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Recall: Quotient Topology
I Definition

Let
1. (X , TX ) be a topological space,
2. Y a set
3. f : X ! Y a surjective map.

The quotient topology TY on Y , is defined as

TY = {U ⇢ Y | f
�1(U) 2 TX}

I TY is the largest topology on Y that makes f

continuous.





Recall: Identification
I Definition

Let
1. f : (X , TX ), (Y , TY ) be topological spaces.
2. f : X ! Y a surjective map.

f is called an identification if and only if TY is the quotient
topology just defined:

TY = {U ⇢ Y | f
�1(U) 2 TX}

I Equivalent statements: A surjective map f : X ! Y is
an identification if and only if

I

U open in Y () f
�1(U) is open in X

I

F closed in Y () f
�1(F ) is closed in X



Recall: Examples

1. f1 : R ! S1 defined by f (t) = (cos t , sin t).

2. f2 : [0, 2⇡) ! S1 same formula.

3. f3 : [0, 2⇡] ! S1 same formula.

1 and 3 are identifications, 2 is not.



Sufficient Conditions for Identification
1. Recall definition ot open map and closed map

2. f : X ! Y continuous, surjective and open =)
identification.

3. f : X ! Y continuous, surjective and closed =)
identification.





Checking Identifications

I Useful facts:
I Suppose f : X ! Y , A ⇢ X ,B ⇢ Y . Then

1. f (f�1(B)) ⇢ B

2. If f is surjective, f (f�1(B)) = B

3. A ⇢ f�1(f (A)).

4. If f is surjective, then

A = f
�1(B) for some B ⇢ Y () A = f

�1(f (A))

and, in this case, B = f (A).



Continuous Maps

I X ,Y ,Z topological spaces.
I f : X ! Y identification,
I g : Y ! Z a map.
I Then g is continuous () g � f is continuous

X
g�f�! Z

f

??y % g

Y



I Proof:
I If U ⇢ Z , then

(g � f )�1(U) = f
�1(g�1(U))

I Thus, if U ⇢ Z ,

g
�1(U) is open () (g � f )�1(U) is open

I Thus g continuous () g � f is continuous.



I Equivalent Formulation:
I X ,Y ,Z topological spaces, f : X ! Y an

identification.
I h : X ! Z a map that is constant on the fibers f�1(y)

of f .
I Then the map g in the following diagram is defined:

X
h�! Z

f

??y % g

Y

I g is continuous () h is continuous.





I Example: Periodic functions h : R ! R

R h�! R
f

??y % g

S1

where f (t) = (cos t , sin t).





I Example: Doubly periodic functions h : R2 ! R
h(s+2⇡, t) = h(s, t) and h(s, t+2⇡) = h(s, t) 8(s, t) 2 R2

I Let T be the torus S1 ⇥ S1

T = {(x1, x2, x3, x4) 2 R4 | x
2
1 + x

2
2 = x

2
3 + x

2
4 = 1}

and f : R2 ! T be defined by

f (s, t) = (cos s, sin s, cos t , sin t).

I Then f is an identification and h is continuous () g

is continuous:

R2 h�! R
f

??y % g

T





Equivalence Relations
I f : X ! Y surjective map of sets ()

equivalence relation on X :

x1 ⇠ x2 () f (x1) = f (x2).

I f : X ! Y surjective map of sets ()

Partition of X into disjoint subsets

X =
a

y2Y

f
�1(y)



Connected Components

I Let X be a topological space. Define a relation

x ⇠ y () 9 a connected C ⇢ X with x , y 2 C

I Theorem
The relation just defined is an equivalence relation.

I Proof.
Clearly x ⇠ x and x ⇠ y () y ⇠ x .
Transitivity x ⇠ y and y ⇠ z =) x ⇠ z follows from the
next lemma.



Lemma
If C1,C2 ⇢ X are connected and C1 \ C2 6= ;, then

C1 [ C2 is connected.



Better Lemma:

Lemma

I Let {C↵}↵2A be a collection of connected subsets of

X indexed by a set A. Suppose that \↵C↵ 6= ;, Then

[↵C↵ is connected.

I Suppose C ⇢ X is connected. Then its closure C is

connected.



I Definition
The equivalence classes of the equivalence relation just
defined are called the connected components of X .

I If x 2 X , let Cx be the connected component of X

containing x .

Theorem
I Cx is the largest connected subset of X containing x.

I Cx is closed in X.















Definition
Let ⇡0(X ) denote the set of connected components of X .

I There is a surjective map ⇡ : X ! ⇡0(X ) defined by

⇡(x) = Cx ,

the connected component of X containing x .
I card(⇡0(X )) = 1 () X is connected.
I In general, card(⇡0(X )) is the number of connected

components of X .
I ⇡0(X ) is a topological space, with the quotient

topology.



I If f : X ! Y is continuous, there is a map, first of sets,

f⇤ : ⇡0(X ) ! ⇡0(Y )

defined by
f⇤(C

X

x
) ! C

Y

f (x)

where CX

x
and CY

y
denote the connected components

of x in X and of y in Y respectively.

I Exercise 1: f⇤ is well-defined:
x ⇠ x 0 =) CY

f (x) = CY

f (x 0).



I Reason: x ⇠ x 0 () CX

x
= CX

x 0

and f (CX

x
) is a connected subset of Y contaning f (x),

hence
f (CX

x
) ⇢ CY

f (x).

I Exercise 2: f homeomorphism =) f⇤ bijective.

I Exercise 3: f⇤ is continuous.

I Exercise 4: f homeomorphism =) f⇤
homeomorphism.





Examples

I ⇡0(Rn) has cardinality one for n = 1, 2, . . . .

I If X is discrete ⇡ : X ! ⇡0(X ) is a homeomorphism.

I Homework Problem : X locally connected =) ⇡0(X )
is discrete.



Theorem
For n � 2, R is not homeomorphic to Rn.



I Same argument: the unit interval I is not
homeomorphic to I ⇥ I.

I This was used in the proof that the Euclidean and
taxi-cab metrics not being isometric.



Theorem
Let X be the subspace of R2 of the letter ”X”. Let x0 be

the junction point of the four ”branches” of X , and let

x1, x2, x3, x4 be the other endpoints of the branches. Let

f : X ! X be a homeomorphism.

Then f (x0) = x0 and f permutes the points x1, . . . , x4.



I If X is the Cantor set, what is ⇡0(X )?
I Some information in the homework.



I Let’s go back to the definition of f⇤:

I If f : X ! Y is continuous, there is a map, first of sets,

f⇤ : ⇡0(X ) ! ⇡0(Y )

defined by
f⇤(C

X

x
) ! C

Y

f (x)

where CX

x
and CY

y
denote the connected components

of x in X and of y in Y respectively.

I Exercise 1: f⇤ is well-defined:
x ⇠ x 0 =) CY

f (x) = CY

f (x 0).



I Better to first say:

Theorem
1. The connected components of X are the maximal

connected subsets of X .

2. Every non-empty connected subset of X is contained

in a unique maximal connected subset.



I Then CY

f (x) is the maximal connected subspace of Y

containing f (Cx).
I So is CY

f (x 0) for any x 0 2 Cx .
I So CY

f (x) = CY

f (x 0)



I In the same spirit as looking at homeomophisms of
the letter X :

I Exercise: Classify the (capital) letters A,B,C, . . .Z of
the Roman alphabet up to homeomorphism.









Surfaces

Definition
A topological surface is a Hausdorff space with a
countable basis that is locally homeomorphic to R2.





Examples

I An open subset of R2

I The unit sphere S2 ⇢ R3





I Let u ⇢ R3 be open, let f : U ! R be a function of
class C1, and suppose that the gradient rx f 6= 0 at
any point x where f (x) = 0. Then

{x 2 R3 |f (x) = 0}

is a topological surface.
I Reason: The implicit function theorem.

(Will review and prove)



Surfaces as Identification Spaces

Example: Torus







Surface of Genus Two

Figure: Identifying Octagon



Figure: Surface of Genus Two







Non-Hausdorff Quotient Spaces





A non-Hausdorff “Surface”



Existence theorems based on connectedness

I The intermediate value theorem.



I The implicit function theorem.




