For the midterm:

- Know the definitions of all important terms (listed below).
- Know the statements off all important theorems (listed below).
- Be able to do *simple* problems, such as verifications of examples, or proofs of theorems that have simple proofs.

Note: References in parenthesis are to the posted notes, or to the posted weekly lectures.

- 1. Know how to define: (X, d) is a metric space. (Def 1.1)
- 2. Know *examples* of metric spaces and how to verify that they satisfy the definition, particularly the *triangle inequality*:
 - (a) \mathbb{R}^n , \mathbb{R}^∞ , and the various metrics on them: $d_{(1)}, d_{(2)}, d_{(\infty)}$ (Exs 1.1 to 1.6)
 - (b) Discrete metric, French railway metric. (1.12, 1.13)
 - (c) Subspace metric (1.2.1)
 - (d) Intrinsic metric on a smooth surface in \mathbb{R}^3 . (1.14, 1.15)
 - (e) Intrinsic metric on S^2 is the great-circle arc distance (1.16, 1.17)
- 3. Know how to define the following terms in a metric space (X, d): sequence, limit of a sequence, convergent sequence, Cauchy sequence. (Def 1.27)
- 4. Know how to define *complete* metric space and give examples of both *complete* and *incomplete* metric spaces. (1.31, 1.47)
- 5. If (X, d), (X', d') are metric spaces and $f : (X, d) \to (X', d')$ is a map, know how to define the following terms: (Defs 1.35 and 1.39) and know examples (1.41,1.46)
 - (a) f is continuous
 - (b) f is uniformly continuous
 - (c) f is Lipschitz
 - (d) f is bi-Lipschitz
 - (e) f is an *isometry*
 - (f) f is a homeomorphism
- 6. Know how to prove implications such as: (Thm 1.37, 1.40)
 - (a) Lipschitz \implies uniformly continuous \implies continuous

- (b) Isometry \implies bi-Lipschitz \implies homeomorphism
- 7. Know examples that show that none of these implications can be reversed. (for (a) see \sqrt{x} in Lectures, Week 2, for (b) see Ex.1.45)
- 8. Be able to sketch proofs of basic theorems:
 - (a) A convergent sequence is Cauchy. (Thm 1.28)
 - (b) A differentiable map with bounded derivative is Lipschitz. (Thm 1.38)
 - (c) Translations are isometries of \mathbb{R}^n for any metric given by a norm: d(x,y) = |x-y|
 - (d) If $f : \mathbb{R}^n \to \mathbb{R}^n$ is an isometry of the Euclidean metric fixing ithe orign (f(0) = 0), then f is linear: for all $x, y \in \mathbb{R}^n$ and all $r \in \mathbb{R}$, f(rx) = rf(x) and f(x+y) = f(x) + f(y). (Thm 2.11, see figures 15,16)
- 9. Classification of isometries of \mathbb{R}^2 : (Thm 2.9) (For this theorem and the next, know the statement, not neessarily the proof)

If $f : \mathbb{R}^2 \to \mathbb{R}^2$ is an isometry, then either

- (a) $f = f_{\theta,v}^+$, where $f_{\theta,v}^+(x) = R_{\theta}(x) + v$, where R_{θ} is the counterclockwise rotation by θ about the origin, $v \in \mathbb{R}^2$ (orientation preserving isometries), or
- (b) $f = f_{\theta,v}^-$, where $f_{\theta,v}^-(x) = S_{\theta}(x) + v$, where S_{θ} is reflection on the line through the oroigin making an angle $\frac{\theta}{2}$ with the positive x-axis and $v \in \mathbb{R}^2$ (orientation reversing isometries)
- 10. Classification of proper (=orientation preserving) isometries of \mathbb{R}^2 in terms of fixed points: (Thm 2.21) If $f : \mathbb{R}^2 \to \mathbb{R}^2$ is an orientation preserving isometry, $f \neq id$, then either
 - (a) f has no fixed points, it is a translation.
 - (b) f has a unique fixed point c and is a rotation about c.
- 11. Open sets in a metric space:
 - (a) Know the definition of open set (Def 3.2)
 - (b) Know examples and how to prove that they are examples (Thm 3.3, Exs 3.4 to 3.7)