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Recall: First Variation Formula for Arc-Length

I
S ⇢ R3 a smooth surface (given by f = 0,rF 6= 0)

I � : [0, L0] ! S a smooth curve, parametrized by
arclength, of length L0

I endpoints P = �(0) and Q = �(L0).
I Want necessary condition for � to be shortest smooth

curve on S from P to Q

I Calculus: consider variations of �.
I This means: a “curve c(t) of curves” with c(0) = �.
I More precisely: a smooth map �̃



�̃ : [0, L0]⇥(�✏, ✏) ! S with �̃(s, 0) = �(s) for all s 2 [0, L0].

with s being arclength on �̃(s, 0) but not necessarily on
�̃(s, t) for t 6= 0.

Figure: A Variation of �



I If, in addition, we have that

�̃(0, t) = P, �̃(L0, t) = Q for all t 2 (�✏, ✏),

we say that �̃ is a variation of � with fixed endpoints.

Figure: Variation of � with Fixed Endpoints



I Let

L(t) =

Z
L0

0
|@�̃
@s

(s, t)| ds.

I Necessay condition for a minimum:

dL

dt

(0) = 0

for all variations �̃ of � with fixed endpoints P,Q.
I Let’s compute dL

dt

(0) for arbitrary variations, then
specialize to variations with fixed endpoints.



I Begin with the formula for L(t)

L(t) =

Z
L0

0
(�̃

s
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s

(s, t))1/2
ds

I Differentiate under the integral sign
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I Evaluate at t = 0 using that �̃
s

(s, 0) · �̃
s

(s, 0) = 1

dL
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(0) =
Z

L0

0
�̃

st

(s, 0) · �̃
s

(s, 0) ds.



I Equality of mixed partial derivatives gives
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(0) =
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0
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(s, 0) · �̃
s
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I Integrate by parts, using the formula
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I Get
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I Define a vector field V (s) along � by

V (s) = �̃
t

(s, 0).

I This is called the variation vector field.
I

V (s) is the velocity vector of the curve t ! �̃(s, t) at
t = 0.

I
V (s) tells us the velocity at which �(s) initially moves
under the variation.

I If the variation preserves endpoints, then V (0) = 0
and V (L0) = 0,



Figure: Variation Vector Field



First Variation Formula:

I

dL

dt

(0) = V (s) · �0(s)|L0
0 �

Z
L0

0
V (s) · �00(s)T

ds.

I Since V (s) is tangent to S, we replaced �00(s) by its
tangential component �00T

I Necessary condition for minimum: dL

dt

(0) = 0 for all
variations �̃ of � with fixed endpoints.

I equivalently
Z

L0

0
V (s) · �00T = 0 8 V along � with v(0) = V (L0) = 0



I Finally this means �00T ⌘ 0.
I Reason: use “bump functions”



Covariant Derivative and Geodesic Equation

Definition
Let � : (a, b) ! S be a smooth curve and V : (a, b) ! R3

a smooth vector field along �, meaning that V is a smooth
map and for all s 2 (a, b), V (s) 2 T�(s)S, the tangent
plane to S at �(s).

1. The tangential component V

0(s)T is called the
covariant derivative of V and is denoted DV/Ds.

2. � is a geodesic if and only if D�0/Ds = 0 for all
s 2 (a, b).

3. 
g

(s) = |D�0/Ds| is called the geodesic curvature of
�.





Geodesics on S

2

I Equator and meridans are geodesics.
I Equator a local maximum among the parallels.









I If V ,W are vector fields along �, then

d

ds

(V · W ) =
DV

Ds

· W + V · DW

Ds

.

I If � is parametrized by arc-length, �0 · �0 ⌘ 1
I Therefore

D�0

Ds

· �0 ⌘ 0

I Thus D�0

Ds

is tangent to S and normal to �0.



I The first variation formula says that, if the endpoints
are fixed, length decreases most rapidly if we move in
the direction of D�0

Ds

.
I This means: if the variation field V (s) = �(s)D�0

Ds

(s) for
�(s) > 0 on (0, L0):

dL

dt

(0) = �
Z

L0

0
�(s)|D�0

Ds

(s)|2 ds

I Check this with parallels in S

2.





Length of curves in charts

I Recall smooth surface S = {f (x , y , z) = 0} ⇢ R3,
I rf 6= 0 on S,
I Chart (U,�) on S:

U ⇢ S ⇢ R3

�
??y

V ⇢ R2

I ��1(u, v) = x(u, v) = (x(u, v), y(u, v), z(u, v)).
I

f (x(u, v), y(u, v), z(u, v)) ⌘ 0.
I

x : V ! S is a “parametrization” of U ⇢ S.



Example

I
f (x , y , z) = x

2 + y

2 + z

2 � 1 = 0 sphere.
I

U = {(x , y , z) 2 S | z > 0} upper hemisphere,
I

V = {(u, v) 2 R2 | u

2 + v

2 < 1} unit disk in R2.
I �(x , y , z) = (x , y) projection.
I

x(u, v) = (u, v ,
p

1 � u

2 � v

2).

I
x is a parametrization of the upper hemisphere.





I Suppose � : [a, b] ! S lies in coordinate chart (U,�).

I Then �(t) = x(u(t), v(t)) for a unique curve

(u(t), v(t)) lying in V , namely � � �(t) = (u(t), v(t)).

I It is often convenient to do the calculations in terms
of (u(t), v(t)).

I Start with �(t) = x(u(t), v(t)) .

I �0(t) = x

u

u

0(t) + x

v

v

0(t) is its tangent vector.

I �0(t) · �0(t) is the norm squared of �0







I Explicitly �0(t) · �0(t) =

(x
u

u

0 + x

v

v

0) · (x
u

u

0 + x

v

v

0)

= (x
u

· x

u

)u02 + 2(x
u

· x

v

)u0
v

0 + (x
v

· x

v

)v 02

I At this point it is best to forget the curve � altogether,
work only with the expression

ds

2 = (x
u

· x

v

)du

2 + 2(x
u

· x

v

)dudv + (x
v

· x

v

)dv

2

I What does this mean?



I The length of a curve is given by integrating the
length of its tangent vector:

L(�) =

Z
b

a

(�0(t) · �0(t))
1
2
dt

I Could equally well be written as

L(�) =

Z

�

ds

I What is ds?



I
dx : T(u,v)V ! T

x(u,v)R3.
I If v 2 T(u,v)V , ds(v) = |dx(v)| = (dx(v) · dx(v))

1
2

I
ds is a function of two (vector) variables,(equivalently
4 real variables):

1. a point p = (u, v) 2 V .
2. a tangent vector v = (u0, v 0) 2 T

p

V



I Notation can be confusing: u, v , u0, v 0 can mean
1. Independent variables. Then ds(u,v)(u

0.v 0) = |d
p

x(v)|
as above.

2. If evaluated on a curve (u(t), v(t)), a < t < b, then ds

means the function of one variable

|d(u(t),v(t))x(u
0(t), v 0(t))|

where
u

0(t) =
du

dt

, v

0(t) =
dv

dt



I Going back to x : V ! U ⇢ S ⇢ R3, and (p, v) 2 T

p

V ,

I
ds

2 is a function of p, v, quadratic in v.

I
d

p

s(v)2 = |d
p

x(v)|2 (usual square norm in R3).

I
d

p

s

2(v) = (x
u

· x

u

)du

2 + 2(x
u

· x

v

)dudv + (x
v

· x

v

)dv

2,

I
du, dv are functions of p, v, linear in v

I If v = (u0, v 0), d
p

u(v) = u

0, d

p

v(v) = v

0



I In summary, we get

ds

2 = g11du

2 + 2g12dudv + g22dv

2

where g11, g12, g22 are smooth functions of u, v

I Moreover, at every (u, v) 2 V , the matrix

G =

✓
g11(u, v) g12(u, v)
g21(u, v) g22(u, v)

◆

is symmetric and positive definite.



I In fact,

�
u

0
v

0 �
✓

g11(u, v) g12(u, v)
g21(u, v) g22(u, v)

◆✓
u

0

v

0

◆

is the same as

�0(t) · �0(t) = (x
u

u

0 + x

v

v

0) · (x
u

u

0 + x

v

v

0)

which is � 0, and, since x

u

, x
v

are linearly

independent, = 0 if and only if (u0, v 0) = (0, 0)



I Equivalent Statement
✓

g11 g12

g21 g22

◆
=

✓
x

u

· x

u

x

u

· x

v

x

v

· x

u

x

v

· x

v

◆

I We see again that G is symmetric and positive
definite.



I Going back to � : [a, b] ! U ⇢ S, piecewise smooth,

�(t) = x(u(t), v(t)),
I Recall that the length of � is

L(�) =

Z
b

a

ds =

Z
b

a

(g11(u
0)2+2g12(u

0
v

0)+g22(v
0)2)

1
2
dt

where the g

ij

are evaluated at (u(t), v(t))
I Usually work with the expression for ds

2 without
using � explictly.



 

Some Remarks on Homework





















Example
Polar Coordinates: x = r cos ✓, y = r sin ✓.

Then dx = cos ✓ dr � r sin ✓ d✓, dy = sin ✓ dr + r cos ✓ d✓

and ds

2 = dx

2 + dy

2 =

(cos ✓ dr � r sin ✓ d✓)2 + (sin ✓ dr + r cos ✓ d✓)2

which simplifies to

ds

2 = dr

2 + r

2
d✓2, (1)



Theorem
Let � be a curve in R2

from the origin 0 to the circle C

R

of

radius R centered at 0.

Then

1. L(�) � R.

2. Equality holds if and only if gamma is a ray ✓ = const
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Proof.
Let �(t) = (r(t), ✓(t), 0  t  1. Then

L(�) =

Z 1

0
(r 0(t)2 + r(t)2✓0(t))

1
2
dt �

Z 1

0
r

0(t)dt = R

and equality holds if and only if ✓0(t) ⌘ 0.



Corollary
Given p, q 2 R2

, the shortest curve from p to q is the

straight line segment pq.



Example
Spherical coordinates:

x = sin� cos ✓, y = sin� sin ✓, and z = cos�

dx = cos� cos ✓ d�� sin� sin ✓ d✓,
dy = cos� sin ✓ d�+ sin� cos ✓ d✓, and

dz = � sin� d�.

ds

2 = d�2 + sin2 � d✓2





Theorem
Let � be a curve in S

2
from the north pole N to the

“geodesic circle” � = �0 of radius �0 centered at N, where

0 < �0 < ⇡.

Then

1. L(�) � �0.

2. Equality holds if and only if gamma is a great-circle

arc ✓ = const



Proof.
Let �(t) = (�(t), ✓(t))0  t  1. Then

L(�) =

Z 1

0
(�0(t)2 + sin2(�(t))✓0(t))

1
2
dt �

Z 1

0
�0(t)dt = �0

and equality holds if and only if ✓0(t) ⌘ 0.



Corollary

1. Given p, q 2 S

2
, not antipodal, the shortest curve

from p to q is the shorter of the two great-circle arcs

from p to q

2. If p and q are antipodal, there are infinitely many

curves of shortest length from p to q.





Geodesic Equation in Local Coordinates

I
x : V ! U ⇢ S ⇢ R3 as before.

I The vectors x

u

, x
v

form a basis for T

x(u,v)S

I �(s) = x(u(s), v(s))

I �0(s) = x

u

u

0 + x

v

v

00

I Differentiate once more:

�00 = x

u

u

00 + x

v

v

00 + x

uu

(u0)2 + 2x

uv

u

0
v

0 + x

vv

(v 0)2.

This section was not covered in class this week, but results were used.  more details next week.



I To find �00T , note that the first two terms are tangential
I Write the sum of the last three terms as

ax

u

+ bx

v

+ n

with a, b scalar functions of u, v and n(u, v) normal.
I Then

✓
(ax

u

+ bx

v

+ n) · x

u

(ax

u

+ bx

v

+ n) · x

v

◆
=

✓
g11 g12

g21 g22

◆✓
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b

◆



I On the other hand, the first vector is also
✓

(x
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u

0
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u
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0
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I Therefore, letting w = x

uu

(u0)2 + 2x

uv

u

0
v

0 + x
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(v 0)2,
✓

w · x

u

w · x

v

◆
=

✓
g11 g12

g21 g22

◆✓
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b

◆

I Therefore, if
✓

g

11
g

12

g

21
g

22

◆
=

✓
g11 g12

g21 g22

◆�1



I We get
✓

a

b

◆
=

✓
g

11
g

12

g

21
g

22

◆✓
w · x

u

w · x

v

◆

I Writing
✓

a

b

◆
=

✓
�1

11u

02 + 2�1
12u

0
v

0 + �1
22v

02

�2
11u

02 + 2�2
12u

0
v

0 + �2
22v

02

◆

I We get that the components of �00T in the basis x

u

, x
v

are ✓
u

00 + �1
11u

02 + 2�1
12u

0
v

0 + �1
22v

02

v

00 + �2
11u

02 + 2�2
12u

0
v

0 + �2
22v

02

◆



I In particular the geodesic equation is a system of
second order ODE’s

u

00 + �1
11u

02 + 2�1
12u

0
v

0 + �1
22v

02 = 0
v

00 + �2
11u

02 + 2�2
12u

0
v

0 + �2
22v

02 = 0

where the six coefficients �i

jk

= �i

jk

(u, v) are smooth
functions on U, and the coefficients of u

00, v 00 are ⌘ 1.
I Write u = u(s) = ((u(s), v(s)) for a solution of the

system
I Write p for a point in U and v for a vector in R2, which

we think of as a tangent vector to U at p.



Standard existence and uniqueness theorem for such a
system of second oreder ODE’s:

Theorem

I
Given any p0 2 U and any v0 2 R2

there exist

1. A nbd W of (p0, v0) in U ⇥ R2

2. An interval (�a, a) ⇢ R
I

So that for any (p, v) 2 W there exists a unique

solution u(s) of the system satisfying the initial

conditions u(0) = p and u

0(0) = v. Call this solution

u(s, p, v),

I
It depends smoothly on the initial conditions p, v in

the sense that the map u : (�a, a)⇥ W ! U given by

(s, p, v) 7! u(s, p, v) is smooth.



Some Properties of the Solutions

I May assume p = 0 and d0x is an isomtry
(equivalently, (g

ij

(0)) = I unit matrix)
I Uniqueness of solutions gives

u(rs, p, v) = u(s, p, rv) for any r 2 R

I Enough to consider solutions with |v(0)| = 1, at the
expense of changing interval of existence.

I or any v0 so that |v0| = 1, there exists a
neighborhood V of v0 and an a > 0 so that the
solution u(s, 0.v) exists for all (s, v) 2 (�a, a)⇥ V

I Use compactness of S

1 to cover by finitely many V

and take b = minimum a.



I Lemma
There exists b 2 (0,1] so that the solution u(s, 0, v) of the

geodesic equation is defined for all (s, v) 2 (�b, b)⇥ S

1
.

I In other words, for any fixed length c < b all
geodesics through 0 in all directions v 2 S

1 are
defined up to c.

I
b = 1 is possible, in fact, it is the ideal situation.



 
















