Introduction to Algebraic and Geometric Topology Week 10

Domingo Toledo

University of Utah

Fall 2017

Recall: Quotient Topology

- Let
 - 1. (X, \mathcal{T}_X) be a topological space,
 - 2. *Y* a set
 - 3. $f: X \to Y$ a surjective map.

The *quotient topology* \mathcal{T}_Y on Y, is defined as

$$T_{Y} = \{ \bigcup_{X \in X} C(X) \mid f^{-1}(U) \in \mathcal{T}_{X} \}$$

T_Y is the largest topology on Y that makes f continuous.

Recall: Identification

Definition

Let

- 1. $f:(X,\mathcal{T}_X),(Y,\mathcal{T}_Y)$ be topological spaces.
- 2. $f: X \rightarrow Y$ a surjective map.

f is called an *identification* if and only if T_Y is the quotient topology just defined:

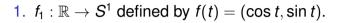
$$T_Y = \{U \subset Y \mid f^{-1}(U) \in \mathcal{T}_X\}$$

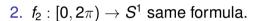
► Equivalent statements: A surjective map f : X → Y is an identification if and only if

U open in
$$Y \iff f^{-1}(U)$$
 is open in X

$$F \text{ closed in } Y \iff f^{-1}(F) \text{ is closed in } X$$

Recall: Examples



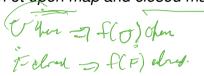


3.
$$f_3:[0,2\pi]\to S^1$$
 same formula.

1) and 3) are identifications, 2 is not.

Sufficient Conditions for Identification

1. Recall definition of open map and closed map



2. $f: X \to Y$ continuous, surjective and open \Longrightarrow identification.

3. $f: X \to Y$ continuous, surjective and *closed* \Longrightarrow identification.

soff 1 4(4) f surreduing to PCH elt

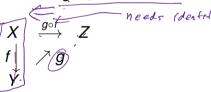
Checking Identifications

- Useful facts:
- ▶ Suppose $f: X \rightarrow Y$, $A \subset X$, $B \subset Y$. Then
 - **1.** $f(f^{-1}(B))$ ⊂ B
 - 2. If f is surjective, $f(f^{-1}(B)) \equiv B$
 - 3. $A \subset f^{-1}(f(A))$.
 - 4. If f is surjective, then

$$A = f^{-1}(B) \text{ for some } B \subset Y \iff A = f^{-1}(f(A))$$
 and, in this case, $B = f(A)$.

Continuous Maps

- ► *X*, *Y*, *Z* topological spaces.
- ▶ $f: X \rightarrow Y$ identification,
- $g: Y \to Z$ a map.
- ▶ Then g is continuous $\iff g \circ f$ is continuous



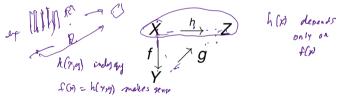
- Proof:
- ▶ If $U \subset Z$, then

$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$$

▶ Thus, if $U \subset Z$,

$$\underbrace{g^{-1}(U)}_{\text{former}} \text{ is open} \iff (g \circ f)^{-1}(U)_{\text{former}} \text{ is open}$$
Thus $g \text{ continuous} \iff g \circ f \text{ is continuous}.$

- Equivalent Formulation:
- ▶ X, Y, Z topological spaces, f : X → Y an identification.
- ▶ $h: X \to Z$ a map that is constant on the fibers $f^{-1}(y)$ of f.
- ▶ Then the map *g* in the following diagram is defined:



▶ g is continuous \iff h is continuous.

▶ Example: Periodic functions $h: \mathbb{R} \to \mathbb{R}$

Example. Periodic functions
$$H : \mathbb{R} \to \mathbb{R}$$

$$f(x \mapsto \pi \cdot y) = f(x)$$

$$f \neq g$$

$$f \neq g$$

$$f \neq g$$

$$f(x) = f(t) = e^{ct} = x$$

where $f(t) = (\cos t, \sin t)$.

- ► Example: Doubly periodic functions $h : \mathbb{R}^2 \to \mathbb{R}$ $h(s+2\pi,t) = h(s,t)$ and $h(s,t+2\pi) = h(s,t) \, \forall (s,t) \in \mathbb{R}^2$
- ▶ Let *T* be the *torus* $S^1 \times S^1$

$$T = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1^2 + x_2^2 = x_3^2 + x_4^2 = 1\}$$

and $f : \mathbb{R}^2 \to T$ be defined by $f(s, t) = (\cos s, \sin s, \cos t, \sin t).$

► Then f is an identification and h is continuous ⇔ g is continuous:

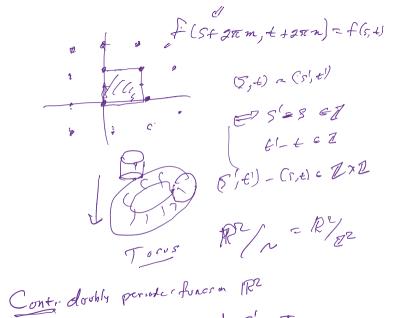
$$\mathbb{R}^{2} \xrightarrow{n} \mathbb{R}$$

$$f \not \nearrow g$$

$$T$$

$$f (\mathfrak{F}+2\pi)+1=f(s,t)$$

$$f (s_{f}+1\pi)=f(s,t)$$



es Cont function 51x5' = Torus.

Equivalence Relations

• $f: X \to Y$ surjective map of sets \iff

equivalence relation on X:

They eyes
$$x_1 \sim x_2 \iff f(x_1) = f(x_2)$$
.

They eyes $f: y \to Set \circ f$

egov closes

• $f: X \to Y$ surjective map of sets \iff

Partition of X into disjoint subsets

$$X = \prod_{y \in Y} f^{-1}(y)$$

$$\Rightarrow \begin{cases} x_{e+1} & \text{if e gon clesses} \end{cases}$$

Connected Components

▶ Let *X* be a topological space. Define a relation

$$x \sim y \iff \exists$$
 a connected $C \subset X$ with $x, y \in C$

- ► Theorem

 The relation just defined is an equivalence relation.
- Proof.

 Clearly $(x \sim x)$ and $x \sim y \iff y \sim x$.

 Transitivity $x \sim y$ and $y \sim z \implies x \sim z$ follows from the next lemma.

Lemma

If $C_1, C_2 \subset X$ are connected and $C_1 \cap C_2 \neq \emptyset$, then $C_1 \cup C_2$ is connected.

let
$$\varphi: C_1 \cup C_2 \longrightarrow \{o_1i\}$$

conf fonc.

 $\varphi|C_1 = conf \subset C_1$
 $\varphi|C_2 = conf \subset C_2$
 $\varphi: C_1 \cap C_2 \longrightarrow \varphi(x) = \emptyset$
 $\exists C_2 = \varphi(x)$
 $\exists C_3 = c_2 = \varphi(x)$

◆ロト ◆昼 ト ◆ 差 ト → 差 ・ 夕 Q ©

Better Lemma:

Lemma

- Let $\{C_{\alpha}\}_{{\alpha}\in A}$ be a collection of connected subsets of X indexed by a set A. Suppose that $\bigcap_{\alpha} C_{\alpha} \neq \emptyset$. Then $|\cup_{lpha} \mathcal{C}_{lpha}$ is connected.
- Suppose $C \subset X$ is connected. Then its closure \overline{C} is

Definition

The equivalence classes of the equivalence relation just defined are called the *connected components* of X.

▶ If $x \in X$, let C_x be the connected component of Xcontaining x.

Theorem

• C_x is the largest connected subset of X containing x.
• C_x is closed in X.

• C_x is closed in X.

• C_x is closed in X.

• C_x is closed in X.

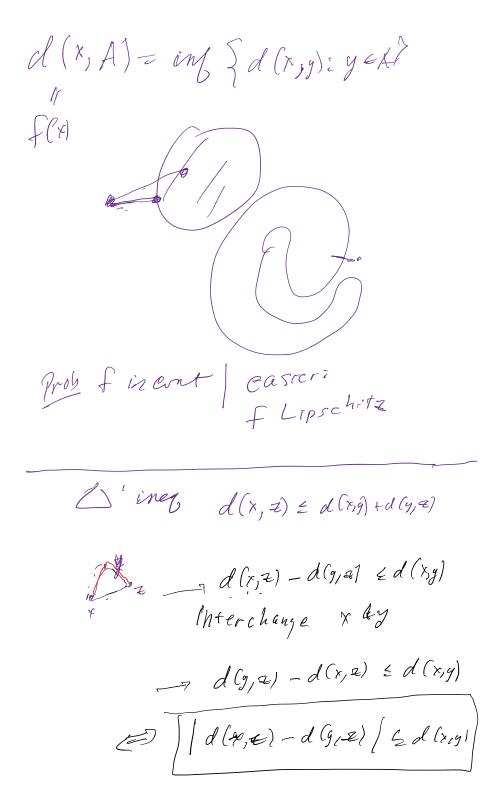
• C_x is closed in X.

• C_x is closed in X.

• C_x is closed in X.

• C_x is closed in X.

• C_x is closed in X.



$$\begin{aligned}
&\mathcal{J}(x) = \mathcal{A}(x, 2) \\
&\mathcal{J}(x) - \mathcal{G}(x) = \mathcal{A}(x, y)
\end{aligned}$$

$$\begin{aligned}
&\mathcal{J}(x) = \mathcal{J}(x) - \mathcal{J}(x, y) \\
&\mathcal{J}(x, 2)
\end{aligned}$$

$$\begin{aligned}
&\mathcal{J}(x, 2) \\
&\mathcal{J}(x) = \mathcal{J}(x, 2)
\end{aligned}$$

$$\begin{aligned}
&\mathcal{J}(x, 2) \\
&\mathcal{J}(x) = \mathcal{J}(x, 2)
\end{aligned}$$

$$\begin{aligned}
&\mathcal{J}(x, 3) = \inf_{x \in A} \left\{ \mathcal{J}_{x}(x) : z \in A \right\}
\end{aligned}$$

$$\begin{aligned}
&\mathcal{J}(x, 4) = \inf_{x \in A} \left\{ \mathcal{J}_{x}(x) : z \in A \right\}
\end{aligned}$$

$$\begin{aligned}
&\mathcal{J}(x) = \inf_{x \in A} \left\{ \mathcal{J}_{x}(x) : z \in A \right\}
\end{aligned}$$

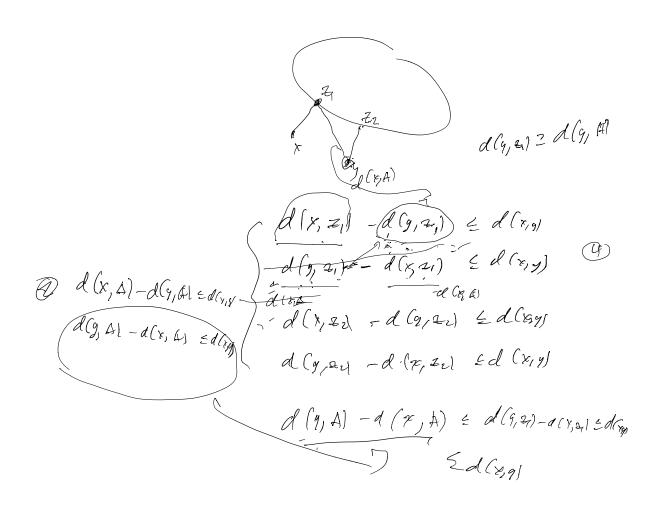
$$\begin{aligned}
&\mathcal{J}(x) = \inf_{x \in A} \left\{ \mathcal{J}_{x}(x) : z \in A \right\}
\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned}
&\mathcal{J}(x) = \inf_{x \in A} \left\{ \mathcal{J}_{x}(x) : z \in A \right\}
\end{aligned}$$

$$\end{aligned}$$

d(x, A) d(x, A) - d(y, A) $Suppose d(x, A) = d(x, Z_1)$ $d(y, A) = d(y, Z_2)$



Connected Components of (XX)

x ny = J Connect C = X

Show x,y = C

gry a grz - > prz 3 cm sit (C3) Cy = Cy + Cz C, Cierm & GNC2 + B Clock Com Q: C, vC2 - 2 80,13 Cour PC, = Cout e, Plan = cut en 9/C, (9/ = 9/C, (9) =7.6; = 10 More SC2 XCA any collectes of Com surch of X if Ozef C, 7 \$ = Com. Same pt; y: UC2 -> { B) 11 ens let 9 = 9 (of a come to fo∈ () C, Of (80) = C,

Cohn Comy

Definition

Let $\pi_0(X)$ denote the set of connected components of X.

There is a surjective map $\pi: X \to \pi_0(X)$ defined by

$$\pi(x) = C_x,$$

the connected component of X containing x.

- $\widehat{card}(\pi_0(X)) = 1 \iff X \text{ is connected.}$
- ▶ In general, $card(\pi_0(X))$ is the number of connected components of X.
- \star $\pi_0(X)$ is a topological space, with the quotient topology.

▶ If $f: X \to Y$ is continuous, there is a map, first of sets,

$$f_*:\pi_0(X) o\pi_0(Y)$$

defined by

$$f_*(C_x^X) \to C_{f(x)}^Y$$

where C_x^X and C_y^Y denote the connected components of x in X and of y in Y respectively.

► Exercise 1: f_{*} is well-defined:

$$X \sim X' \Longrightarrow C_{f(X)}^{Y} = C_{f(X')}^{Y}.$$

- ▶ Reason: $x \sim x' \iff C_x^X = C_{x'}^X$ and $f(C_x^X)$ is a connected subset of Y containing f(x), hence $f(C_x^X) \subset C_{f(x)}^Y$.
- Exercise 2: f homeomorphism $\Longrightarrow f_*$ bijective.
- Exercise 3: f* is continuous.
- ► Exercise 4: f homeomorphism ⇒ f, homeomorphism.

Examples

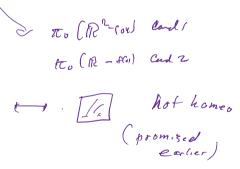
- $\sqrt{\pi_0(\mathbb{R}^n)}$ has cardinality one for $n=1,2,\ldots$
- ▶ If X is discrete $\pi: X \to \pi_0(X)$ is a homeomorphism.
- ► Homework Problem : X locally connected $\Longrightarrow \pi_0(X)$ is discrete.

Theorem

For $n \geq 2$, \mathbb{R} is not homeomorphic to $\mathbb{R}^{\widehat{n}}$.

R not homeo to Pr OER - fal in R

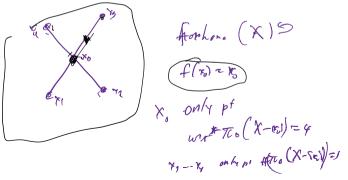
- Same argument: the unit interval *I* is not homeomorphic to *I* × *I*.
- ► This was used in the proof that the Euclidean and taxi-cab metrics not being isometric.

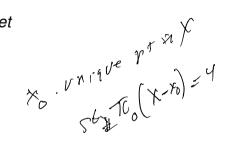


Theorem

Let X be the subspace of \mathbb{R}^2 of the letter "X". Let x_0 be the junction point of the four "branches" of X, and let x_1, x_2, x_3, x_4 be the other endpoints of the branches. Let $f: X \to X$ be a homeomorphism.

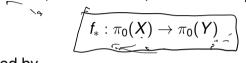
Then $f(x_0) = x_0$ and f permutes the points x_1, \ldots, x_4 .





- ▶ If X is the Cantor set, what is $\pi_0(X)$?
- ▶ Some information in the homework.

- ▶ Let's go back to the definition of *f*_∗:
- ▶ If $f: X \rightarrow Y$ is continuous, there is a map, first of sets,



defined by

$$f_*(C_{\scriptscriptstyle X}^{\scriptscriptstyle X}) o C_{f({\scriptscriptstyle X})}^{\scriptscriptstyle Y}$$

where C_x^X and C_y^Y denote the connected components of x in X and of y in Y respectively.

► Exercise 1: f_* is well-defined: $x \sim x' \Longrightarrow C_{f(x)}^Y = C_{f(x')}^Y$.

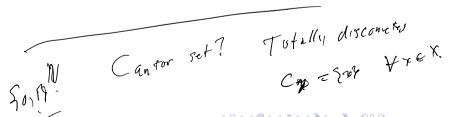
Better to first say:

Theorem

- 1. The connected components of X are the maximal connected subsets of X.
- 2. Every non-empty connected subset of X is contained in a unique maximal connected subset.

Connected, Max

- ► Then $C_{f(x)}^{Y}$ is *the* maximal connected subspace of Y containing $f(C_{X})$.
- So is $C_{f(x')}^{Y}$ for any $x' \in C_x$.



- ▶ In the same spirit as looking at homeomorhisms of the letter *X*:
- ► Exercise: Classify the (capital) letters A, B, C, ... Z of the Roman alphabet up to homeomorphism.

HW X char Hausdiot A, BCX chal subts A 11B = 0 = 3 yensets U,V ACTOBET (Inv=+ Quutient Tupology Connered Component

> Quotients of Hausdorff Spaces need not be Hausdorff

[O, O] & [a, o] don't bare

disjurt pla

Another Exi

R P R B

x rg E 7 X-J c B

U=R P (U)

Y+ r e P (U) treg

Definition $\underline{\mathcal{L}}$ A topological surface is a Hausdorff space with a countable basis that is locally homeomorphic to \mathbb{R}^2 .

(connected) Surface - locally home to 12 Y locally home to the Y a. R. Y & St. V from Va. R. Countible basis = no more

RUR

(hx) ~ (on) x=0?

Arodoct Will

(0, 4, 2) ~(1, 4, 2) 47co

(6,0,2)] nod's/hd.

Non-House space loc homeo to R2

Examples

- ▶ An open subset of \mathbb{R}^2
- ▶ The unit sphere $S^2 \subset \mathbb{R}^3$

1 Socily
home to Re

Proportion N

Proportio

\$4, Virgin (2, 4) | 22 4 4 4 5 (4, 4) = R2 (2-3)

Jane WM ZCO

200

200

720

6 200

800

800

900

900

900

6 Sely each home or [xyyle 1] Gran 5th

Let $u \subset \mathbb{R}^3$ be open, let f $U \to \mathbb{R}$ be a function of class C^1 , and suppose that the gradient $\nabla_x f \neq 0$ at any point x where f(x) = 0. Then

$$\{x\in\mathbb{R}^3\mid f(x)=0\}$$

is a topological surface.

Reason: The implicit function theorem. (Will review and prove)

Surfaces as Identification Spaces

Example: Torus (x,y).~ (x/y/)

 $\xi = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^2 = \frac{1}{2} \left(\frac{1}{2} - \frac{1$

by pointe ~ a partia Eo18xEo17

0 = 7 = 1 0 = 7 = 1

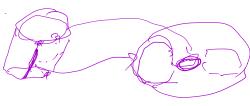
(x,y) 0 6 x 5)

eque comy to that

x=0 (01y)~ (109/

9=0 (P,01~ (75))

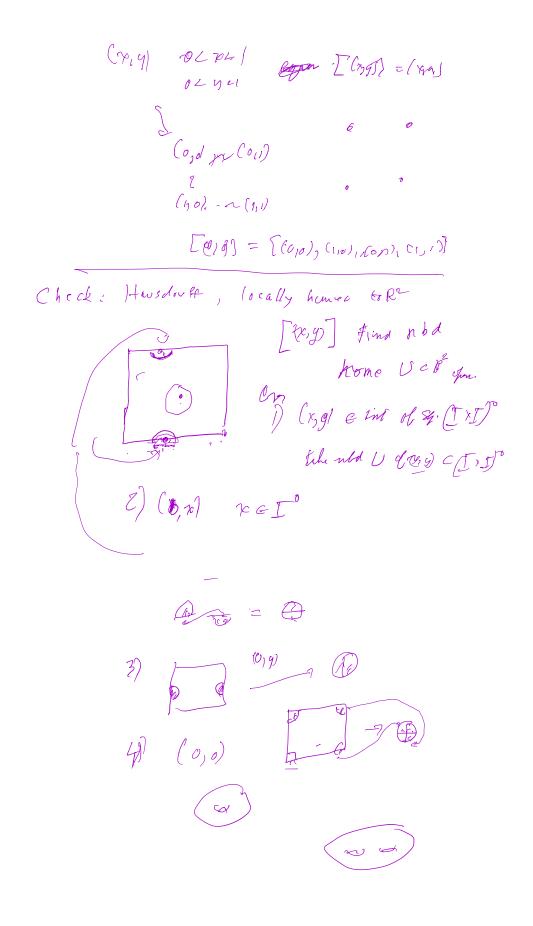
(0,0) ~ (0,0) & (0,0) ~ (0,1



(oh 5'x5)

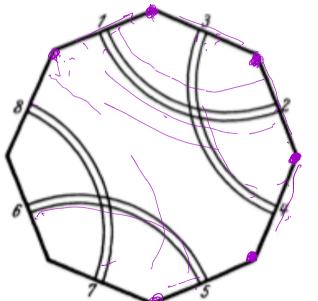
Surface: [0,1x20]

 $\begin{array}{c|c}
(^{2}y, 0) & (^{2}y) \\
(^{2}y) & (^{1}y) \\
(^{2}y) & (^{1}y)
\end{array}$



Surface of Genus Two

o ctasou



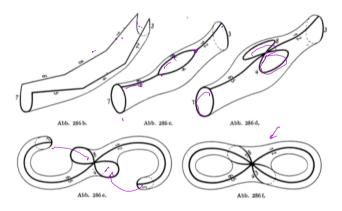


Figure: Surface of Genus Two

gens of

Def

Surface of gens gi

regular

49-902.

White ess

Non-Hausdorff Quotient Spaces

A non-Hausdorff "Surface"

Existence theorems based on connectedness

► The intermediate value theorem.

$$X \text{ tom}, f: X \rightarrow R \text{ bot}$$

$$A = b$$

$$A = b$$

$$A = b$$

$$A = f(x) = a$$

$$f(x) = b$$

$$A = f(x) = b$$

$$A = f(x) = c$$

$$A = f(x) = c$$

The implicit function theorem. Alford on Mg f(x,g) f(0,0) = (0,0) C^2 - 2f (0,0) ≠ 0 # 8 7, 8 Cal}