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Recall: First Variation Formula for Arc-Length

<

Y

» S c R® a smooth surface (given by f = 0, VF # 0)
» v : [0, L] — S a smooth curve, parametrized by

» endpoints P = v(0) and Q = +(Lo).
» Want necessary condition for  to be shortest smooth
curve on S from Pto Q

» Calculus: consider variations of ~.
» This means: a “curve c(t) of curves” with ¢(0) = .

» More precisely: a smooth map 5 ?
%




A [0, Lol x (—€,€) — Swith (s,0) = v(s) for all s € [0, Lo].

with s being arclength on (s, 0) but not necessarily on
(s, t) for t # 0.
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Figure: A Variation of ~
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» If, in addition, we have that
7(0,t) = P, (Lo, t) = Qforall t € (—e¢,¢),

we say that 7 is a variation of v with fixed endpoints.

Figure: Variation of « with Fixed Endpoints



» Let -
a? (g,O]
—

» Necessay condition for a minimum: S

for all variations 7 of + with fixed endpoints P, Q.

» Let's compute %(0) for arbitrary variations, then
specialize to variations with fixed endpoints.



» Begin with the formula for L(t)

L) = [ G50 5a(s. )" s

—_— —

» Differentiate under the integral sign

~
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Ly
% N /o %(’?s(sa t)';}'/s(& t))_1/2(2 5’81‘(57 t)-’?S(S, t)) ds.
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» Evaluate at f = 0 using that 9(s,0) - 9s(s,0) = 1
dL al .
GO = [ als.0)-i(5.0) o
N

9, Lg?r



» Equality of mixed partial derivatives gives

dL b N
o9 2/ Fis(s,0) - 4s(s, 0) ds.
° gan
» Integrate by parts, using'fhe formula

(%e(s, 0)-7s(s. 0))52\2 F1s(8,0)9s(s, 0) + i(s, 0)7ss(s, 0)

" ~— = -
» Get "

dL . . AR .

E(O) = (71(37 0)'78(Sa 0))|0}—/0 71‘(37 0)"}/55(3,.0) ds



Define a vector field V(s) along ~ by

V(s) = (s, 0).
\—f\\,
This is called the variation vector field.
V(s) is the velocity vector of the curve t — 4(s, t) at
t=0.
V(s) tells us the velocity at which ~(s) initially moves
under the variation.

If the variation preserves endpoints, then V(0) =0
and V(Ly) =0,
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Figure: Variation Vector Field



First Variation Formula:

L e
aL
E(O) = V(s

» Since V(s) is tangent to S, we replaced ~”(s) by its
tangential component ~""

» Necessary condition for minimum: 2(0) = 0 for all
variations 5 of v with fixed endpoints.

» equivalently

Lo
/0 V(s)-+"T/= 0¥ V along v with v(0) = V(Lo) = 0



» Finally this means 77 = 0.
» Reason: use “bump functions”




Covariant Derivative and Geodesic Equation
—_——— st A

R> L
Definition S <f /

Let v : (a,b) — S be a smooth curve and V : (a, b) — R3
a smooth vector field along v, meaning that V is a smooth
map and for all s € (a, b), V(s) € TS, the tangent
plane to S at 7(s).

1. The tangential componenis called the
covariant derivative of V and Is denoted DV/Ds.

2. v is a geodesic if and only if Dy'/Ds = 0 for all
s e (ab). L>—

3. kg(8) = |D+'/Ds| is called the geodesic curvature of
Y-







Geodesics on S? >\
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» Equator and meridans are geodesics.
— —
» Equator a local maximum among the parallels.
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If V, W are vector fields along ~, then

d&,\/-W):%-mw%
;S.‘ . ) -USs

If v is parametrized by arc-length, 7" -+ = 1
Therefore

Dy, _

Thus DD—WS' is tangent to S and normal to +'.




» The first variation formula says that, if the endpoints
are fixed, length d/ecreases most rapidly if we move in
the direction of 2L

» This means: if the variation field V(s) = ¢(S)D—7( ) for

#(s) > 0o0n (0, Ly): r
é\/[s) 5

dL ' D’y 5
SO = [ s DL a5

[
» Check this with parallels in S2. 1§

VI = (s =






Length of curves in charts

Recall smooth surface S = {f(x,y,z) = 0} C R®,
r-‘_\ - —
Vi#0onS, =

Chart (U, ¢) on S:

v

v

v

U cS cR?®

0]
VvV < R?
“&_—_
¢~ (u,v) =x(u,v) = (x(u,v), y(u,v), z(u,v)).
f(x(u,v), y(u,v), z(u,v)) = 0.
» xX: V — Sis a “parametrization” of U C S.

v

v



Example

» f(x,y,z) = x>+ y? + 22 — 1 = 0 sphere.
U={(x,y,z) € S| z > 0} upper hemisphere,
V ={(u,v) € R? | u? + v? < 1} unit disk in R?.
#(x,y,2) = (x,y) projection.

x(u,v) = (u,v,v1—u?—v2).

X is a parametrization of the upper hemisphere.
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Suppose 7 : [a, b] — S lies in coordinate chart (U, ¢).
Then ~(t) = x(u(t), v(t)) for a unique curve

(u(t), v(t)) lying in V, namely ¢ o ~(t) = (u(t), v(1)).
It is often convenient to do the calculations in terms
of (u(t), v(t)).

Start with ~(t) = x(u(t), v(1)) .

v (t) = x,U'(t) + x,V'(t) is its tangent vector.

7'(t) - +/(t) is the norm squared of
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» Explicitly +/(t) - /(t) =
(XU + X, V') - (XU + X, V)
= (Xy - X )U? +2(Xy - X, UV + (X, - X, ) V"2
» At this point it is best to forget the curve ~ altogether,
work only with the expression
ds® = (X, - X,)du? + 2(x, - x,)dudv + (x, - X,)dv?

» What does this mean?



» The length of a curve is given by integrating the
length of its tangent vector:

» Could equally well be written as

L(v) = / ds
Y
» What is ds?



» dX: T(u,v)v — TX(U’V)RS.

» Ifve Ty,yV, ds(v) = [dx(v)| = (dx(v) - dx(v))z

» ds is a function of two (vector) variables,(equivalently
4 real variables):

1. apointp=(u,v)e V.
2. atangentvectorv = (U, V') € TV



» Notation can be confusing: u, v, U’, v/ can mean

1. Independent variables. Then ds,, ) (U'.v') = |dpX(V)|
as above.

2. If evaluated on a curve (u(t), v(t)),a <t < b, then ds
means the function of one variable

| duo),vienX(U' (1), V/(1))]

where
au dv

u'(t) = o V(1) = o
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Going backtox: V — U c ScR3 and (p,v) € T,V,
ds? is a function of p, v, quadratic in v.

dps(V)? = |dpx(V)[? (usual square norm in R3).
dpS?(V) = (X - X, )du? + 2(X, - X, )dudv + (X, - X, )dv?,
du, dv are functions of p, v, linear in v

Ifv=(uv,V),dou(v)=U, dpv(v) =V



» In summary, we get
ds® = g11dU2 + 2912dUdV + gzgdvz
where g1, g12, @22 are smooth functions of u, v

» Moreover, at every (u, v) € V, the matrix

_( gn(u,v) gi2(u,v)
G= < 921(U, V) gzo(u,v) )

is symmetric and positive definite.



» In fact,
;o g11(u,v) gi2(u,v) ) ( u' )
(v ) ( (U V) geoluv) ) \ v
is the same as
(1) - (1) = (Xt + %, V') - (XU + X, V')

which is > 0, and, since x,, x, are linearly

independent, = 0 if and only if (¢, v') = (0, 0)



» Equivalent Statement

g1 G2\ _ [ Xu-Xy Xy-Xy
921 g22 Xy - Xy Xy - Xy
» We see again that G is symmetric and positive
definite.



» Going back to v : [a, b] — U C S, piecewise smooth,

() = x(u(t), v(1)),
» Recall that the length of v is

/ds-/ 911 (U)?+2g; (U/V,)+922(V,)2)1§dt

where the g; are evaluated at (u(t), v(t))

» Usually work with the expression for ds? without
using ~ explictly.



Some Remarks
on Homework



Some Remarks on Homework
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Example

Polar Coordinates: x = rcos, y = rsind.

Then dx =cos6@ dr — rsind df, dy = sin6 dr + rcos 6 df
and ds? = dx? + dy? =

(cos @ dr — rsinf df)? + (sin0 dr + rcos 6 do)?

which simplifies to

ds? = dr? + r? d6?, (1)



Theorem

Let~ be a curve in R? from the origin O to the circle Cr of
radius R centered at 0.

Then

1. L(y) > R.
2. Equality holds if and only if gamma is a ray 0 = const






Proof.
Let v(t) = (r(t),6(1),0 < t < 1. Then

L(v) = /01(r’(t)2 +r(1)20'(t))2dt > /O1 r'(tydt =R

and equality holds if and only if #'(f) = 0.



Corollary

Given p, q € R, the shortest curve from p to q is the
straight line segment pq.



Example

Spherical coordinates:
X =sin¢cosh, y =singsind, and z = cos ¢

dx = cos¢pcosf do —singsing db,
dy = cos¢sind d¢ + singpcosd df, and

dz = —sin¢ do.

ds? = d¢? + sin® ¢ d?
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Theorem

Let~ be a curve in S? from the north pole N to the

“geodesic circle” ¢ = ¢q of radius ¢o centered at N, where
0 < ¢ < .

Then

1. L(v) = ¢o-

2. Equality holds if and only if gamma is a great-circle
arc 6 = const



Proof.
Let v(t) = (¢(1),6(1))0 < t < 1. Then

L) = / (&/(1)2 + sin(o(1))0/ (1) 2ot > / ¢ (1)t = gy

and equality holds if and only if §'(t) = 0. n



Corollary

1. Given p,q € S?, not antipodal, the shortest curve
from p to q is the shorter of the two great-circle arcs
from p to q

2. If p and q are antipodal, there are infinitely many
curves of shortest length from p to q.
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Geodesic Equation in Local Coordinates
This section was

not covered in
class this week,
but results were
used. more
details next
week.

v

x:V — Uc ScR? as before.

The vectors x,, x, form a basis for Ty S
(s) = x(u(s), v(s))

7' (8) = XU + X, V"

Differentiate once more:

v

v

v

v

’y” — qu” + XVV” + XUU(ul)z + 2vau,V/ _I_ XVV(V/) .

2


This section was not covered in class this week, but results were used.  more details next week.


» To find 7, note that the first two terms are tangential
» Write the sum of the last three terms as

ax, + bx, +n

with a, b scalar functions of u, v and n(u, v) normal.
» Then

(axy+bx, +n)-Xy, \ _ [ G11 Gre a
(axy + bx, +n) - x, g1 Qo2 b



» On the other hand, the first vector is also

( (Xpu(U')? + 2%y UV + X (V')?) - Xy
(qu(L[’)2 + 2Xuvulvl + XVV(V/)2) ‘ Xv)

» Therefore, letting w = X, (U')2 + 2X,, U'V' + X (V')

(W'Xu>:(g11 912)(&')
W X, 921 g2 b

» Therefore, if

gt g g —1
_ 11 G12
( g7 g% ) ( 921 Q22 )



» We get

» Writing
a\ ([ Thu?+2ri,uv +ri,v2
b )\ Mu?+2r3,uv + ra,v?

» We get that the components of v”7 in the basis X, X,

are
U+ THu? + 2TLu'v + Th,v?
V' + T2,U2 + 2I,u'V + T3,V



» In particular the geodesic equation is a system of
second order ODE’s

U+ THU? + 2T LU v + Thv? =0
V' T U? + 2T5u'V +T5,v2 =0

where the six coefficients ', = ', (u, v) are smooth
functions on U, and the coefficients of u”, v are = 1.
» Write u = u(s) = ((u(s), v(s)) for a solution of the
system
» Write p for a point in U and v for a vector in R?, which
we think of as a tangent vector to U at p.



Standard existence and uniqueness theorem for such a
system of second oreder ODE'’s:

Theorem

» Given any py € U and any v, € R? there exist

1. Anbd W of (pg, Vo) in U x R?
2. Aninterval (—a,a) C R

» So that for any (p,v) € W there exists a unique
solution u(s) of the system satisfying the initial
conditions u(0) = p and u’(0) = v. Call this solution
U(S, P; V)’

» It depends smoothly on the initial conditions p,v in
the sense that the map u : (—a, a) x W — U given by
(s,p,V) — u(s, p,v) is smooth.



Some Properties of the Solutions

» May assume p = 0 and dyx is an isomtry
(equivalently, (g;(0)) = I unit matrix)

» Uniqueness of solutions gives
u(rs,p,v) =u(s,p,rv) forany re R

» Enough to consider solutions with |v(0)| = 1, at the
expense of changing interval of existence.

» Or any Vg so that |vo| = 1, there exists a
neighborhood V of vq and an a > 0 so that the
solution u(s, 0.v) exists for all (s,v) € (—a,a) x V

» Use compactness of S' to cover by finitely many V
and take b = minimum a.



» Lemma
There exists b € (0, o] so that the solution u(s, 0, v) of the
geodesic equation is defined for all (s,v) € (—b, b) x S'.
» In other words, for any fixed length ¢ < b all
geodesics through 0 in all directions v € S' are
defined up to c.

» b = oo is possible, in fact, it is the ideal situation.
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