Top Research Publications Teaching Contact

Kyle R Steffen


  • Research interests: Applied analysis, fluid dynamics, mathematical and computational modeling, numerical methods for PDEs, scientific computing.
  • My CV and Research Statement.


  • Y. Epshteyn, K. R. Steffen, and Q. Xia. Difference Potentials Method for the Mullins–Sekerka model. In preparation, 2017.
  • K. R. Steffen and C. Hohenegger. Nonlocal slender body theory for particles near a wall. In preparation, 2017.
  • G. Ludvigsson, K. R. Steffen, S. Sticko, S. Wang, Q. Xia, Y. Epshteyn, and G. Kreiss, High-order numerical methods for 2D parabolic problems in single and composite domains, in minor revision for Journal of Scientific Computing, 2017, (pdf) (arXiv version of the pdf file) and arXiv
  • K. R. Steffen, Y. Epshteyn, J. Zhu, M. Bowler, J. W. Deming, and K. M. Golden, Network modeling of fluid transport through sea ice with entrained exopolymeric substances, to appear in Multiscale Modeling and Simulation, 2017 (pdf)
  • J. Albright, Y. Epshteyn and K. R. Steffen, High-Order Accurate Difference Potentials Methods for Parabolic Problems. Volume 93, July 2015, pp. 87–106, doi:10.1016/j.apnum.2014.08.002, Applied Numerical Mathematics (Special Issue in Honor of Viktor Ryaben'kii's 90th Birthday) (preprint) (pdf) (online)
  • C. Hohenegger, B. Alali, K. R. Steffen, D. K. Perovich, and K. M. Golden. Transition in the fractal geometry of Arctic melt ponds, The Cryosphere, 6, pp. 1157–1162, doi:10.5194/tc-6-1157-2012, 2012 (pdf)
  • J. D. Blanchard and K. R. Steffen. Crystallographic Haar-type Composite Dilation Wavelets. In Wavelets and Multiscale Analysis: Theory and Applications, Applied and Numerical Harmonic Analysis, pp. 83–108. Birkhäuser Boston, doi:10.1007/978-0-8176-8095-4_5, 2011 (pdf)


Contact info

Kyle R Steffen
University of Utah
Department of Mathematics, JWB 328
155 S 1400 E RM 233
Salt Lake City, UT, 84112-0090
Tel: +1 801 585 5469
FAX: +1 801 581 4148

Last updated: November 2017.