Introduction to Algebraic and Geometric Topology Week 14

Domingo Toledo

University of Utah

Fall 2017

Recall: First Variation Formula for Arc-Length

- ▶ $S \subset \mathbb{R}^3$ a smooth surface (given by $f = 0, \nabla F \neq 0$)
- $\gamma:[0,L_0]\to S$ a smooth curve, parametrized by farclength, of length L_0
- endpoints $P = \gamma(0)$ and $Q = \gamma(L_0)$.
- ▶ Want necessary condition for γ to be shortest smooth curve on S from P to Q
- ▶ Calculus: consider *variations of* γ .
- ▶ This means: a "curve c(t) of curves" with $c(0) = \gamma$.
- More precisely: a smooth map γ

$$\tilde{\gamma}: [0, L_0] \times (-\epsilon, \epsilon) \to S$$
 with $\tilde{\gamma}(s, 0) = \gamma(s)$ for all $s \in [0, L_0]$.

with s being arclength on $\tilde{\gamma}(s,0)$ but not necessarily on $\tilde{\gamma}(s,t)$ for $t \neq 0$.

Figure: A Variation of γ

▶ If, in addition, we have that

$$\tilde{\gamma}(0,t) = P, \ \tilde{\gamma}(L_0,t) = Q \text{ for all } t \in (-\epsilon,\epsilon),$$

we say that $\tilde{\gamma}$ is a variation of γ with fixed endpoints.

Figure: Variation of γ with Fixed Endpoints

Let

$$\mathcal{F}(S, \mathcal{O}) = \mathcal{F}(S)$$

$$L(t) = \int_{0}^{L_{0}} |\frac{\partial \tilde{\gamma}}{\partial s}(s, t)| ds.$$

Necessay condition for a minimum:

$$\frac{dL}{dt}(0) = 0$$

for all variations $\tilde{\gamma}$ of γ with fixed endpoints P, Q.

Let's compute $\frac{dL}{dt}(0)$ for arbitrary variations, then specialize to variations with fixed endpoints.

ightharpoonup Begin with the formula for L(t)

$$L(t) = \int_0^{L_0} (\tilde{\gamma}_s(s,t) \cdot \tilde{\gamma}_s(s,t))^{1/2} ds$$

Differentiate under the integral sign

$$\frac{dL}{dt} = \int_0^{L_0} \frac{1}{2} (\tilde{\gamma}_s(s,t) \cdot \tilde{\gamma}_s(s,t))^{-1/2} (2 \, \tilde{\gamma}_{st}(s,t) \cdot \tilde{\gamma}_s(s,t)) \, ds.$$

$$\blacktriangleright \text{ Evaluate at } t = 0 \text{ using that } \tilde{\gamma}_s(s,0) \cdot \tilde{\gamma}_s(s,0) = 1$$

$$\frac{dL}{dt}(0) = \int_0^{L_0} \tilde{\gamma}_{s}(s,0) \cdot \tilde{\gamma}_{s}(s,0) ds.$$

Equality of mixed partial derivatives gives

$$\frac{dL}{dt}(0) = \int_0^{L_0} \tilde{\gamma}_{ts}(s,0) \cdot \tilde{\gamma}_s(s,0) \ ds.$$
Integrate by parts, using the formula

$$(\tilde{\gamma}_t(s,0)\cdot\tilde{\gamma}_s(s,0))_s = \tilde{\gamma}_{ts}(s,0)\cdot\tilde{\gamma}_s(s,0) + \tilde{\gamma}_t(s,0)\cdot\tilde{\gamma}_{ss}(s,0)$$

Get

$$\frac{dL}{dt}(0) = (\tilde{\gamma}_t(s,0) \cdot \tilde{\gamma}_s(s,0))|_0^{L_0} - \int_0^{L_0} \tilde{\gamma}_t(s,0) \cdot \tilde{\gamma}_{ss}(s,0) ds$$

▶ Define a vector field V(s) along γ by

$$V(s) = \tilde{\gamma}_t(s, 0).$$

- ▶ This is called the *variation vector field*.
- ▶ V(s) is the velocity vector of the curve $t \to \tilde{\gamma}(s, t)$ at t = 0.
- ▶ V(s) tells us the velocity at which $\gamma(s)$ initially moves under the variation.
- If the variation preserves endpoints, then V(0) = 0 and $V(L_0) = 0$,

Figure: Variation Vector Field

First Variation Formula:

$$\frac{dL}{dt}(0) = V(s) \cdot \gamma'(s)|_{0}^{L_{0}} - \int_{0}^{L_{0}} \overline{V(s)} \cdot \gamma''(s)|_{0}^{L_{0}} ds.$$

- ▶ Since V(s) is tangent to S, we replaced $\gamma''(s)$ by its tangential component γ''^T
- Necessary condition for minimum: $\frac{dL}{dt}(0) = 0$ for all variations $\tilde{\gamma}$ of γ with fixed endpoints.
- equivalently

$$\int_0^{L_0} V(s) \cdot \gamma''^T = 0 \ \forall \ V \ \text{along} \ \gamma \ \text{with} \ v(0) = V(L_0) = 0$$

- Finally this means $\gamma''^T \equiv 0$.
- ► Reason: use "bump functions"

Covariant Derivative and Geodesic Equation

Definition

is sul

Let $\gamma:(a,b)\to S$ be a smooth curve and $V:(a,b)\to \mathbb{R}^3$ a smooth vector field along γ , meaning that V is a smooth map and for all $s\in(a,b),\ V(s)\in T_{\gamma(s)}S$, the tangent plane to S at $\gamma(s)$.

- 1. The tangential component $V'(s)^T$ is called the *covariant derivative* of V and is denoted DV/Ds.
- 2. γ is a *geodesic* if and only if $D\gamma'/Ds = 0$ for all $s \in (a, b)$.
- 3. $\kappa_g(s) = |D\gamma'/Ds|$ is called the *geodesic curvature* of γ .

of over a Nec Cond for Min geodesic Spherical coords $g(q,0) = \left(\frac{1}{2 \cos q} \cos q \right) = \left(\frac{1}{2 \cos q} \cos q$

Geodesics on S^2 Q = Co-leters

- ► Equator and meridans are geodesics.
- Equator a local maximum among the parallels.

▶ If V, W are vector fields along γ , then

$$\frac{d}{ds}(V \cdot W) = \frac{DV}{Ds} \cdot W + V \cdot \frac{DW}{Ds}.$$
If γ is parametrized by arc-length, $\gamma' \cdot \gamma' \equiv 1$

- Therefore

$$\frac{D\gamma'}{Ds} \cdot \gamma' \equiv 0$$

▶ Thus $\frac{D\gamma'}{Ds}$ is tangent to S and normal to γ' .

- ► The first variation formula says that, if the endpoints are fixed, length decreases most rapidly if we move in the direction of $\frac{D\gamma'}{D\alpha}$.
- ▶ This means: if the variation field $V(s) = \phi(s) \frac{D\gamma'}{Ds}(s)$ for

$$\phi(s) > 0$$
 on $(0, L_0)$:
$$\frac{dL}{dt}(0) = \int_0^{L_0} \frac{\phi(s)}{Ds} \frac{D\gamma'}{Ds}(s)|^2 ds$$

• Check this with parallels in S^2 .

Length of curves in charts

- ▶ Recall smooth surface $S = \{f(x, y, z) = 0\} \subset \mathbb{R}^3$,
- ▶ $\nabla f \neq 0$ on S,
- Chart (*U*, φ) on *S*:

$$egin{array}{cccc} U &\subset \mathcal{S} &\subset \mathbb{R}^3 \ \phi & & & & & & & & \ V & \subset & \mathbb{R}^2 \end{array}$$

- $\phi^{-1}(u,v) = \mathbf{x}(u,v) = (x(u,v),y(u,v),z(u,v)).$
- $f(x(u,v),y(u,v),z(u,v)) \equiv 0.$
- ▶ $\mathbf{x}: V \to S$ is a "parametrization" of $U \subset S$.

Example

- $f(x, y, z) = x^2 + y^2 + z^2 1 = 0$ sphere.
- ▶ $U = \{(x, y, z) \in S \mid z > 0\}$ upper hemisphere,
- ▶ $V = \{(u, v) \in \mathbb{R}^2 \mid u^2 + v^2 < 1\}$ unit disk in \mathbb{R}^2 .
- $\phi(x, y, z) = (x, y)$ projection.
- \blacktriangleright **X** $(u, v) = (u, v, \sqrt{1 u^2 v^2}).$
- **x** is a parametrization of the upper hemisphere.

- ▶ Suppose γ : [a, b] \rightarrow S lies in coordinate chart (U, ϕ).
- ► Then $\gamma(t) = \mathbf{x}(u(t), v(t))$ for a unique curve (u(t), v(t)) lying in V, namely $\phi \circ \gamma(t) = (u(t), v(t))$.
- ▶ It is often convenient to do the calculations in terms of (u(t), v(t)).
- ▶ Start with $\gamma(t) = \mathbf{x}(u(t), v(t))$.
- $ho \gamma'(t) = \mathbf{x}_u u'(t) + \mathbf{x}_v v'(t)$ is its tangent vector.
- $\gamma'(t) \cdot \gamma'(t)$ is the norm squared of γ'

abounde; $ds^2 = (\tilde{x}_n \cdot \tilde{x}_n) du^2 + 2 (\tilde{x}_n \cdot \tilde{x}_s) du d\sigma$ $+ (\tilde{x}_s \cdot \tilde{x}_s) dv^2$

get . Be ley 5 h interes,

Explicitly
$$\gamma'(t) \cdot \gamma'(t) =$$

$$(\mathbf{x}_{u}u' + \mathbf{x}_{v}v') \cdot (\mathbf{x}_{u}u' + \mathbf{x}_{v}v')$$

$$= (\mathbf{x}_{u} \cdot \mathbf{x}_{u})u'^{2} + 2(\mathbf{x}_{u} \cdot \mathbf{x}_{v})u'v' + (\mathbf{x}_{v} \cdot \mathbf{x}_{v})v'^{2}$$

 \blacktriangleright At this point it is best to forget the curve γ altogether, work only with the expression

$$ds^2 = (\mathbf{x}_u \cdot \mathbf{x}_v) du^2 + 2(\mathbf{x}_u \cdot \mathbf{x}_v) du dv + (\mathbf{x}_v \cdot \mathbf{x}_v) dv^2$$

What does this mean?

► The length of a curve is given by integrating the length of its tangent vector:

$$L(\gamma) = \int_a^b (\gamma'(t) \cdot \gamma'(t))^{\frac{1}{2}} dt$$

Could equally well be written as

$$L(\gamma) = \int_{\gamma} ds$$

▶ What is *ds*?

- If $\mathbf{v} \in T_{(u,v)}V$, $d\mathbf{s}(\mathbf{v}) = |d\mathbf{x}(\mathbf{v})| = (d\mathbf{x}(\mathbf{v}) \cdot d\mathbf{x}(\mathbf{v}))^{\frac{1}{2}}$
- ds is a function of two (vector) variables,(equivalently 4 real variables):
 - 1. a point $p = (u, v) \in V$.
 - 2. a tangent vector $\mathbf{v} = (u', v') \in T_D V$

- Notation can be confusing: u, v, u', v' can mean
 - 1. Independent variables. Then $ds_{(u,v)}(u'.v') = |d_p \mathbf{x}(\mathbf{v})|$ as above.
 - 2. If evaluated on a curve (u(t), v(t)), a < t < b, then ds means the function of one variable

$$|d_{(u(t),v(t))}\mathbf{x}(u'(t),v'(t))|$$

where

$$u'(t) = \frac{du}{dt}, \quad v'(t) = \frac{dv}{dt}$$

- ▶ Going back to $\mathbf{x}: V \to U \subset S \subset \mathbb{R}^3$, and $(p, \mathbf{v}) \in T_p V$,
- ds^2 is a function of p, \mathbf{v} , quadratic in \mathbf{v} .
- $d_{\rho}s(\mathbf{v})^2 = |d_{\rho}\mathbf{x}(\mathbf{v})|^2$ (usual square norm in \mathbb{R}^3).

- \rightarrow du, dv are functions of p, v, linear in v
- $If \mathbf{v} = (u', v'), d_{\mathcal{D}}u(\mathbf{v}) = u', d_{\mathcal{D}}v(\mathbf{v}) = v'$

► In summary, we get

$$ds^2 = g_{11}du^2 + 2g_{12}dudv + g_{22}dv^2$$

where g_{11}, g_{12}, g_{22} are smooth functions of u, v

▶ Moreover, at every $(u, v) \in V$, the matrix

$$G = \left(egin{array}{ccc} g_{11}(u,v) & g_{12}(u,v) \ g_{21}(u,v) & g_{22}(u,v) \end{array}
ight)$$

is symmetric and positive definite.

► In fact,

$$\begin{pmatrix} u' & v' \end{pmatrix} \begin{pmatrix} g_{11}(u,v) & g_{12}(u,v) \\ g_{21}(u,v) & g_{22}(u,v) \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix}$$

is the same as

$$\gamma'(t) \cdot \gamma'(t) = (\mathbf{x}_{u}u' + \mathbf{x}_{v}v') \cdot (\mathbf{x}_{u}u' + \mathbf{x}_{v}v')$$

which is ≥ 0 , and, since $\mathbf{x}_u, \mathbf{x}_v$ are linearly

independent, = 0 if and only if (u', v') = (0, 0)

► Equivalent Statement

$$\left(egin{array}{ccc} g_{11} & g_{12} \ g_{21} & g_{22} \end{array}
ight) = \left(egin{array}{ccc} \mathbf{x}_u \cdot \mathbf{x}_u & \mathbf{x}_u \cdot \mathbf{x}_v \ \mathbf{x}_v \cdot \mathbf{x}_u & \mathbf{x}_v \cdot \mathbf{x}_v \end{array}
ight)$$

► We see again that *G* is symmetric and positive definite.

▶ Going back to γ : $[a,b] \rightarrow U \subset S$, piecewise smooth,

$$\gamma(t) = \mathbf{x}(u(t), v(t)),$$

ightharpoonup Recall that the length of γ is

$$L(\gamma) = \int_a^b ds = \int_a^b (g_{11}(u')^2 + 2g_{12}(u'v') + g_{22}(v')^2)^{\frac{1}{2}} dt$$

where the g_{ii} are evaluated at (u(t), v(t))

▶ Usually work with the expression for ds^2 without using γ explictly.

Some Remarks on Homework

$$f\left(x_{19}\right) = g\left(\frac{x_{1}y}{x_{1}y_{1}}\right) = e$$

$$f\left(x_{19}\right) = e$$

$$f\left(x_{1$$

 $f(n) = g(k) \quad \text{for } g(n) = \frac{1}{2} - \frac{1}{2} = \frac{1}{$

fextends so a sund form a of

\[
\begin{align*}
\times \frac{\chi}{\pi_{\sqrt{\gamma}}} & \text{ sugr} \\
\times \frac{\chi}{\pi_{\sqrt{\gamma}}} & \frac{1}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\chi}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\chi}{\pi_{\sqrt{\gamma}}}} \\
\times \frac{\chi}{\pi_{\sqrt{\gamma}}} & \frac{1}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\chi}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\chi}{\pi_{\sqrt{\gamma}}}} \\
\times \frac{\pi}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} \\
\times \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} \\
\tag{\gamma} \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} \\
\tag{\gamma} \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} \\
\tag{\gamma} \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} \\
\tag{\gamma} \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}} \\
\tag{\gamma} \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}}} \\
\tag{\gamma} \text{ \frac{\pi_{\sqrt{\gamma}}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}}} \\
\tag{\gamma} \text{ \frac{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}} \\
\tag{\gamma} \text{ \frac{\pi_{\sqrt{\gamma}}}}{\pi_{\sqrt{\gamma}}} & \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}}} \\
\tag{\gamma} \text{ \frac{\pi_{\sqrt{\gamma}}}{\pi_{\sqrt{\gamma}}}} & \text{

Intrisic geom of Surf

Glodina: Cline $T:(a,b) \rightarrow S$ $(3^{11})^T = 0$

To study es

Mocal coordners

Chart laba; la

 $\frac{1}{2}$

 $\overline{X}: \overline{U} \rightarrow R$ $\overline{X}: \overline{U} \rightarrow R$

911, 912, 922 911 = hown. (100)

Ter -- (0,1)2

Per = det predek (1,0) + 2(0,4)

(d ? . d]

Polar coords.

RtxR = R2 r, o = (pera, ren m

drid, = (andr, smodr)dr

(drass = rmode, drana de 1800 do) (drest-rome de) 1 (dromo + and do)2 dr 2 cm26 - 2 roma drie + r2 mm and 2 1 dra pura 1 2 r Dra melak Ir ena do 2 dr2 + 0 + 12 do2 = \langle dr^2 + r^2 d\text{0}^2 One Gual: Any Sorface fina ugeodesa polar $\int dr^2 + g(r, o)^2 d\theta^2$

Next: Thry of 2'ndurk ODES

regeodesrd poler coords

2'rd order ODE 3! N P, F

Example

Polar Coordinates: $x = r \cos \theta$, $y = r \sin \theta$.

Then $dx = \cos \theta \ dr - r \sin \theta \ d\theta$, $dy = \sin \theta \ dr + r \cos \theta \ d\theta$

and
$$ds^2 = dx^2 + dy^2 =$$

$$(\cos\theta \ dr - r\sin\theta \ d\theta)^2 + (\sin\theta \ dr + r\cos\theta \ d\theta)^2$$

which simplifies to

$$ds^2 = dr^2 + r^2 d\theta^2, \tag{1}$$

Theorem

Let γ be a curve in \mathbb{R}^2 from the origin 0 to the circle C_R of radius R centered at 0.

Then

- 1. $L(\gamma) \geq R$.
- 2. Equality holds if and only if gamma is a ray $\theta = const$

Proof.

Let
$$\gamma(t) = (r(t), \theta(t), 0 \le t \le 1$$
. Then

$$L(\gamma) = \int_0^1 (r'(t)^2 + r(t)^2 \theta'(t))^{\frac{1}{2}} dt \ge \int_0^1 r'(t) dt = R$$

and equality holds if and only if
$$\theta'(t) \equiv 0$$
.

Corollary

Given $p, q \in \mathbb{R}^2$, the shortest curve from p to q is the straight line segment \overline{pq} .

Example

Spherical coordinates:

$$x = \sin \phi \cos \theta$$
, $y = \sin \phi \sin \theta$, and $z = \cos \phi$

$$dx = \cos\phi\cos\theta \ d\phi - \sin\phi\sin\theta \ d\theta,$$

$$dy = \cos \phi \sin \theta \ d\phi + \sin \phi \cos \theta \ d\theta$$
, and

$$dz = -\sin\phi \ d\phi$$
.

$$ds^2 = d\phi^2 + \sin^2\phi \ d\theta^2$$

Theorem

Let γ be a curve in S^2 from the north pole N to the "geodesic circle" $\phi=\phi_0$ of radius ϕ_0 centered at N, where $0<\phi_0<\pi$.

Then

- 1. $L(\gamma) \geq \phi_0$.
- 2. Equality holds if and only if gamma is a great-circle arc $\theta = const$

Proof.

Let $\gamma(t) = (\phi(t), \theta(t)) \le t \le 1$. Then

$$L(\gamma) = \int_0^1 (\phi'(t)^2 + \sin^2(\phi(t))\theta'(t))^{\frac{1}{2}} dt \ge \int_0^1 \phi'(t) dt = \phi_0$$

and equality holds if and only if $\theta'(t) \equiv 0$.

Corollary

- 1. Given $p, q \in S^2$, not antipodal, the shortest curve from p to q is the shorter of the two great-circle arcs from p to q
- 2. If p and q are antipodal, there are infinitely many curves of shortest length from p to q.

Geodesic Equation in Local Coordinates

This section was not covered in class this week, but results were used. more details next week.

- ▶ $\mathbf{x}: V \to U \subset S \subset \mathbb{R}^3$ as before.
- ▶ The vectors $\mathbf{x}_u, \mathbf{x}_v$ form a basis for $T_{\mathbf{x}(u,v)}S$
- $> \gamma(s) = \mathbf{x}(u(s), v(s))$
- $> \gamma'(s) = \mathbf{X}_{u}u' + \mathbf{X}_{v}v''$
- Differentiate once more:

$$\gamma'' = \mathbf{X}_{u}u'' + \mathbf{X}_{v}v'' + \mathbf{X}_{uu}(u')^{2} + 2\mathbf{X}_{uv}u'v' + \mathbf{X}_{vv}(v')^{2}.$$

- ▶ To find γ''^T , note that the first two terms are tangential
- Write the sum of the last three terms as

$$a\mathbf{x}_{u}+b\mathbf{x}_{v}+\mathbf{n}$$

with a, b scalar functions of u, v and $\mathbf{n}(u, v)$ normal.

► Then

$$\begin{pmatrix} (a\mathbf{x}_u + b\mathbf{x}_v + \mathbf{n}) \cdot \mathbf{x}_u \\ (a\mathbf{x}_u + b\mathbf{x}_v + \mathbf{n}) \cdot \mathbf{x}_v \end{pmatrix} = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

On the other hand, the first vector is also

$$\begin{pmatrix} (\mathbf{X}_{UU}(U')^2 + 2\mathbf{X}_{UV}U'V' + \mathbf{X}_{VV}(V')^2) \cdot \mathbf{X}_{U} \\ (\mathbf{X}_{UU}(U')^2 + 2\mathbf{X}_{UV}U'V' + \mathbf{X}_{VV}(V')^2) \cdot \mathbf{X}_{V} \end{pmatrix}$$

► Therefore, letting $\mathbf{w} = \mathbf{x}_{uu}(u')^2 + 2\mathbf{x}_{uv}u'v' + \mathbf{x}_{vv}(v')^2$,

$$\left(egin{array}{c} \mathbf{w}\cdot\mathbf{x}_u \ \mathbf{w}\cdot\mathbf{x}_v \end{array}
ight) = \left(egin{array}{c} g_{11} & g_{12} \ g_{21} & g_{22} \end{array}
ight) \left(egin{array}{c} a \ b \end{array}
ight)$$

► Therefore, if

$$\left(egin{array}{cc} g^{11} & g^{12} \ g^{21} & g^{22} \end{array}
ight) = \left(egin{array}{cc} g_{11} & g_{12} \ g_{21} & g_{22} \end{array}
ight)^{-1}$$

We get

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} g^{11} & g^{12} \\ g^{21} & g^{22} \end{pmatrix} \begin{pmatrix} \mathbf{w} \cdot \mathbf{x}_u \\ \mathbf{w} \cdot \mathbf{x}_v \end{pmatrix}$$

Writing

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \Gamma_{11}^1 u'^2 + 2\Gamma_{12}^1 u'v' + \Gamma_{22}^1 v'^2 \\ \Gamma_{11}^2 u'^2 + 2\Gamma_{12}^2 u'v' + \Gamma_{22}^2 v'^2 \end{pmatrix}$$

• We get that the components of γ''^T in the basis $\mathbf{x}_u, \mathbf{x}_v$ are

$$\begin{pmatrix} u'' + \Gamma_{11}^1 u'^2 + 2\Gamma_{12}^1 u'v' + \Gamma_{22}^1 v'^2 \\ v'' + \Gamma_{21}^1 u'^2 + 2\Gamma_{22}^2 u'v' + \Gamma_{22}^2 v'^2 \end{pmatrix}$$

In particular the geodesic equation is a system of second order ODE's

$$u'' + \Gamma_{11}^1 u'^2 + 2\Gamma_{12}^1 u' v' + \Gamma_{22}^1 v'^2 = 0$$

$$v'' + \Gamma_{11}^2 u'^2 + 2\Gamma_{12}^2 u' v' + \Gamma_{22}^2 v'^2 = 0$$

where the six coefficients $\Gamma^i_{jk} = \Gamma^i_{jk}(u, v)$ are smooth functions on U, and the coefficients of u'', v'' are $\equiv 1$.

- ▶ Write $\mathbf{u} = \mathbf{u}(s) = ((u(s), v(s)))$ for a solution of the system
- ▶ Write p for a point in U and \mathbf{v} for a vector in \mathbb{R}^2 , which we think of as a tangent vector to U at p.

Standard existence and uniqueness theorem for such a system of second oreder ODE's:

Theorem

- ▶ Given any $p_0 \in U$ and any $\mathbf{v}_0 \in \mathbb{R}^2$ there exist
 - 1. A nbd W of (p_0, \mathbf{v}_0) in $U \times \mathbb{R}^2$
 - 2. An interval $(-a, a) \subset \mathbb{R}$
- So that for any $(p, \mathbf{v}) \in W$ there exists a unique solution $\mathbf{u}(s)$ of the system satisfying the initial conditions $\mathbf{u}(0) = p$ and $\mathbf{u}'(0) = \mathbf{v}$. Call this solution $\mathbf{u}(s, p, \mathbf{v})$,
- ▶ It depends smoothly on the initial conditions p, \mathbf{v} in the sense that the map $\mathbf{u} : (-a, a) \times W \rightarrow U$ given by $(s, p, \mathbf{v}) \mapsto \mathbf{u}(s, p, \mathbf{v})$ is smooth.

Some Properties of the Solutions

- May assume p = 0 and $d_0 \mathbf{x}$ is an isomtry (equivalently, $(g_{ij}(0)) = I$ unit matrix)
- Uniqueness of solutions gives

$$\mathbf{u}(rs, p, \mathbf{v}) = \mathbf{u}(s, p, r\mathbf{v})$$
 for any $r \in \mathbb{R}$

- ► Enough to consider solutions with $|\mathbf{v}(0)| = 1$, at the expense of changing interval of existence.
- or any \mathbf{v}_0 so that $|\mathbf{v}_0| = 1$, there exists a neighborhood V of \mathbf{v}_0 and an a > 0 so that the solution $\mathbf{u}(s, 0.\mathbf{v})$ exists for all $(s, \mathbf{v}) \in (-a, a) \times V$
- ▶ Use compactness of S^1 to cover by finitely many V and take b = minimum a.

Lemma

There exists $b \in (0, \infty]$ so that the solution $\mathbf{u}(s, 0, \mathbf{v})$ of the geodesic equation is defined for all $(s, \mathbf{v}) \in (-b, b) \times S^1$.

- ▶ In other words, for any fixed length c < b all geodesics through 0 in all directions $\mathbf{v} \in S^1$ are defined up to c.
- $b = \infty$ is possible, in fact, it is the ideal situation.

P, 8'(0) = T (-theolog at Speed 171) Teme | T | inter h'(0) = $\frac{v}{|v|}$ Fact Cando this for any
Surfice
Follows ODE applied to
geod equation First Explain Conseguences To Sealler S

exponential map

exponential map Normal Coordinates lob: Tp 5. - 5 reclayala Cond U, v To Tp 5 or polarcosto r, o

(DO)

(DO)

(geodesic polar coordinates)

 $(der \phi \cdot der b) = g_{i,1}(u,v) du^{2} +$ $Zg_{i,2}(u,v) du dv$ $+ g_{in}(u,v) dv^{2}$

CETAT + CE) drds + CG) d62

F?G? $\frac{\partial}{\partial \theta} \frac{\partial \psi_{0}(r,\theta)}{\partial \theta} = \theta_{0}$ = V(r) = Varrection fld.

dr²+ AFdraa + 4do²

Jenh. Jush =0

 $dr^{2} + 4do^{2}$ $f \ge 0$ $f = g(r, o)^{2}$ $g(r, o) \ge 0$

E fr () = (2 Mb 4) 2

K

Any sort S, any pt PES Soft shall Abd have good polar

coords

dr2+g(156)2 d62

Metrec 11

Riemannien Metric 1

Jup Jen

(# F) = (3mb, 8mb sigh, 3mb, 3mb, 3mb, 3mb, 3mb, 3mb)

(on seg vence: geodesic segments from o in geod polar esords are absolute muning core Mers: P, U any cure in the from P to Q L = Story 1(4) dt r(t), 6(4) $= \int_{0}^{r_{i}} \sqrt{\left(\frac{dr}{dr}\right)^{2} + g(r_{i})^{2}} \frac{d\sigma}{dr} d\tau$ 3 (dr)2 lt Jode H- 20 L(8) 210) = = = 0

Proved length of any cone in U from P to I coule ? To

$$\int_{0}^{2\pi} g(r, \theta) d\theta$$

$$\int_{0}^{2\pi} g(r, \theta) d\theta$$

$$\int_{0}^{2\pi} g(r, \theta) d\theta$$

$$+ C_{3}(\theta) r + C_{3}(\theta) r + C_{2}(\theta) r^{2}$$

$$+ C_{3}(\theta) r^{3} + O(r^{4})$$

$$(1 \le C r^{4})$$

 $Ex: dr^2 + sin^2 r d\theta^2 = \frac{r = \varphi}{s^2}$ $Sin r = r - \frac{k}{s^2} = -\frac{r}{s}$ $C = \frac{-k}{s}$

Det K(p) = = 6C

of 5 at \$-

c=-1 K-6(-6)=1

Controls Jeadons tern Menur from Evelideon.