊂ Cx, hence Cx is closed.

�

5.2. Locally Path Connected Spaces.

Definition 5.25. A topological space is called locally path connected if it
has a basis consisting of path connected open sets.

Remark 5.26. We could state the condition more explicitly as follows: X
is locally path connected if and only if for every x ∈ X and every open
subset U ⊂ X with x ∈ U , there exists a path connected open set V such
that x ∈ V ⊂ U .

Remark 5.27. In general, given any property P of open sets, a space X is
said to be locally P if and only if it has a basis of open sets with property
P . For example, a space is locally connected if it has a basis of connected
open sets.

Example 5.28. (1) If X ⊂ Rn is an open set, then it is locally path
connected since the balls B(x, r) contained in X form a basis, are
convex, hence path connected.

(2) Let A = {(x, sin( 1
x
) : 0 < x < 1

2π
} ⊂ R2, and let X = Ā. Then

X = A ∪ B where B = {(0, y) : −1 ≤ y ≤ 1}. X is connected
since A is connected, but it is not locally connected, hence not lo-
cally path connected. Small neighborhoods in X of points in B are
not connected. See Chapter 4, Section 6 of [8] for more details.

Theorem 5.29. Suppose X is connected and locally path connected. Then
X is path connected.

Proof. Let x ∈ X . Let U = {y ∈ X : there exists a path φ : [0, 1] →
X from x to y}. We will show:
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(1) U is open: For any y ∈ U there exists an open, path connected
set V ⊂ X so that y ∈ V . If z ∈ V , then there exists a path
ψ : [0, 1]→ V with ψ(0) = y and ψ(1) = z, Then φ·ψ : [0, 1]→ X
is a path from x to z, thus z ∈ U , thus given any y ∈ U there exists
an open set V ⊂ X so that y ∈ V ⊂ U , therefore U is open, as
claimed.

(2) X \ U is open: Suppose y ∈ X \ U . There exists a path connected
open set V ⊂ X so that y ∈ V . Let z ∈ V . Then there exists a path
ψ : [0, 1]→ V from y to z. If there were a path φ : [0, 1]→ X from
x to z, then φ · ψ−1 would be a path from x to y, contradicting the
choice of y. Thus z ∈ X \ U , so by the same reasoning as above
X \ U is open.

Finally, since x ∈ U we know that U 6= ∅. Since X is connected we must
have X \ U = ∅, in other words, X = U , thus X is path connected. �

Remark 5.30. The proof of Theorem 5.29 can be applied to connectedness
by other classes of paths, not necessarily the same as the class of continuous
paths. All that is needed is that the class of paths be closed under concate-
nation and inverse. If X ⊂ Rn two such classes of paths are the piecewise
linear paths, meaning continuous paths φ : [0, 1] → X ⊂ Rn so that there
exists a subdivision of [0, 1] into subintervals so that the restriction of φ to
each subinterval is a linear map to Rn. The class of piecewise differentiable
paths is defined in exactly the same way. Then we can make the following
definitions:

Definition 5.31. Let X ⊂ Rn. We say that X is

(1) piecewise linearly connected if given any x, y ∈ X there exists a
piecewise linear path φ : [0, 1] → X from x to y. It is locally
piecewise linearly connected if it has a basis of piecewise linearly
connected open sets.

(2) piecewise differentiably connected and locally piecewise differen-
tiably connected are defined in exactly the same way.

Theorem 5.32. Let X ⊂ Rn

(1) Suppose X is connected and locally piecewise linearly connected.
Then X is piecewise linearly connected.

(2) Suppose X is connected and locally piecewise differentiably con-
nected. Then X is piecewise differentiably connected.

Proof. Same as the proof of Theorem 5.29. �

Corollary 5.33. Let U ⊂ Rn be open and connected. Then U is piecewise
linearly connected.
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Proof. Since balls in Rn are convex, hence piecewise linearly connected, U
is locally piecewise linearly connected. Apply the theorem. �

5.3. Existence Theorems. One application of connectedness is to prove
existence theorems for solutions of equations. One familiar theorem from
real analysis is the intermediate value theorem, that we can formulate in
more generality:

Theorem 5.34. Let X be a connected space and let f : X → R be con-
tinuous. Suppose for some x, y ∈ X we have that f(x) = a < f(y) = b.
Then, given any number c ∈ (a, b), there exists z ∈ X with f(z) = c.

Proof. Suppose not: there is c ∈ (a, b) so that c /∈ f(X). Then f(X) =
(f(X) ∩ (−∞, c)) ∪ (f(X) ∩ (c,∞)) is the disjoint union of two non-
empty open sets, contradicting the fact that f(X), as the continuous image
of a connected space, must be connected (Theorem 5.3). �

As application of the intermediate value theorem we will prove the ver-
sion of the implicit function theorem that we need. We note that the same
proof would work for the zero set of any smooth function from an open set
U ⊂ Rn+1 to R, but we will be mainly using the case n = 2, so we will
just state this case. The theorem is easier to visualize when n = 1, and it
would be useful to do this when looking at the theorems, proofs, and ex-
amples. There is also a version of the theorem for functions with target Rm

for m > 1, but the proof is more involved in this case; it would require the
inverse function theorem where we use the intermediate value theorem.

By a smooth function we mean a C∞-function, although C1 would be
enough in this theorem. Using C∞ is often an expedient way of avoiding
counting how many derivatives are used in a proof.

Theorem 5.35. Let U ⊂ R3 be open and let f : R3 → R be a smooth
function. Let S = {(x, y, z) ∈ R3 : f(x, y, z) = 0} be the zero set of f .
Suppose (x0, y0, z0) ∈ S and suppose that ∂f

∂z
(x0, y0, z0) 6= 0. Then there

exist ε, δ > 0 and a smooth function g : B((x0, y0), δ)→ (z0−ε, z0+ε) ⊂ R
so that S ∩ (B(x0, y0), δ) × (z0 − ε, z0 + ε)) = {(x, y, g(x, y)) : (x, y) ∈
B((x0, y0), δ)}.

The theorem says that, under the hypothesis of the non-vanishing of ∂f
∂z

at (x0, y0, z0), there is a neighborhood of the form B1 × B2, where B1 and
B2 are balls in R2, R respectively, so that S ∩ (B1 × B2) is the graph of a
function g : B1 → B2. In other words, the relation f(x, y, z) = 0 defines z
“implicitly” as a function of x and y for (x, y) close enough to (x0, y0).
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Proof. We may assume ∂f
∂z

(x0, y0, z0) > 0 (otherwise change f to −f ). Let
c = 1

2
∂f
∂z

(x0, y0, z0) > 0. By continuity of ∂f
∂z

, there exists a neighborhood of
(x0, y0, z0) on which ∂f

∂z
(x, y, z) > c, and we may take this neighborhood

to be of the form B((x0, y0), δ0) × (z0 − ε, z0 + ε) for some δ0, ε > 0.
In particular for each (x, y) ∈ B((x0, y0), δ1) we have that f(x, y, z) is a
strictly increasing function of z for z0 − ε ≤ z ≤ z0 + ε. It follows that
f(x0, y0, z0 + ε) > 0, f(x0, y0, z0 − ε) < 0, and, by continuity of f , there
exists δ > 0 so that f(x, y, z0 + ε) > 0 and f(x, y, z0 − ε) (choose a δ1 the
works for f(x, y, z0 + ε), a δ2 that works for f(x, y, z0 − ε), both smaller
than δ0, and let δ be the smaller of δ1, δ2).

By the intermediate value theorem (Theorem 5.34), for each (x, y) ∈
B((x0, y0), δ) there exists a z ∈ (z0 − ε, z0 + ε) so that f(x, y, z) = 0.
Since f is a strictly increasing function of z, this value of z is unique, call
it g(x, y). This gives us the desired function g : B((x0, y0), δ) → (z0 −
ε, z0 + ε), since, by construction of g, we have that S ∩ (B((x0, y0), δ) ×
(z0 − ε, z0 + ε)) = {(x, y, g(x, y) : (x, y) ∈ B((x0, y0), δ)}.

It remains to prove that g is a smooth function. It is easy to see that
g is continuous. This is an easy consequence of the uniqueness: given
(x1, y1, z1) ∈ B((x0, y0) × (z0 − ε, z0 + ε) and given ε′ > 0 sufficiently
small, repeat the same construction to find a δ′ > 0 and a function, say h,
so that S ∩ (B((x1, y1), δ′)× (z1 − ε′, z1 + ε′)) = {(x, y, h(x, y) : (x, y) ∈
B((x1, y1), δ′)}. By the uniqueness of the solution, we must have g = h
on B((x1, y1), δ′), hence g((B((x1, y1), δ′) ⊂ (z1 − ε′, z1 + ε′). Since z1 =
g(x1, y1) and ε′ > 0 is arbitrary, this is exactly the statement of continuity
of g at (x1, y1).

We will next check that g is differentiable. We need to use the differen-
tiablity of f , in fact, let’s use that f is continuously differentiable. We need
the following basic lemma on differentiable functions. We state it for R3,
but the same proof works for Rn, any n.

Lemma 5.36. Let U ⊂ R3 be open, let f : U → R be of class C1 (its
partial derivatives exist and are continuous on U ). Suppose (x, y, z) ∈ U
and let N = N(x,y,z) be a convex nbd of (0, 0, 0) so that (x, y, z) +N ⊂ U .
Then there exist functions εx, εy, εz of (x, y, z,∆x,∆y,∆z) defined for all
(∆x,∆y,∆z) ∈ N so that

f(x+ ∆x, y + ∆y, z + ∆z)− f(x, y, z) =
∂f

∂x
∆x+

∂f

∂y
∆y +

∂f

∂z
∆z

+ εx∆x+ εy∆y + εz∆z

where the partial derivatives are evaluated at (x, y, z) and εx, εy, εz → 0 as
(∆x,∆y,∆z)→ (0, 0, 0).
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Proof. Since f is continuously differentiable, the fundamental theorem of
calculus gives us

f(x+∆x, y+∆y, z+∆z)−f(x, y, z) =

∫ 1

0

d

dt
f(x+t∆x, y+t∆y, z+t∆z)dt

Applying the chain rule to the integrand we can rewrite the integral as

(27)
∫ 1

0

(∂f
∂x

∆x+
∂f

∂y
∆y +

∂f

∂z
∆z
)
dt

where the partial derivatives ∂f
∂x
, ∂f
∂y
, ∂f
∂z

are all evaluated at the point (x +

t∆x, y + t∆y, z + t∆z).

Now each term in this integral can be rewritten as

(28)
(∫ 1

0

(∂f
∂x

(x, y, z) + φ(x+ t∆x, y + t∆y, z + t∆z)
)
dt
)

∆x

where

φ(x+t∆x, y+t∆y, z+t∆z) =
∂f

∂x
(x+t∆x, y+t∆y, z+t∆z)−∂f

∂x
(x, y, z).

Since ∂f
∂x

is continuous, φ is continuous. The continuity of φ implies that
the functions φ(x+t∆x, y+t∆y, z+t∆z) of t ∈ [0, 1] converge uniformly
to φ(x, y, z) = 0 as (∆x,∆y,∆z)→ (0, 0, 0). Therefore∫ 1

0

φ(x+ t∆x, y + t∆y, z + t∆z)dt→ 0 as (∆x,∆y,∆z)→ (0, 0, 0).

Letting εx(x, y, z,∆x,∆y,∆z) =
∫ 1

0
φ(x+ t∆x, y + t∆y, z + t∆z)dt, we

can rewrite (28) as

(29)
∂f

∂x
(x, y, z)∆x+ εx(x, y, z,∆x,∆y,∆z)∆x

where εx(x, y, z,∆x,∆y,∆z)→ 0 as (∆x,∆y,∆z)→ (0, 0, 0).

Reasoning in the same way with the other two terms of (27), we derive
the formulas that correspond to (28) and (29). If we rewrite (27) as a sum
of terms similar to (29) and go back to the source of (27), we finally arrive
at the desired formula

f(x+ ∆x, y + ∆y, z + ∆z)− f(x, y, z) =
∂f

∂x
∆x+

∂f

∂y
∆y +

∂f

∂z
∆z

+ εx∆x+ εy∆y + εz∆z(30)

�
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We now resume the proof of Theorem 5.35. Recall we have proved exis-
tence and continuity of our function z = g(x, y) satisfying f(x, y, g(x, y) =
0. To prove differentiability of g, we evaluate (30) on the graph of g. The
left hand side of (30) become

f(x+ ∆x, y + ∆y, g(x+ ∆x, y + ∆y))− f(x, y, g(x, y)) = 0

since both terms vanish. Therefore (30) becomes

0 = (
∂f

∂x
+ ε′x)∆x+ (

∂f

∂y
+ ε′y)∆y + (

∂f

∂z
+ ε′z)∆g

where ∆g = g(x+∆x, y+∆y)−g(x, y) and where the ε′(x,∆x, y,∆y) =
ε(x,∆x, y,∆y, g(x, y),∆g). Since g is continuous, ∆g → 0 as (∆x,∆y)→
(0, 0), thus the three ε′ → 0 as (∆x,∆y)→ (0, 0).

Solving the above equation for ∆g we get

∆g = −
∂f
∂x

+ ε′x
∂f
∂z

+ ε′z
∆x−

∂f
∂y

+ ε′y
∂f
∂z

+ ε′z
∆y

which makes sense since ∂f
∂z
> c > 0, so there is no problem in dividing by

∂f
∂x

+ ε′z. Moreover this can be re-written as

∆g = −(
∂f
∂x
∂f
∂z

+ ε′′x)∆x− (

∂f
∂y

∂f
∂z

+ ε′′y)∆y

where ε′′x, ε
′′
y → 0 as (∆x,∆y)→ (0, 0), thus g is differentiable and

(31)
∂g

∂x
= −

∂f
∂x
∂f
∂z

(x, y, g(x, y)) and
∂f

∂x
= −

∂f
∂y

∂f
∂z

(x, y, g(x, y))

from which it is clear that the partial derivatives ∂g
∂x
, ∂g
∂y

are continuous, thus
g is of class C1. This procedure can be continued to show that g is C∞. �

Example 5.37. Let f(x, y, z) = x2 + y2 + z2 − 1. Then the set {(x, y, z) :
f(x, y, z) = 0} is the unit sphere S2 ⊂ R3. Let (x0, y0, z0) = (0, 0, 1),
the north pole. Then ∂f

∂z
(0, 0, 1) = 2 6= 0, and we can see visually that we

can choose δ = ε = 1 in the statement of the implicit function theorem
(although our proof requires a smaller ε) , and g(x, y) =

√
1− x2 − y2. If

(x0, y0, z0) is any other point of the upper hemisphere, that is, if z0 > 0, then
g(x, y) =

√
1− x2 − y2 also works, but the largest δ we can take is 1 −√

x2
0 + y2

0 (and we could choose ε = z0). If (x0, y0, z0) is in the lower hemi-
sphere, that is, z0 < 0, then we must choose g(x, y) = −

√
1− x2 − y2

and the largest size of the δ would be 1 −
√
x2

0 + y2
0 (and we could take

ε = |z0|). Finally, if (x0, y0, z0) is on the equator, that is, if z0 = 0, then for
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all δ > 0 and ε > 0, whenever (x, y, z) ∈ S2 ∩ (B((x0, y0), δ) × (−ε, ε)),
so is (x, y,−z), so this intersection cannot be a graph z = g(x, y). This
does not contradict the implicit function theorem, because at these points
∂f
∂z

(x0, y0, 0) = 0, so the implicit function theorem does not apply. This
also shows the necessity of the condition ∂f

∂z
(x0, y0, z0) 6= 0 in the statement

of the theorem.

6. SMOOTH SURFACES

We now define what is meant by a topological surface and a smooth (or
differentiable) surface. The same concepts can be defined in any dimension,
they are called topological manifold and differentiable manifold or smooth
manifold.

Definition 6.1. A topological space S is called:

(1) A topological surface if it is a Hausdorff space with a countable
basis and it has the property that every x ∈ S has a neighborhood
U which is homeomorphic to an open set in R2, in other words, there
exists a covering {Uα}α∈A for some index setA, and for each α ∈ A
there exists a homeomorphism φα : Uα → Vα, where Vα ⊂ R2

is open. These homeomorphisms are called coordinate charts or
simply charts.

(2) A smooth surface (also called differentiable surface) if it is a topo-
logical surface and the above homeomorphisms can be chosen to
have the following property: whenever Uα ∩ Uβ 6= ∅, the homeo-
morphism φα ◦ φ−1

β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ) is smooth. The
maps φα ◦ φ−1

β are called the transition maps between charts. Ob-
serve that the inverse of φα ◦ φ−1

β is φβ ◦ φ−1
α . Thus the requirement

that all the transition maps φα ◦ φ−1
β be smooth includes, as a con-

sequence, the statement that all the transition maps are smooth and
their inverses are also smooth.

Remark 6.2. Some clarifications are in order concerning these definitions:

(1) In a first reading ignore the conditions that S be Hausdorff and have
a countable basis. These conditions are needed for correctness of
the definition, but will be automatic in all the examples we will see.

(2) The important condition for us is that S look locally like the plane
R2. It is clear how to state this topologically. The terminology of
charts comes from the usual picture we have of maps of the earth,
where we take small pieces of the surface of the earth and consider
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them as part of a plane. The collection of charts is usually called an
atlas.

(3) In R2 there is a notion of differentiable function. More generally,
given two Euclidean spaces Rm,Rn, an open set U ⊂ Rm and a
function f : U → Rn, we can define what it means for f to be
smooth. This uses more than just the the topology of Rm,Rn. It
uses the linear structure (that is, the vector space structure) in an
essential way. It is not clear how to transfer this concept to a more
general space. The point of the definition of smooth surface is that
it allows us to define a good concept of smooth function, as we will
see in the Definition 6.3.

(4) Recall that the work smooth means infinitely differentiable, equiv-
alently, class C∞. We restrict ourselves to this class of functions
mostly as a matter of convenience. This way we do not have to
count how many derivatives we need in various situations.

Definition 6.3. Let S be a smooth surface with atlas {Uα, φα}α∈A, and let
f : S → R be a function. We say that f is smooth if and only if for all
α ∈ A, the functions

f ◦ φ−1
α : φα(Uα)→ R

are smooth.

Remark 6.4. Two observations are in order:

(1) Since φα(Uα) is an open subset of R2, it makes sense to ask that
f ◦ φα be smooth.

(2) For this definition of smooth function to make sense, we need to
know that it is independent of the chosen charts. In other words, we
need to know that when the domains of two charts intersect, they
give the same definition of smoothness at points of their intersec-
tion.

More precisely, we need to know that if Uα ∩ Uβ 6= ∅, then
f ◦ φ−1

α : φα(Uα ∩ Uβ) → R is smooth if and only if f ◦ φ−1
β :

φα(Uα ∩ Uβ)→ R is smooth. This follows from the smoothness of
the transition functions:

f ◦ φ−1
α = f ◦ (φ−1

β ◦ φβ ◦ φ
−1
α ) = (f ◦ φ−1

β ) ◦ (φβ ◦ φ−1
α )

Therefore, since φβ ◦φ−1
α : φα(Uα∩Uβ)→ φβ(Uα∩Uβ) is a smooth

bijection with smooth inverse φα◦φ−1
β , we see that f ◦φ−1

α is smooth
on φα(Uα ∩ Uβ) if and only if f ◦ φ−1

β is smooth on φβ(Uα ∩ Uβ).

Examples are in order:
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Example 6.5. Let U ⊂ R2 be an open set. Then it is a smooth surface:
we know it is Hausdorff, has countable basis, and it can be covered by one
chart id : U → U , so the conditions of the second part are automatic.

Example 6.6. The implicit function theorem, Theorem 5.35, gives us many
examples of smooth surfaces. Let U ⊂ R3 be open and let f : U → R
be smooth. Let S = {(x, y, z) ∈ R3 : f(x, y, z) = 0} be the zero set
of f and finally make the most important assumption: at every point of S,
the gradient ∇f 6= 0. Recall that ∇f = (∂f

∂x
, ∂f
∂y
, ∂f
∂z

), so an equivalent
formulation of the assumption is that at each point of S at least one of the
partial derivatives of f does not vanish. We have the following theorem:

Theorem 6.7. Under the above hypothesis, the space S is a smooth surface.

Proof. Let pz : R3 → R2 be the projection with kernel the z-axis, that is,
pz(x, y, z) = (x, y), and define px, py similarly. Given any (x0, y0, z0) ∈ S
at least one partial derivative does not vanish at this point. Suppose, say
∂f
∂z

(x0, y0, z0) 6= 0. Then the implicit function theorem gives a neighbor-
hood N0 of (x0, y0, z0), of the form N0 = B((x0, y0), δ) × (z0 − ε, z0 +
ε), and a smooth function g : B((x0, y0), δ) → (z0 − ε, z0 + ε) so that
S ∩ N0 = {(x, y, g(x, y)) : (x, y) ∈ B((x0, y0), δ)}. In particular we
see that pz|S∩N0 : S ∩ N0 → B((x0, y0), δ) is a chart, with inverse map
G(x, y) = (x, y, g(x, y)).

If (x1, y1, z1) ∈ S is another point, we can use the same reasoning. If
∂f
∂z

(x1, y1, z1) 6= 0, we obtain a similar chart pz|S∩N1 where N1 is a product
N1 = B((x1, y1), δ1) × (z1 − ε1, z1 + ε1). If they intersect, that is, N0 ∩
N1 ∩ S 6= ∅, then, by the uniqueness of the function g constructed in the
proof of Theorem 5.35, N0 ∩ N1 ∩ S is the graph of the same function g
over B((x0, y0), δ)∩B((x1, y1), δ1). Over this intersection the inverse of pz

is also G, so the transition function is pz ◦G = id is smooth.

If (x2, y2, z2) is a point where ∂f
∂z

= 0, then some other partial derivative
does not vanish at this point. Suppose, say ∂f

∂y
(x2, y2, z2) 6= 0. Then the

implicit function theorem gives us a neighborhood N2 = B((x2, z2), δ2) ×
(y2− ε2, y2 + ε2) and a smooth function h : B((x2, z2), δ2)→ (y2− ε2, y2 +
ε2) so that S ∩ N2 = {(x, h(x, z), z)) : (x, z) ∈ B((x2, z2), δ2)}. There-
fore py|S∩N2 : S ∩N2 → B((x2, z2), δ2) is a chart, with inverse H(x, z) =
(x, h(x, z), z). If this neighborhood S ∩ N2 of (x2, y2, z2) intersects the
neighborhood S ∩ N0 of (x0, y0, z0) considered above, then the transition
maps associated to this intersection are py ◦ G(x.y) = py(x, y, g(x, y)) =
(x, g(x, y)) and its inverse map pz◦H(x, z) = pz(x, h(x, z), y) = (x, h(x.z))
which are smooth maps. Since S can be covered by charts of these forms
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and we have checked that the transition functions that can occur are smooth,
we see that S is indeed a smooth surface.

�

Example 6.8. We now specialize the general principle of Theorem 6.7 and
its proof to the case of the unit sphere S2 ⊂ R3 defined by f(x, y, z) =
x2 + y2 + z2 − 1 = 0. Let us cover S2 by the six sets U±z , U±y , U±x defined
by U+

z = S2 ∩ {z > 0}, U−z = S2 ∩ {z < 0}, U+
y = S2 ∩ {y > 0}, and so

on. See Figure 29 for the sets U+
z , U

+
y and U+

z ∩ U+
y .

FIGURE 29. The Sets U+
z , U+

y and Their Intersection

Write px, py, pz for the restrictions to S2 of the orthogonal projections
of R3 → R2 with kernel the corresponding axis, so px(x, y, z) = (y, z),
py(x, y, z) = (x, z) and pz(x, y, z) = (x, y). Let D be the open unit
disk in R2 and define charts φ±z : U±z → D by φ±z = pz|U±z , and define
φ±y : U±y → D and φ±x : U±x → D in the similar way using the pro-
jections py, px respectively. These maps are indeed charts, because there
inverses are given, as in the proof of Theorem 6.7, by the graph of the im-
plicit function. Thus (φ+

z )−1(x, y) = (x, y,
√

1− x2 − y2), (φ−z )−1(x, y) =

(x, y,−
√

1− x2 − y2), (φ+
y )−1(x, z) = (x,

√
1− x2 − z2, z), etc. Figure

30 shows another view of the sets U+
z , U

+
y pulled apart from the sphere. It

should be clear that U+
z is the graph of a function of (x, y) while U+

y is the
graph of a function of (x, z).

From this it is easy to compute the transition maps. For example, for
U+
z ∩ U+

y we have

φ+
z ◦ (φ+

y )−1(x, z) = pz((x,
√

1− x2 − z2, z) = (x,
√

1− x2 − z2),

which is smooth. In fact, we know that it must be a diffeomorphism of
φy(U

+
z ∩ U+

y ) = {(x, z) ∈ D : z > 0} onto φz(U+
z ∩ U+

y ) = {(x, y) ∈ D :
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FIGURE 30. Another View of the Sets U+
z and U+

y

y > 0}. To check this directly, observe that, since this map is

(x, z)→ (x,
√

1− x2 − z2),

which is the identity on the first coordinate, it is a diffeomorphism if and
only if the map z →

√
1− x2 − z2 of the second coordinate is a diffeo-

morphism of the interval (0,
√

1− x2) to itself. This is indeed the case by
the restriction imposed on the interval. Without this restriction the map on
the second coordinate would not be injective, for instance, it would fail on
(−
√

1− x2,
√

1− x2) where it is two-to-one from this interval onto half
the interval.

In the same way we can check that all other transition maps are diffeo-
morphisms. Thus S2 is a smooth surface.

Example 6.9. To show that the condition ∇f 6= 0 at every point of S is
needed, let’s look at a few examples:

(1) f(x, y, z) = xyz. Then ∇f = (yz, xz, xy) = (0, 0, 0) when at leat
two of x, y, z vanish. The zero set S is the union of the coordinate
planes, is not locally homeomorphic to the plane along any of the
coordinate axes. The origin is also a singular point, looking more
complicated than the others. See Fiigure 31

(2) f(x, y, z) = x2 + y2 − z2. Then ∇f = (2x, 2y,−2z) = (0, 0, 0)
exactly at the origin, which is lies on S and is a singular point. S is
a cone with vertex at the origin, see Figure 32

(3) f(x, y, z) = x2 + y2 − z2 − 1 = 0. If is instructive to compare this
with the last example. The gradient ∇f = (2x, 2y,−2z) vanishes
only at (0, 0, 0) and f(0, 0, 0) = −1 6= 0, so ∇f never vanishes
on the set f(x, y, z) = 0, which is smooth by the implicit function
theorem. f = 0 is in fact a hyperboloid of one sheet, see Figure33.

(4) f(x, y, z) = x2 − y2z. Then ∇f = (2x,−2yz, y2) = (0, 0, 0) pre-
cisely on the z-axis x = y = 0. The zero set S is the union of the
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FIGURE 31. The Surface xyz = 0

FIGURE 32. The Cone x2 + y2 − z2 = 0

FIGURE 33. The Surface x2 + y2 − z2 − 1 = 0

z-axis and the surface shown in Figure 34, called the Whitney um-
brella, because the negative z-axis (not shown) would be its handle.
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FIGURE 34. The Whitney Umbrella

Example 6.10. So far all the examples (except for Example 6.5) of smooth
surfaces that we have considered have been surfaces in R3 defined by an
equation f(x, y, z) = 0. But there are many other ways to define smooth
surfaces. For instance, the description in Example 4.25 of the torus and
Klein bottle can be used to define coordinate charts with smooth transition
functions.

FIGURE 35. Charts for the Torus

For example, for the Torus defined as an identification space of the square
[0, 1] × [0, 1] ⊂ R2 by identifications by identifying the sides as in Figure
23 or Figure 35, we can cover the torus by 4 charts as shown in Figure 35,
that is
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(1) U0 = interior of the square [0, 1]× [0, 1],
(2) U1 = image in torus of the sets U−1 , U

+
1

(3) U2 = image in torus of the sets U−2 , U
+
2

(4) U2 = image in torus of a nbd of the corners.

The figure shows in detail the transition function

φ1 ◦ φ−1
0 : φ0(U0 ∩ U1)→ φ1(U0 ∩ U1)

This intersection has two connected components, and

φ1 ◦ φ−1
0 : (U−1 )0 ∪ (U+

1 )0 → (T(0,1)(U
−
1 )0) ∪ (U+

1 )0,

(where T(0,1) is translation by (0, 1), that is, T(0,1)(x, y) = (x, y + 1)) is
given by

φ1 ◦ φ−1
0 (x, y) =

{
(x, y + 1) if (x, y) ∈ (U−1 )o,

(x, y) otherwise.

In a similar way one can work out all the other transition functions for this
atlas in the torus. Observe one special feature of these transition functions:
they are translations on each connected component of their domain. An-
other way of saying the same thing: the differentials d(φα ◦ φ−1

β are always
the identity (whenever defined).

In the same way we can work out the transition functions for a similar
atlas for the Klein bottle, see figure 36

FIGURE 36. Charts for the Klein Bottle

The main difference between the torus and the Klein Bottle is in the
chart U2. While on the torus it is U+

2 ∪ T(1,0)U
−
2 , for the Klein bottle it

is U+
2 ∪ R(U−2 ), where R(x, y) = (x + 1, 1 − y). This also requires some

changes in the chart centered at the corner, see Figure 36. This time the
transition functions are either translations of glide reflections on each con-
nected component. The differentials are either the identity or a reflection.
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6.1. Smooth maps involving surfaces. We have motivated the definition
of smooth surface, Definition 6.1, by examining what a smooth function
f : S → R should be. Since we need a linear structure for the definition
of smooth maps, the only reasonable way to define smooth function f :
S → R is as in Definition 6.3, by requiring that f be smooth in every chart
(Uα, φα) of an atlas. We saw in Remark 6.4 that for this definition to make
sense we need the transition functions φα ◦ φ−1

β to be smooth.

Now the same principle can be applied to define smoothness of other
maps. That is, a map is smooth if and only if it is smooth in all possible
way of describing it using local coordinates, in the domain or target or both,
as appropriate. Similar arguments to Remark 6.4 show that smoothness of
the transition functions guarantees that these definitions make sense.

Definition 6.11. Let S, T be smooth surfaces with atlas {Uα, φα}α∈A and
{Vβ, ψβ}β∈B respectively.

(1) A map f : S → Rn is smooth if and only if for all α ∈ A, the maps

f ◦ φ−1
α : φα(Uα)→ Rn

are smooth.
(2) If I ⊂ R is an interval, a continuous map γ : I → S is smooth if and

only if I can be covered by a collection {Ij} of open subintervals of
I (in the subspace topology of I ⊂ R) so that
(a) For each j there is an α(j) so that γ(Ij) ⊂ Uα(j).
(b) For each j, φα(j) ◦ γ : Ij → R2 is smooth.

(3) If f : S → T is continuous, and the atlas {Uα, φα}α∈A is fine
enough so that for each α ∈ A there is β(α) ∈ B so that f(Uα) ⊂
Vβ(α), then f is smooth if and only if for all α ∈ A the maps

ψβ(α) ◦ f ◦ φ−1
α : φα(Uα)→ R2

are smooth.

Remark 6.12. (1) The first part of the definition is the natural extension
of Definition 6.3. It says f : S → Rn is smooth if and only if all of
its components f : S → R are smooth.

(2) For the second part, the continuity of γ imples that all sets γ−1(Uα)
are open, so each is a union of open intervals (except for the inter-
vals that contain an endpoint of I , if any, but in this case an interval
containing and endpoint is open in I)

(3) Similarly, for the third part, by the continuity of f we see that
{f−1(Vβ)β∈B} is an open cover of S and we can replace the original
atlas {Uα, φα} by the open sets (the connected components of) the
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non-empty intersections {Uα ∩ f−1(Vβ)} and the coordinate maps
by the restrictions of the φα to these open sets.

Example 6.13. Here are some examples of smooth maps that we will need:

(1) Let S ⊂ R3 be a surface given by an equation f = 0 where∇f 6= 0
at all points of S, as in Theorem 6.7. Let ι : S → R3 be the
inclusion. Then ι is smooth.

Proof. As in the proof of Theorem 6.7, S can be covered by charts
Uα, φα where the domain of Uα is the graph Gα of a function gα :
Nα → R expressing one variable in terms of the two others: Gα =
(x, y, gα(x, y)), (x, y) ∈ Nα or Gα = (x, gα(x, z), z), (x, z) ∈ Nα

or Gα = (gα(y, z)), (y, z) ∈ Nα as the case may be. In all cases
φα : Gα → Nα is projection, φ−1

α : Nα → Gα is the graph map,
and ι ◦ φ−1

α = (x, y, gα(x, y) or (x, gα(x, z)) or (gα(y, z), y, z), as
the case may be. In all cases it is smooth.

�

(2) Let ι : S → R3 be as above, let I ⊂ R be an interval, and let
γ : I → S be continuous. Then γ : I → S is smooth if and only if
ι ◦ γ : I → R3 is smooth.

Proof. Since the composition of smooth maps is smooth, γ smooth
=⇒ ι ◦ γ is smooth. Conversely, if ι ◦ γ is smooth, following the
notation of the last proof, let, for each α, Vα ⊂ R3 be an open set,
as in the proof of Theorem 6.7 in which {f = 0}∩Vα = Gα and Vα
is a product of Nα with an open interval in R. Let πα : Vα → Nα

be the resulting projection. Then, since γ : I → R3 is continuous, I
can be written as a union of subintervals Ij so that ι ◦ γ(Ij) ⊂ Vα(j).
Since γ(I) ⊂ S, γ(Ij) ⊂ Gα(j). Therefore πα(j)◦ι◦γ = φα(j)◦γ on
Ij . Since the first is smooth, by the assumption that ι ◦ γ is smooth,
if follows that the second is smooth. Therefore γ is smooth, as
desired.

�

6.1.1. Local connectedness of smooth surfaces.

Theorem 6.14. Let S be a smooth surface. Then S is locally piecewise
smoothly path connected. In particular, if S is connected, then S is piece-
wise differentiably path connected.

Proof. Give S an atlas {Uα, φα} in which all sets φα(Uα) are piecewise
smoothly path connected, for example, convex. This shows that S is lo-
cally piecewise smoothly path connected. Therefore, by the argument of
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Theorem 5.29, if S is connected, it is also piecewise smoothly path con-
nected. �

6.2. Smooth surfaces in R3 as metric spaces. In Example 1.14 we started
the discussion of how a smooth surface S = {f = 0} ⊂ R3, where ∇f
never vanishes on S, can be made into a metric space with its intrinsic
distance. We can now finish the discussion that shows that this metric is
defined for all connected smooth surfaces. First of all, if S is connected, we
have just seen in Theorem 6.14, that S is piecewise smoothly path connected

Therefore, if S is a connected smooth surface in R3, we can define the
intrinsic distance d : S × S → R as in Example 1.14:

(32) d(x, y) = inf{L(γ) : γ a piecewise smooth path from x to y}.

This infimum is defined, since x and y can always be connected by a piece-
wise smooth path. But this infimum need not be attained. For example, if
S = R2 \ {0}, then the infimum defining d(x,−x) = 2|x| is not attained
by a path in S. But in many situations it is attained. We will show some
examples in section 6.2.2 below.

6.2.1. Arc Length. Let S ⊂ R3 be a smooth surface and let γ : [0, 1]→ S
be a piecewise smooth path. Recall (see Example 6.13) this means that
the composition γ : [0, 1] → S ⊂ R3 is piecewise smooth. Write γ(t) =
(x(t), y(t), z(t)). Then the length of γ, L(γ) is defined to be

(33) L(γ) =

∫ 1

0

|γ′(t)| dt =

∫ 1

0

√
x′(t)2 + y′(t)2 + z′(t)2 dt,

which we could also write as

(34) L(γ) =

∫
γ

√
dx2 + dy2 + dz2 =

∫
γ

ds,

where traditionally we write ds2 = dx2 + dy2 + dz2. If γ is piecewise
differentiable then this integrals are always defined.

It will be important for calculations to be able to change coordinates. If
our curve lies in the domain of some coordinate chart, as in Definition 6.1,
then the inverse of this chart gives a differentiable map from an open set
U ⊂ R2 to S, in other words, we can express (x, y, z) in this chart in
S as functions of two variables, say (u, v) ∈ U . Then γ corresponds to
a curve (u(t), v(t)), 0 ≤ t ≤ 1, and we can work out the length of γ
by the chain rule. It would be convenient to write x = (x, y, z). Then
γ(t) = x(u(t), v(t)), γ′(t) = xuu

′(t)+xvv
′(t) (where the subscripts denote

partial derivatives) and γ′(t) · γ′(t) = (xuu
′ + xvv

′) · (xuu
′ + xvv

′) =
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(xu · xv)u′2 + 2(xu · xv)u′′v′ + (xv · xvv)v′2. This last equation is usually
written symbolically in differential form as

(35) ds2 = (xu · xv)du2 + 2(xu · xv)dudv + (xv · xv)dv2,

or as

(36) ds2 = g11du
2 + 2g12dudv + g22dv

2,

where the gij are the coefficients of Equation 35: g11 = xu ·xu, g12 = xu ·xv
and g22 = xv · xv. They are smooth functions of u, v and geometrically,
g11(u, v) = xu · xv is the magnitude squared of the tangent vector at (u, v)
of the curve obtained by varying u and holding v constant, g22(u, v) has the
same interpretation with u and v interchanged, while g12 is the dot product
between the tangent vectors of the two curves just considered.

Example 6.15. One familiar example is the use of polar coordinates in R2:
x = r cos θ, y = r sin θ. Then dx = cos θ dr − r sin θ dθ, dy = sin θ dr +
r cos θ dθ and ds2 = dx2 + dy2 = (cos θ dr − r sin θ dθ)2 + (sin θ dr +
r cos θ dθ)2 which simplifies to

(37) ds2 = dr2 + r2 dθ2,

which is the familiar formula for arclength in polar coordinates.

We should be a bit careful when using polar coordinates, since they do
not follow the assumption we made above that it be the inverse of a chart.
The transformation (r, θ) → (r cos θ, r sin θ) is not invertible unless we
carefully restrict its domain, and its image does not cover all of R2 in an
invertible way. But, with our knowledge of the identification topology, we
can say, for instance, that polar coordinates give a map [0,∞] × [0, 2π] →
R2 which identifies 0×[0, 2π] to a point, and identifies (r, 0) with (r, 2π) for
each r ∈ [0,∞). It is an instructive exercise to show that polar coordinates
give a homeomorphism of this identification space to R2. There are other
convenient identifications we could use to explain polar coordinates, for
example, we could take [0,∞)×R and identify 0×R to a point, and identify
(r, θ) with (r, θ+2πn) for each integer n. Or we could use [0,∞)×I where
I ⊂ R is any interval of length 2π and use the appropriate identifications
on the boundary.

Example 6.16. Another example is the use of spherical coordinates on
the unit sphere S2 ⊂ R3. If x = (x, y, z) ∈ S2, let φ denote the an-
gle between x and the positive z-axis, and let θ be the angle between the
projection of x to the xy-plane and the positive x-axis. Then we have
x = sinφ cos θ, y = sinφ sin θ, and z = cosφ. Consequently dx =
cosφ cos θ dφ − sinφ sin θ dθ, dy = cosφ sin θ dφ + sinφ cos θ dθ, and
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dz = − sinφ dφ. A short computation gives

(38) ds2 = dφ2 + sin2 φ dθ2.

6.2.2. Absolute Minimizers. We now give some examples of curves of
minimum length joining two points. The simplest example is of course a
line segment in the plane, say the segment (x, 0), 0 ≤ x ≤ a for some fixed
a > 0. Suppose γ is a piecewise smooth curve joining (0, 0) and (a, 0).
Then γ(t) = (x(t), y(t)), 0 ≤ t ≤ 1, and x(0) = 0, x(1) = a. So

L(γ) =
∫ 1

0

√
x′(t)2 + y′(t)2dt ≥

∫ 1

0

√
x′(t)2dt ≥(39) ∫ 1

0
x′(t)dt = x(1)− x(0) = a,

which shows that any curve from (0, 0) to (a, 0) has length at least a. Since
the line segment has length a, this shows that the line segment is gives the
absolute minimum of the length of connecting curves.

Note that the calculation in (39) actually gave more: the length of any
curve connecting the y axis with the line x = a is at least a.

This calculation can also be done in polar coordinates (taking, perhaps,
some care with the identifications explained in Example 6.15 in the case
where the curve crosses the boundary of the chosen domain of the coordi-
nate system). If γ is a curve from the origin to a point on the circle r = a,
in other words, γ(t) = (r(t), θ(t)), where r(0) = 0 and r(1) = a, then

L(γ) =
∫ 1

0

√
r′(t)2 + r(t)2θ′(t)2 dt ≥

∫ 1

0

√
r′(t)2 dt ≥(40) ∫ 1

0
r′(t) dt = r(1)− r(0) = a,

which shows that the length of any curve from the origin to the circle r = a
is at least a. Since a line segment from the origin to this circle has length
a, this shows again that line segments minimize length between their end-
points.

Finally, let’s discuss the case of the unit sphere S2 ⊂ R3. Let’s take
curves γ from the north pole N = (0, 0, 1) to a point other than the south
pole, in other words, to a point with φ = α, where 0 < α < π, say the point
(0, sinα, cosα) corresponding to θ = π

2
and φ = α in spherical coordinates

of Example 6.16. As before, we take a curve γ(t) = (φ(t), θ(t)) with
φ(0) = 0 and φ(1) = α and compute:

L(γ) =
∫ 1

0

√
φ′(t)2 + sin2 φ(t) θ′(t)2 dt ≥

∫ 1

0

√
φ′(t)2 dt ≥(41) ∫ 1

0
φ′(t) dt = φ(1)− φ(0) = α,

showing that any curve from the north poleN (corresponding to φ = 0) to a
point on the parallel z = cosα (corresponding to φ = α) has length at least
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alpha. Since the great circle arc from the north pole to this point has length
α, this shows the following theorem. In the statement of the theorem, by the
shortest great circle arc joining x and y, y 6= ±x, we mean the following.
First, the great circle determined by x and y we mean the intersection with
S2 of the plane< x,y > determined by x and y (the span of x and y on the
language of liner algebra). They determine a plane because x 6= ±y. This
intersection is a circle of radius 1 containing x and y, and by the shortest
great circle arc we mean the shorter of the two arcs in this circle joining x
and y. There is a shorter one again because x 6= ±y.

Theorem 6.17. Let x,y ∈ S2, y 6= ±x, and let γ be the shortest great
circle arc joining x and y. Then γ is the shortest curve on S2 joining x and
y.

Proof. If x = N the north pole, then y would be different form the south
pole, and we have just proved that the shortest great circle arc minimizes
length. If x is any other point on S2, then there is a rotation R of R3 that
takes x to N : R(x) = N . Then R(y) is different from the south pole, thus
the shortest great circle arc from R(x) to R(y) minimizes, so does R−1 of
this arc, which is the shortest great circle arc joining x and y. �

Remark 6.18. If y = −x, say if we take N and the south pole N, then
the computation of Equation 41 with α = π shows that any great circle arc
passing through N and −N is still length minimizing, its length is π. But
there are infinitely many such arcs, one for each value of θ. So minimizers
exist, but are not unique. But this is good enough to give us the following
theorem:

Theorem 6.19. The spherical metric of Example 1.8 is the same metric on
S2 as the intrinsic metric of Example 1.14.

Proof. We have seen that for any x,y ∈ S2,

cos−1(x · y) = inf{L(γ) : γ a piecewise differentiable path from x to y},

since, for x the north pole, the left hand side is φ, where (φ, θ) are the
spherical coordinates of y, and so is the right hand side. �

6.3. Geodesics. We now study length minimizing curves in the general
smooth surface, generalizing the discussion in the plane and sphere. A look
at the sphere shows that the concept of length minimizing is more subtle
than in the plane. Experience has shown that it is easier to look at these
curves from the point of view of differential equations. We begin by deriv-
ing this equation as a necessary condition for minimizing length.
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6.3.1. The First Variation Formula for Arclength. Let S ⊂ R3 be a
smooth surface and let γ : [0, L0] → S be a smooth curve, parametrized
by arclength, of length L0. To derive a necessary condition for γ to be the
shortest curve joining its endpoints P = γ(0) and Q = γ(1), it is natural to
consider variations of γ, meaning smooth maps

γ̃ : [0, L0]× (−ε, ε)→ S with γ̃(s, 0) = γ(s) for all s ∈ [0, L0].

If, in addition, we have that

γ̃(0, t) = P, γ̃(L0, t) = Q for all t ∈ (−ε, ε),

we say that γ̃ is a variation of γ preserving the endpoints. Thus a variation
of γ is a one parameter family of curves, depending on a t ∈ (−ε, ε), where
the curve t = 0 is γ. A variation of γ preserves endpoints if all these curves
join P and Q. Moreover, it is assumed that this family is a smooth map of
the rectangle [0, L0]× (−ε, ε) to S. Note that s is arclength on γ but not on
the other curves. Let

L(t) =

∫ L0

0

(γ̃s(s, t) · γ̃s(s, t))1/2 ds

be the length of the t-th curve of the variation s → γ̃(s, t). A necessary
condition for γ to be length minimizing is that for every variation of γ pre-
serving the endpoints, dL

dt
(0) = 0.

Let’s compute this derivative for an arbitrary variation (not necessarily
preserving endpoints), and then specialize to endpoint preserving. First,
differentiating under the integral sign we get

dL

dt
=

∫ L0

0

1

2
(γ̃s(s, t) · γ̃s(s, t))−1/2(2 γ̃st(s, t) · γ̃s(s, t)) ds.

Evaluating at t = 0 and using the fact that γ̃(s, 0) = γ(s) is parametrized
by arclength, equivalently, γ̃s(s, 0) · γ̃s(s, 0) = 1, we get

dL

dt
(0) =

∫ L0

0

γ̃st(s, 0) · γ̃s(s, 0) ds.

Next, integrate by parts, using the formula

(γ̃t(s, 0) · γ̃s(s, 0))s = γ̃ts(s, 0) · γ̃s(s, 0) + γ̃t(s, 0) · γ̃ss(s, 0)

and noting that, by the smoothness of γ̃, we have equality of mixed partials:
γ̃st = γ̃ts:

dL

dt
(0) = (γ̃t(s, 0) · γ̃s(s, 0))|L0

0 −
∫ L0

0

γ̃t(s, 0) · γ̃ss(s, 0) ds
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Let us simplify this formula. First recall that γ̃(s, 0) = γ(s), thus γ̃s(s, 0) =
γ′(s) and γ̃ss(s, 0) = γ′′(s). Next, define a vector field V (s) along γ by

V (s) = γ̃t(s, 0).

This is called the variation vector field. It tells us how we are moving away
from γ at t = 0. More precisely, V (s) is a vector based at γ(s) and is the
velocity vector of the curve t → γ̃(s, t) at t = 0, so it is telling us the
velocity at which γ(s) initially moves under the variation. Observe that if
the variation preserves endpoints, then V (0) = 0 and V (L0) = 0, since
these point do not move at all.

Using this notation, we can rewrite the above formula as

dL

dt
(0) = V (s) · γ′(s)|L0

0 −
∫ L0

0

V (s) · γ′′(s) ds.

Noting that V (s) is a vector tangent to S at the point γ(s), the inner product
under the integral sign is the same as V (s) · γ′′(s)T , where γ′′(s)T denotes
the tangential component of γ′′(s). So we can finally rewrite the formula as

(42)
dL

dt
(0) = V (s) · γ′(s)|L0

0 −
∫ L0

0

V (s) · γ′′(s)T ds.

This is called the first variation formula for arclength.

6.3.2. The Geodesic Equation. Let us now see what the first variation for-
mula implies for our original problem, where the variation preserves end-
points. Then the first term of formula 42 vanishes, we get just the second
term, which must vanish for all possible variation vector fields V .

Theorem 6.20.
∫ L0

0
V (s) · γ′′(s)T ds = 0 for all possible variations of

γ with fixed endpoints if and only if the tangential component γ′′T of γ′′

vanishes: γ′′(s)T = 0 for all s ∈ [0, L0].

Example 6.21. Before proceeding to the proof of the theorem, let us look
at the example of the sphere S2. Using spherical coordinates, let γ be the
curve, depending on φ, given by holding φ constant, in other words, for
fixed φ, 0 < φ < π, the curve

γ(θ) = (sinφ cos θ, sinφ sin θ, cosφ),

which is a “parallel” on the sphere. It is parametrized proportional to ar-
clength s, thus γ′′(θ) is a constant multiple of γ′′(s). Then

γ′′(θ) = (− sinφ cos θ,− sinφ cos θ, 0),

which is perpendicular to the sphere if and only if it is a multiple of the
vector γ(θ), which happens if and only if cosφ = 0, that is, φ = π/2,
in other words, γ is the equator. Thus the only parallel that satisfies the
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equation γ′′(s)T = 0 is the equator, which is the only parallel that is a great
circle.

FIGURE 37. Equator and Meridians are Geodesics

This confirms that our differential equation does characterize great cir-
cles, which our intuition tells us are the geodesics on the sphere. (Note also
that in this variation of the equator, the equator is a local maximum, rather
than a local minimum. In fact, as a function of the parameter φ in the vari-
ation, L(φ) = 2π sinφ which has a maximum at φ = π/2.) In the same
spirit we can readily verify that all the meridians θ = const are geodesics.
Note that φ is arclength along the meridians.

Proof of the Theorem. Let us begin with two observations:

(1) Let γ be any smooth curve on S parametrized by arc-length. Since
γ′′T · γ′ = 0 (because γ′ · γ′ is a constant), if we let N(s) be a unit
vector field along γ tangent to S and perpendicular to γ′(s), then
γ′′T (s) is a multiple of N(s). This multiple is traditionally written
κg(s) and (up to sign) is called the geodesic curvature of γ. This
terminology will be discussed later, for the moment let’s just write
γ′′(s)T = κg(s)N(s) for some smooth function κg.

(2) It suffices to take V (s) to be a multiple of N(s): V (s) = f(s)N(s)
for some smooth function f on [0, L0]. Then the integral in question
becomes

∫ L0

0
f(s)κg(s) ds and we need to prove that if this integral

is 0 for all f arising from variations of γ, then κg(s) = 0 for all
s ∈ [0, L0].

We need the following lemma:

Lemma 6.22. Let (a, b) ⊂ R be an interval. Then there is a smooth function
φ : R→ R that is positive on (a, b) and vanishes on R \ (a, b).
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Proof. First check that the function defined by

f(x) =

{
e−1/x if x > 0,

0 if x ≤ 0.

is smooth (of class C∞). In fact, all its derivatives are defined and vanish
at 0. Then, if a < b, the function φ(x) = f(x − a)f(b − x) satisfies the
requirements of the lemma. This is the picture for (a, b) = (0, 1):

FIGURE 38. Smooth “Bump” Function

�

Now we can prove the theorem. Following observation (2) above, sup-
pose κg(s0) 6= 0, say κg(s0) > 0 for some s0 ∈ (0, L0). Then there exists
an interval (a, b) ⊂ (0, L0) containing s0 on which κg > 0. We may also
assume that γ|(a,b) : (a, b)→ U ⊂ S where one of the projections px, py, pz,
let’s call it p, maps U diffeomorphically to its image V . Let g : V → U be
the inverse of p|U , as in the proof of Theorem 6.7. Let φ be as in the Lemma
and let f = φ|[0,L0]. Then

∫ L0

0
f(s)κg(s) ds > 0, contradicting the assump-

tion, provided that the field f(s)N(s) is a variation field, that is, provided
that there exists a variation γ̃ : [0, L0] × (−ε, ε) → S, written γ̃(s, t), of γ
with γ̃t(s, 0) = f(s)N(s). But this is indeed the case. For example, we can
define γ̃ by

γ̃(s, t) =

{
g(p(γ(s) + tf(s)N(s))) if s ∈ (a, b),

γ(s) otherwise.

in other words, form the variation γ(s) + tf(s)N(s) by curves in R3 that
give the desired variation vector field f(s)N(s) but need not lie on S, and
force them to lie on S by projecting to S in the indicated manner. This uses
that p is defined on all of R3, so that p(γ(s) + tf(s)N(s)) makes sense. To
get the correct derivative with respect to t at t = 0 we use that for t = 0 we
are on S. Since g and p|U are inverse to each other, one gets from the chain
rule that
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γ̃t(s, 0) = (dp(γ(s))g ◦ dγ(s)p)(
∂

∂t
(γ(s) + tf(s)N(s))|t=0)

= (dp(γ(s))g ◦ dγ(s)p)(f(s)N(s))

= f(s)N(s),

because dp(x)g ◦ dxp = id on the tangent space to S at any x ∈ U ⊂ S, and
dg, dP denote, as usual, the differentials of g and p. �

Definition 6.23. A smooth curve γ : (a, b)→ S is called a geodesic in S if
it satisfies γ′′(s)T = 0 for all s ∈ (a, b).

Note that if γ is a geodesic, then |γ′(s)| is constant, that is, γ is a con-
stant speed curve, equivalently, parametrized proportional to arclength. The
reason is that (γ′ · γ′)′ = 2γ′′ · γ′ = 2γ′′T · γ′ = 0 if γ is a geodesic.

There are several notations used for γ′′T . For instance,

Definition 6.24. Let γ : (a, b)→ S be a smooth curve and V : (a, b)→ R3

a smooth vector field along γ, meaning that V is a smooth map and for all
s ∈ (a, b), V (s) ∈ Tγ(s)S, the tangent plane to S at γ(s).

(1) The tangential component V ′(s)T is called the covariant derivative
of V and is denoted DV/Ds.

(2) γ is a geodesic if and only if Dγ′/Ds = 0 for all s ∈ (a, b).

Other notations for Dγ′/Ds are commonly used, for example D2γ/Ds2,
Dγ′γ

′, and some others.

6.3.3. The Geodesic Equation in Local Coordinates. To study the geo-
desic equation γ′′(s)T = 0 in more detail, we restrict γ to an interval that
lies in the domain of some chart, and we use the notation of the second
paragraph of Subsection 6.2.2, namely we have the smooth map x : U → S
which is the inverse of the chart, where U ⊂ R2 is open and we use u, v for
the coordinates on U .

For each point P ∈ S we write TPS for the tangent plane of to S at P .
This is the two-dimensional subspace of R3 of vectors which are tangent to
S at P . For each (u, v) ∈ U , the vectors xu(u, v) and xv(u, v) form a basis
for Tx(u,v)S. The curve γ(s) = x(u(s), v(s)) for some curve (u(s), v(s)) in
U . We compute γ′′. First, by the chain rule, γ′ = xuu

′+xvv
′, differentiating

once more using the product rule and chain rule, and combining some terms,
we get

γ′′ = xuu
′′ + xvv

′′ + xuu(u
′)2 + 2xuvu

′v′ + xvv(v
′)2.
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Notice that the first two terms are tangential. So, to find γ′′T we need to find
the tangential component of the sum of the last three terms. We do not need
to do this explicitly at this moment (more will be said later), all we need is
the general shape of the formula. The tangential component of the sum of
the last three terms is of the form

q1(u, v, u′, v′)xu + q2(u, v, u′, v′)xv,

where q1 and q2 are quadratic functions of u′, v′ with coefficients smooth
functions of u, v, written more explicitly below. Putting this together we see
that the equation γ′′T = 0 is equivalent to a system of second order ODE’s

u′′ + Γ1
11u
′2 + 2Γ1

12u
′v′ + Γ1

22v
′2 = 0(43)

v′′ + Γ2
11u
′2 + 2Γ2

12u
′v′ + Γ2

22v
′2 = 0

where the six coefficients Γijk = Γijk(u, v) are smooth functions on U .

We will later discuss how to obtain formulas for the coefficients. For
the time being all we need is that it is a system of second order ODE’s
where the coefficients of u′′, v′′ are 1. There is a standard existence and
uniqueness theorem for the initial value problem, together with a theorem
on the smooth dependence of the solution on the initial conditions. Let us
write u = u(s) = ((u(s), v(s)) for a solution of the system 43. Let us write
p for a point in U and v for a vector in R2, which we think of as a tangent
vector to U at p.

Theorem 6.25. Given any p0 ∈ U and any v0 ∈ R2 there exists a neigh-
borhood W of (p0,v0) in U × R2 and an interval (−a, a) ⊂ R so that
for any (p,v) ∈ W there exists a unique solution u(s) = (u(s), v(s)) of
the system 43 satisfying the initial conditions u(0) = p and u′(0) = v.
Let u(s, p,v) denote this solution. It depends smoothly on the initial con-
ditions p,v in the sense that the map u : (−a, a) × W → U given by
(s, p,v) 7→ u(s, p,v) is smooth.

A proof of this theorem, stated for a system x′(t) = f(t,x(t)) of first
order equations, where U ⊂ Rn is an open set, I ⊂ R is an open interval,
and f : I × U → Rn is a smooth map, can be found in any rigorous text on
ODE’s, for example, in Chapter 2 of [2] or Chapter 4 of [1]. (See also Chap-
ter 4 of [3], particularly sections 4.6 and 4.7 for a discussion of the geodesic
equation.) A second order system in n unknown functions is equivalent
to a first order system in 2n unknown functions. Note that our system is
equivalent to a first order system of a more special form, x′(t) = f(x), an
autonomous system (f does not depend on t).

Our solution u(s, p,v) satisfies the identity

(44) u(rs, p,v) = u(s, p, rv) for any r ∈ R
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because both sides are solutions of the ODE with value p and first derivative
rv at s = 0.

Fix p ∈ U . To simplify the calculations, we may make a linear change
of coordinates (u, v) so that p = (0, 0) = 0 (by translating the coordinates)
and so that, at 0, the differential of our parametrization x of S , d0x :
R2 = T0R2 → Tx(0)S, is an isometry. This last requirement is achieved
as follows. The set {v ∈ R2 : |d0x(v)| = 1} is an ellipse. If it is a
circle, multiply by a factor to make the circle of radius one. If it is not
a circle, apply the linear transformation with eigenvectors pointing in the
direction of the axes and eigenvalues the inverses of the semi-axes, to take
this ellipse into a circle of radius one. Another way of saying this is that, at
0, dx2 + dy2 + dz2 = du2 + dv2, equivalently, that the coefficients gij of
Equation 36 satisfy g11(0) = g22(0) = 1 and g12(0) = 0.

By Theorem 6.25, for any v0 so that |v0| = 1, there exists a neighborhood
V of v0 and an a > 0 so that the solution u(s, 0.v) exists for all (s,v) ∈
(−a, a) × V . By the compactness of the circle S1 = {|v| = 1}, it can
be covered by finitely many such V , and taking b to be the smallest of the
corresponding a’s, we get the following lemma:

Lemma 6.26. There exists b ∈ (0,∞] so that the solution u(s, 0,v) of the
geodesic equation (43) is defined for all (s,v) ∈ (−b, b)× S1.

In other words, for any fixed length c < b all geodesics through 0 in all
directions v ∈ S1 are defined up to c. Note that b = ∞ is possible, in fact,
it is the ideal situation.

The reason for requiring that d0x be an isometry is to insure that s is
arclength along these solutions u(s, 0,v) with |v| = 1, where |v| is the
Euclidean length in R2. Otherwise we would have to use the length mea-
surement |d0x(v)| =

√
g11(0)v2

1 + 2g12(0)v1v2 + g22(0)v2
2 where gij are as

in Equation 36 and v = (v1, v2).

Using the formula 44, for any v ∈ R2, v 6= 0, we have u(1, 0,v) =
u(|v|, 0,v/|v|) is defined provided |v| < b, with b as in Lemma 6.26. In
other words, the map v 7→ u(1, 0,v) is defined and smooth on the ball
{|v| < b}. Let us call this map f : B(0, b) → U , and let’s compute its
differential at 0, d0f(v) = limt→0(f(tv) − f(0))/t = limt→0 f(tx)/t =
limt→0 u(1, 0, tv)/t = limt→0 u(t, 0,v)/t = u′(0, 0,v) = v, where the
second to last equality is Equation 44 and the last equality is the definition
of u(s, p,v) in terms of initial conditions. Thus we get d0f = id. By the
inverse function theorem we get that there exists an ε > 0 so that f |B(0,ε) is
a diffeomorphism of B(0, ε) onto its image.
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6.3.4. Exponential Map and Geodesic Polar Coordinates. We transfer
the information just obtained in local coordinates back to the surface S.
Recall that 0 ∈ U ⊂ R2, that x : U → S is a diffeomorphism onto its
image, P = x(0) and that d0x : T0U = R2 → TPS is an isometry.

For V ∈ TPS, let γ(s, P, V ) be the solution of γ′′(s)T = 0 satisfying
γ(0) = P and γ′(0) = V . Our discussion of the geodesic equation in the
the local coordinates (u, v) ∈ U proves the following theorem:

Theorem 6.27. (1) There is b ∈ (0,∞] so that γ(1, P, V ) is defined for
all v ∈ B(0, b) ⊂ TPS.

(2) Define a map expP : B(0, b)→ S by expP (V ) = γ(1, P, V ). Then
the differential dP expP : TPS → TPS is the identity.

(3) There exists ε > 0 so that expP |B(0,ε) is a diffeomorphism ofB(0, ε)
onto its image.

Proof. For any r ≤ b, where b is as in Lemma 6.26, we have the following
diagram where the left half is the discussion in local coordinates just fin-
ished in subsection 6.3.3, and the right half is the map just defined. We have
just proved the three parts of this theorem for the left half of the diagram,
the diffeomeorphism x transfers the theorem to the right half. For part (1)
take r = b, for part (3) take r = ε as in the last sentence of subsection 6.3.3.

�

The traditional notation and terminology for this map comes from the
fact that in some examples the matrix exponential could be seen as a special
case of this map:

Definition 6.28. The map expP : B(0, b) → S defined in (2) of Theo-
rem 6.27 is called the exponential map at P .

To make matters concrete, let’s keep in mind the example S = S2 and
P = N the north pole. The rays through the origin in TNS2 are mapped to
the meridians (great circles through N ). Note that expN is defined on the
whole tangent space (b =∞ in Theorem 6.27), but its restriction to the ball
of radius r is a diffeomorphism only for r < π.

The parametrization of a neighborhood of P ∈ S by the ball B(0, ε) ⊂
TpS turns out to be a very natural one. We will change notation, forget the
arbitrary parametrization x(u, v) of subsection 6.3.3 and for the rest of this
section we will use the convenient letters u, v for rectangular coordinates in
TPS with respect to some orthonormal basis e1, e2, and the convenient no-
tation x for the map expP : B(0, ε)→ S, that is, x(u, v) = expP (ue1+ve2)
for (u, v) ∈ B(0, ε) ⊂ R2. A glance at Figure 39 suggests that we should
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FIGURE 39. Exponential Map for the Sphere

also use the associated polar coordinates (r, θ) so that u = r cos θ, v =
r sin θ). When doing so, we will use the usual abbreviated, if somewhat
inaccurate notation x(r, θ) for x(r cos θ, r sin θ).

Definition 6.29. The parametrization x : B(0, ε) → S just defined will be
called a normal coordinates centered at P . When this parametrization is
expressed in polar coordinates, the coordinates r, θ will be called geodesic
polar coordinates centered at P .

Figure 39 also suggests that the curves r = const and θ = const should
be perpendicular to each other. This is indeed the case:

Theorem 6.30. (Gauss’s Lemma): In a geodesic polar coordinate system
x : B(0, ε) → S, xr · xθ = 0. Equivalently, in this coordinate system,
ds2 = dr2 + g(r, θ)2 dθ2 for some positive smooth function g.

Proof. This follows immediately from the first variation formula 42. For
fixed r0 < ε, and any θ ∈ [0, 2π], the curve γ(·, θ) : [0, r0] → S given by
γ(r, θ) = x(r, θ) is a geodesic of length r0, so its length L(θ) is independent
of θ. For any fixed θ0, γ(r, θ) is then a variation of γ(·, θ0) by geodesics
of constant length, keeping γ(0, θ) = P fixed, and variation vector field
V (r) = xθ(r, θ) Thus formula 42 reads

0 = L′(θ0) = xθ · xr|r=r0r=0 = xθ(r0, θ0) · xr(r0, θ0).

Since r0, θ0 are arbitrary, this means that xθ ·xr = 0 everywhere, as asserted.
Recalling formulas 35 and 36, we see that xr · xr = 1 (since, for each θ,
x(r, θ) is a unit speed geodesic), xr · xθ = 0 (as just proved) and xθ · xθ =
g22. Since g22 is a positive smooth function, we can write g22 = g2 for some
positive smooth function g. �

Now that we have geodesic polar coordinates, we can repeat the reason-
ing we used in Equations 40 and 41 in any surface. First, Gauss’s Lemma
justifies the following terminology:
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Definition 6.31. In a geodesic polar coordinate system centered at P , the
curves r 7→ x(r, θ), 0 ≤ θ ≤ 2π, are called the geodesic rays through P .
The curves θ 7→ x(r, θ) are called the geodesic circles centered at P .

Theorem 6.32. Let x : BT (0, ε) → S be a geodesic polar coordinate sys-
tem centered at P , where BT denotes the ball in the Euclidean metric of the
tangent plane TPS.

(1) For any 0 ≤ r0 < r1 < ε and any fixed θ, the geodesic segments
x(r, θ), r0 ≤ r ≤ r1 are the shortest piecewise differentiable curves
in S joining a point in the geodesic circle r = r0 to a point in the
geodesic circle r = r1.

(2) In particular, the geodesic rays through P are the shortest piece-
wise differentiable curves in S joining P to any other point Q in
x(BT (0, ε)). This length is dS(P,Q), where dS is the intrinsic dis-
tance on S as defined in Example 1.14 or Definition 1.26(5).

(3) Let BS(P, r) denote the ball of given center and radius in the in-
trinsic distance dS . Then, for any r < ε, BS(P, r) = x(BT (0, ε)).

Proof. We argue as we did in polar or spherical coordinates in Equations 40
or 41. Consider first a smooth curve γ(t) = x(r(t), θ(t)), 0 ≤ t ≤ 1
lying in the image of the geodesic polar coordinate system, and suppose
that r(0) = r0 and r(1) = r1. Then we have

L(γ) =

∫ 1

0

√
r′(t)2 + g(r(t), θ(t))2 θ′(t)2 dt ≥(45) ∫ 1

0

√
r′(t)2 dt ≥

∫ 1

0

r′(t) dt = r(1)− r(0) = r1 − r0.

Observe that the first inequality is strict unless θ′ = 0, that is, θ is constant,
that is, γ lies on a geodesic ray. The second inequality is strict unless r′ ≥ 0,
that is, r is an increasing function of t, that is, we are covering a segment
x(r, θ), r1 ≤ r ≤ r2, monotonically. Thus L(γ) > r2 − r1 unless γ covers
a segment monotonically. Since the length of the segment is r2 − r1, it is
an absolute minimizer among the curves considered: smooth curves lying
in x(BT (0, ε)).

If γ is just piecewise smooth, but still lies in the coordinate system, divide
[0, 1] into subintervals by taking 0 = t0 < t1 < · · · < tn = 1, where
γi|[ti−1,ti] is smooth. Let ρi = r(ti). The same reasoning as in Equation 45,
but refined to take into account the possibility that ρi < ρi−1, gives the more
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useful inequality

L(γi) ≥
∫ ti

ti−1

√
r′(t)2 dt ≥

{∫ ti
ti−1

r′(t) dt = ρi − ρi−1 if ρi−1 < ρi,∫ ti
ti−1
−r′(t) dt = ρi−1 − ρi if ρi < ρi−1.

By more useful inequality we mean that the first inequality is useless in
the second case, because it gives a negative lower bound, while the second
inequality is equally useless in the first case.

In either case we get the inequality L(γi) ≥ |ρi − ρi−1|, with equality
if and only if γi travels monotonically along a segment x(r, θi), for some
fixed θi, and with ρi−1 ≤ r ≤ ρi, or ρi ≤ r ≤ ρi−1 as the case many be. We
thus get

L(γ) =
∑

L(γi) ≥
∑
|ρi− ρi−1| ≥

∑
(ρi− ρi−1) = ρn− ρ0 = r1− r0,

with equality L(γ) = r1− r0 if and only of all these inequalities are equali-
ties and ρ0 < ρ1 · · · < ρn. In particular, each γi must be a segment traveled
in monotonically increasing fashion. Since γ is a continuous path, all the
θi must be the same (modulo 2π), hence γ is a segment. Thus segments of
geodesic rays absolutely minimize length in the class of piecewise smooth
paths in the image of the geodesic coordinate system.

Finally, if γ([0, 1]) does not lie on the image of the geodesic polar coor-
dinate system, then, for some R, r1 < R < ε, γ does not lie in the image of
the closed ball B̄T (0, R). By the continuity of γ there is τ , 0 < τ < 1 so that
γ(τ) lies on the geodesic circle of radius R and γ([0, τ ]) lies in the image
of B̄T (0, R). (This can be proved as follows: writing γ(t) = x(r(t), θ(t)),
r is a continuous function of t with r(0) = 0 and r(t) > R for some t. Thus
there exist t1, 0 < t1 < t, so that r(t1) = R. Let τ = inf{t1 : r(t1) = R}.
It is easily seen that 0 < τ < 1 and has the required property.) Then
L(γ) ≥ L(γ|[0,τ ]) ≥ R − r0 > r1 − r0, so it cannot be length minimizing.
This proves the first statement of the theorem. See Figure 40 for a sketch of
what a geodesic coordinate system may look like. The wavy curves repre-
sent some of the possibilities we considered in the proof. The geodesic rays
realize the distance between geodesic circles.

The remaining two statements in the theorem are easy consequences of
the first.

�

Remark 6.33. (1) Observe that Theorem 6.32 says, in particular, that
sufficiently small balls B(P, r) in the intrinsic distance dS look
roughly like the balls in the Euclidean metric in the plane. In par-
ticular, there is a unique minimizing segment from the center P to
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FIGURE 40. Geodesic Rays Minimize Length

any other point Q ∈ BS(P, r). This is in marked contrast with the
Taxicab metric of Example 1.5 or the Supremum distance of Exam-
ple 1.6 where there are uncountably many shortest curves joining P
and Q, no matter how close P and Q are.

(2) It follows easily from Theorem 6.32 that the topology of the intrin-
sic metric dS is the subspace topology on S ⊂ R3. This fact can also
be proved from first principles, without using this detailed theorem.

6.4. A First Glance at Gaussian Curvature. We study in more detail the
function g(r, θ) in the expression for ds2 in geodesic polar coordinates given
by Gauss’s Lemma (Theorem 6.30). Recall the context: Given a smooth
surface S ⊂ R3 and a point P ∈ S, there is an ε > 0 and a ballBT (0, ε)
about the origin in the tangent space TPS to S at P so that the map x =
expP is a diffeomorphism of BT (0, ε) to a neighborhood of P in S. If r, θ
are polar coordinates in TPS centered at 0, then the expression of ds2 =
dx · dx is

(46) ds2 = dr2 + g(r, θ)2 dθ2

for some function g(r, θ) defined for r ≥ 0, positive and smooth for r > 0.

First of all, to see that it would be interesting to know more about g, here
are two geometric interpretations of this function:

Definition 6.34. Using the notation just established,

(1) The geodesic circle of radius r0 centered at P is, as in Def 6.31, the
curve Cr0 = {x(r0, θ) | 0 ≤ θ ≤ 2π}.

(2) The geodesic disk of radius r0 centered at P is the surface Dr0 =
{x(r, θ) | 0 ≤ r ≤ r0, 0 ≤ θ ≤ 2π}

Theorem 6.35. (1) The length (circumference) ofCr0 is
∫ 2π

0
g(r0, θ) dθ.

(2) The area of Dr0 is
∫ 2π

0

∫ r0
0
g(r, θ) drdθ
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Proof. Since the length of the tangent vector to Cr0 at the point (ro, θ) is
g(r0, θ), the first statement is clear. For the second statement, we would
have to discuss area, which we are not going to do here. It can be done in a
manner totally parallel to the treatment for the plane and the sphere. �

We want to see what restrictions, if any, there are on the function g,
and what other information we can extract from this function. Recall that
we know two examples, the Euclidean plane, Example 6.15, and the unit
sphere, Example 6.16, given by the formulas (37) and (38):

dr2 + r2dθ2 and dr2 + sin2 r dθ2.

In the second formula, we changed the notation in (38) from φ to r since φ
is the same as geodesic distance from the north pole in S2. So we get two
examples of a function g:

(47) g(r, θ) = r and g(r, θ) = sin r = r − r3

6
+ . . .

These formulas clearly illustrate the following restriction on g:

Theorem 6.36. The function g(r, θ) of (46) satisfies

g(r, θ) = r + cr3 +O(r4)

for some constant c and for r > 0, where O(r4) means a function f(r, θ)
satisfying |f(r, θ)| ≤ Cr4 for some absolute constant C, independent of θ.

Proof. We will see that this restriction on g(r, θ) is just a consequence of
the fact that the formula (46) defines an object that is smooth at the origin.
In other words, we could use rectangular coordinates u, v on TPS, related
in the usual way: u = r cos θ, v = r sin θ. Under this correspondence we
have

dr2 + g(r, θ)2 dθ2 = g11 du
2 + 2g12 dudv + g22 dv

2(48)

where gij are smooth functions of u, v.

Recall that a function f(u, v) defined on R2 \ {0} is said to be homo-
geneous of degree d if f(tu, tv) = tdf(u, v) holds for all t > 0 and all
(u, v) ∈ R2 \ {0}. If d ≥ 0, an example of a homogeneous function of
degree d is a homogeneous polynomial in u, v of degree d. In this case the
function extends to R2.

Since the coefficients gij(u, v) are smooth functions in a neighborhood
of 0 ∈ R2, the Taylor expansion of gij at (0, 0) gives a sequence gij,d of
homogeneous polynomials of degree d, d = 0, 1, 2, . . . so that for any fixed
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d0,

gij(u, v) =

d0∑
d=0

gij,d(u, v) +O(rd0+1),

where r = (u2 + v2)1/2. Consequently the right-hand side of (48) can be
written as a sum

(49)
d0∑
d=0

(g11,ddu
2 + 2g12,ddudv + g22,ddv

2) +O(rd0+1)

To get a similar expansion of the left-hand side of (48), observe first that
the Taylor expansion of g(r, θ) with respect to r, centered at (0, θ), with
coefficients functions of θ, gives a sequence of smooth functions ci(θ), i =
0, 1, 2, . . . , periodic of period 2π, so that for any integer k ≥ 0 there is an
expansion

(50) g(r, θ) = c0(θ) + c1(θ)r + c2(θ)r2 + · · ·+ ck(θ)r
k +O(rk+1),

We will only need the case k = 3, that is

(51) g(r, θ) = c0(θ) + c1(θ)r + c2(θ)r2 + c3(θ)r3 +O(r4),

But first we will assume that (50) holds for k = 4 (error O(r5). Then
g(r, θ)2 has expansion, up to O(r5) as follows:

(52) c2
0+2c0c1r+(2c0c2+c2

1)r2+(2c0c3+2c1c2)r3+(2c0c4+2c1c3+c2
2)r4

where we have written simply ci for the functions ci(θ). We will first show
that c0 = 0. From this it follows that we only need (51) to get (52) with
error O(r5).

Take the expression (46) and write it as a sum of terms in r, θ, dr, dθ,
that, under the change of variables u = r cos θ, v = r sin θ correspond to
linear combinations of du2, dudv and dv2 with coefficients homogeneous
functions of a fixed degree d in u, v, as in (49 ). If all the coefficients in (50)
were arbitrary, we would find some homogeneous functions in u, v that are
not polynomials. This will give the restrictions on the coefficients ci(θ).

To see the correspondence, note that r =
√
u2 + v2 is homogeneous of

degree 1. The function θ(u, v) is not real valued, it has values in R/Z ,
but as such satisfies θ(tu, tv) = θ(u, v), so formally this is the same as
homogeneos of degree 0. Any real valued function of θ is homogeneous of
degree 0.
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Solving the equations

du = cos θ dr − r sin θ dθ

dv = sin θ dr − r cos θ dθ.

for dr, dθ gives

dr = (udu+ vdv)/r =
u√

u2 + v2
du+

v√
u2 + v2

dv(53)

dθ = (udv − vdu)/r2 =
u

u2 + v2
dv − v

u2 + v2

Thus dr has coefficients homogeneous of degree 0 and dθ of degree−1. So
neither form is smooth at the origin, since the homogeneous forms are not
polynomial. This means that dr2 and dθ2 have coefficients homogeneous of
degree 0,−2 respectively. Explicitly:

dr2 =
u2du2

2uvdudv + v2dv2

u2 + v2
(54)

dθ2 =
v2du2 − 2uvdudv + u2dv2

(u2 + v2)2

Now use all this information in the expansion obtained by using the expan-
sion (52) in the formula (46)

Degree terms Conclusion
−2 c2

0dθ
2 c0 = 0

−1 2c0c1rdθ
2 = 0 nothing

0 dr2 + (c2
1r

2)dθ2 c1 = ±1
1 c2r

3dθ2 c2 = 0
2 c3r

4dθ2 c3 constant, independent of θ
3 c4r

5dθ2 c4(θ) = a cos θ + b sin θ

In more detail:

(1) There can be no term of degree −2, so c2
0 = 0

(2) For degree −1 we get a coefficient 2c0c1, but already know c0 = 0,
no new information.

(3) For degree 0 actually get dr2 + (2c0c2 + c2
1)r2dθ2, but already know

c0 = 0. The term of degree 0 is dr2 + c2
1r

2dθ2 which is

(u2 + c2
12v2)du2 + 2(1− c2

1)uvdudv + (v2 + c2
1u

2)dv2

u2 + v2

which is a polynomial if and only if c2
1 = 1, in which case it reduces

to du2 + dv2. So c1 = ±1, and we should take c1 = 1 since we’re
assuming g(r, θ) > 0.
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(4) For degree 1, get c2r
3dθ2 = c2(θ)(udv − vdu)2/r. Take any of

its coefficients, say c2(θ)u2/r = c2(θ)r cos2 θ. It homogeneous of
degree 1. Since it vanishes on the line θ = π/2, if it were a lin-
ear function, the only possibility would be au = ar cos θ or some
constant a. Thus ar cos θ = c2(θ)r cos2 θ, that is c2(θ) = a/ cos θ
which is not a smooth function of θ (blows up at θ = ±π/s). Thus
we must have c2(θ) ≡ 0.

(5) For degree 2 get c3r
4dθ = c3(theta)r4dθ2 = c3(θ)(udv − vdu)2.

The coefficients can be polynomials if and only if c3 is a constant,
independent of θ.

(6) Degree 3 is beyond our expansion (52) , but we include it here since
the pattern is now clear. We get c(θ)r(udvd− vdu)2, homogeneous
of degree 1. It is smooth at the origin if and only if it is a linear
function of u, v. This happens if and only if c4(θ) = a cos θ+b sin θ
for some constants a, b. This is the first time that this method allows
for a coefficient ci(θ) that is not independent of θ.

�

Definition 6.37. The Gaussian curvature of S at P is the number K(P ) =
−6c, with c as in the theorem.

Remark 6.38. This is not the traditional definition of Gaussian curvature,
but it is a convenient one for us. Gauss’s original definition was extrin-
sic, and his Theorema Egregium was the statement that K is intrinsic. See
Subsection 6.5 below for the meaning of intrinsic.

Example 6.39. (1) If S = R2, then geodesic polar coordinates are the
usual polar coordinates, ds2 = dr2+r2dθ2, g(r, θ) = r andK(P ) =
0 for all P ∈ R2.

(2) If S = S2 and N is the north pole, then we have seen that geodesic
polar coordinates are the same as spherical coordinates of Exam-
ple 6.16, with φ = r and ds2 = dr2 + sin2 r dθ2, thus g(r, θ) =
sin r = r − r3/6 + . . . , thus K(N) = 1 (this explains the factor
−6). Since there is a rotation of S2 taking N to any other point P ,
S2 , K(P ) = 1 for all P ∈ S2.

Remark 6.40. Theorem 6.35 gives a nice interpretation of the Gaussian
curvature K(P ). Recall the meaning of geodesic circle and geodesic disc
from Definition 6.34.

L(Cr) = 2πr − K(P )π

3
r3 +O(r4)(55)

A(Dr) = πr2 − K(P )π

12
r4 +O(r5).
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Thus K(P ) measures the deviation of the formulas for circumference and
area of a circle from the usual Euclidean formulas. For example, for R2 we
get L(Cr) = 2πr while for S2 we get L(Cr) = 2π sin r = 2πr − πr3/3 +
. . . , thus geodesic circles on the sphere are shorter than their counterparts
in R2, as suggested by Figure 39.

6.5. A Quick Glance at Intrinsic Geometry. Gauss discovered the intrin-
sic geometry of surfaces, and introduced the geodesic polar coordinates to
study it in detail. Intrinsic geometry means the part of the geometry of
S ⊂ R3 that depends on intrinsic measurements on S, and not on its em-
bedding in R3. Intrinsic measurements are those that can be reduced to the
study of measurements within surface, such as length, angles, area.

We have seen one example in the homework problems. Consider the
cylinder C = {x2 + y2 = 1} ⊂ R3, parametrized by x : R2 → C ⊂ R3

where

(56) x(u, v) = (cosu, sinu, v).

Since x(u + 2π, v) = x(u, v), we can view x as a map (R2/ ∼) → C,
where (u, v) ∼ (u+ 2nπ, v) for all n ∈ Z. It is easy to check that this map
is a homeomorphism. But more is true: we saw in the homework that this
map takes geodesics u′′ = 0, v′′ = 0 in R2 to geodesics in C (spirals and
vertical lines) and this map preserves the length of curves. So this map x is
an isometry between the intrinsic metrics of the surfaces R2/ ∼ and C.

There is a quick way for checking that a smooth map is an isometry
between intrinsic metrics: check that it preserves ds2, thus it preserves
length of curves, thus preserves intrinsic metrics. More formally, to say
that a smooth map f : S1 → S2 between smooth surfaces S1, S2 pre-
serves ds2 is the same as saying that, for all P ∈ S1, the differential
dPf : TPS1 → Tf(P )S2 is an isometry between the two inner product
spaces TPS1, Tf(P )S2 ⊂ R3. In our example of x : (R2/ ∼) → C this
is checked as follows:

dx ·dx = dx2 +dy2 +dz2 = (− sinu du)2 +(cosu du)2 +dv2 = du2 +dv2,

thus the integrands for arclength correspond, thus lengths of curves corre-
spond, and this map is an isometry in the sense of metric spaces. (This is a
sufficient condition for isometry of metric spaces. It turns out that it is also
a necessary condition, but necessity is harder to prove.)

Another example, let et γ : R → R2 be any smooth curve parametrized
by arclength, periodic of period 2π, and suppose γ(u1) 6= γ(u2) if u1 − u2

is not an integral multiple of 2π. In other words, γ descends to a map,



5510 NOTES 119

still denoted γ, defined on the circle: γ : R/(2πZ) → R2, and this map is
injective.

Write γ(u) = (x(u), y(u)). Define a surface Cγ ⊂ R3 by the formula

(57) y(u, v) = (x(u), y(u), v),

called the cylinder on γ. Then the map y : R2/ ∼→ Cγ is also an isometry,
thus the map f : C → Cγ defined byf(x(u, v)) = y(u, v) is an isometry.
Since there are infinitely many curves γ : R → R2 satisfying our require-
ments of periodicity and injectivity of the map R/(2πZ) → R2, it follows
that there are infinitely many surfaces isometric to the cylinder C. More-
over, since the simple closed curves γ can be continuously deformed to each
other, the same can be done with the resulting surfaces..

We have been a bit sloppy since the “surface” R2/ ∼ is a quotient of
R2 rather than a subspace of R3. But it is a smooth surface in the sense
of Definition 6.1. What this means is that we have to enlarge the context
in which we consider lengths of curves, we should not restrict ourselves to
surfaces in R3. We will do this next semester.

To finish, let us remark that the Gaussian curvature is invariant under
isometries. Since it is 1 for any open subset of S2 and 0 for any open subset
of R2, we get that no open subset of S2 can be isometric to an open subset
of R2.
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