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1. Introduction

A Noetherian integral domain R is said to be a splinter if it is a direct summand,
as an R-module, of every module-finite extension ring (see [Ma]). In the case that R
contains the field of rational numbers, it is easily seen that R is splinter if and only
if it is a normal ring, but the notion is more subtle for rings of characteristic p > 0.
It is known that F-regular rings of characteristic p are splinters and Hochster and
Huneke showed that the converse is true for locally excellent Gorenstein rings
[HH4]. In this paper we extend their result by showing that Q-Gorenstein splinters
are F-regular. Our main theorem is:

THEOREM 1:1. Let R be a locally excellent Q-Gorenstein integral domain of
characteristic p > 0. Then R is F-regular if and only if it is a splinter.

These issues are closely related to the question of whether the tight closure I'* of an
ideal I of a characteristic p domain agrees with its plus closure, i.e. IT =IR"NR,
where R* denotes the integral closure of R in an algebraic closure of its fraction field.
We always have the containment /™ < I* and Smith showed that equality holds if
1 is a parameter ideal in an excellent domain R (see [Sm1]). An excellent domain R
of characteristic p is splinter if and only if for all ideals I of R, we have [T = 1.

For an excellent local domain R of characteristic p, Hochster and Huneke showed
that R* is a big Cohen—Macaulay algebra, see [HH2]. For further work on R* and
plus closure see [Ab, AH]. Our main references for the theory of tight closure are
[HH1, HH3, HH4|.

Although tight closure is primarily a characteristic p notion, it has strong
connections with the study of singularities of algebraic varieties over fields of
characteristic zero. For Q-Gorenstein rings essentially of finite type over a field of
characteristic zero, it is known that F-regular type is equivalent to log-terminal
singularities (see [Ha, Sm2, Sm3, Wa|). Consequently our main theorem offers a
characterization of log-terminal singularities in characteristic zero, see Corollary 3-3.

2. Preliminaries

By the canonical ideal of a Cohen—Macaulay normal domain (R, m), we shall mean
an ideal of R which is isomorphic to the canonical module of B. We next record some
results that we shall use later in our work.
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LemMmA 2-1. Let (R, m) be a Cohen—Macaulay local domain with canonical ideal J. Fix
a system of parameters y,, ...y, for R and let s€J be an element which represents a socle
generator in J [ (Y, ..., y,). Then for te N, the element s(y, * y,)' " is a socle generator in
J)fh, ) T The ideals I, = (4, ... yY) J : gs form a family of irreducible ideals which
are confinal with the powers of the maximal ideal m of R.

Proof. See the proof of [HH4, theorem 4-6].

Lumma 2-2. Let R be a Cohen—Macaulay normal domain with canonical ideal J. Pick
Yy, *= 0in J. Then there exists an element y, not in any minimal prime of y, and ye.J
such that 44, J9 = y'R for all positive integers i.

Proof. This is [Wi, lemma 4-3].

LemMA 2:3. Let (R, m) be a normal local domain and J an ideal of pure height one,
which has order n when regarded as an element of the divisor class group Cl(R). Then for
0 <i<n, we have JOJ7=0 < JWyy,

Proof. Let J™ =aR. Clearly J®J" D < gR and it suffices to show that
JOJOD < g RAf JOJPD = R then J® is an invertible fractional ideal and so
must be a projective R-module. Since R is local, J? is a free R-module, but
this is a contradiction since J® cannot be principal for 0 < i < n.

Discussion 2-4. Let (R,m) be a Q-Gorenstein Cohen—Macaulay normal local
domain, with canonical ideal .J. Let n denote the order of .J as an element of the
divisor class group Cl(R) and pick a€R such that J™ = aR. Consider the subring
R[JT,JPT?...] of R[T] and let

S = R[JT,JOT?, .1/ («T" —1).

Note that S has a natural Z/nZ-grading where [S], = R and for 0 < ¢ < n we have
[S]; = JPT". We claim that the ideal

m=m+JT+JPT* - JOD

is a maximal ideal of S. Since each J® is an ideal of R, we need only verify that
JOTm = m for 0 < i <n—1, but this follows from Lemma 2-3. Note furthermore
that m” < mS.

3. The main result

Proof of Theorem 1-1. The property of being a splinter localizes, as does the
property of being Q-Gorenstein. Hence if the splinter ring R is not F-regular, we may
localize at a prime ideal P € Spec R which is minimal with respect to the property that
R, is not F-regular. After a change of notation, we have a splinter (R, m) which has
an isolated non F-regular point at the maximal ideal m. This shows that R has an m-
primary test ideal. However since R is a splinter it must be F-pure and so the test
ideal is precisely the maximal ideal m. Note that by [Sm1, theorem 5:1] parameter
ideals of R are tightly closed and R is indeed F-rational.

Let dim R = d. Choose a system of parameters for R as follows: first pick a nonzero
element y, €J. Then, by Lemma 2-2, pick y, not in any minimal prime of y, such that
Y JD = 'R for a fixed element y €J, for all positive integers i. Extend y,,, to a full
system of parameters y,, ..., y, for R. Since y, €.J, there exists ue R such that s = uy,
is a socle generator in J/(y,,...,y,)J. Let Y denote the product y,...y,.
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Consider the family of ideals {/ .}, as in Lemma 2-1. If R is not F-regular, there

exists an irreducible ideal 1, = (y{, ..., v4) J : ps which is not tightly closed, specifically
Yeterl*. Consequently sY te(ys,...,y5) J* and sYte(ys,...,y5) JS* and so

sTY e (ys, ..., y5) JTS* < (s, ..., y5) S*.

We shall first imitate the proof of [Sml, lemma 52] to obtain from this an
‘equational condition’. Let z = sTY* " and «x; = y¢ for 1 <i < d. We then have ze
(2, ..., 24) S*. Consider the maximal ideal m = m+JT+ JOT? 4 - 4 JO-D1 of §
and the highest local cohomology module

H2(S) =lim S/(x%, ..., ah),
where the maps in the direct limit system are induced by multiplication by a; -- 2.

Since the test ideal of R is m, if @, is a power of p greater than n, we have
m@ozle (x?,...,29) S for all ¢ = p°.

Let 9 denote [z+4 (x,,...,2,)S] viewed as an element of H%(S) and N be the S-
submodule of H%(S) spanned by all F¢(5) where e € N. Since H%(S) is an S-module with
DCC, there exists ¢, such that the submodules generated by Fé(N) and F*(N) agree
for all ¢’ = ¢,. Hence there exists an equation of the form

Fon) = a, F(q)+ - +a, F(y),

with a,,...,a,€S and ¢, < e, <e, < - <. If some a; is not a unit, we may use
suitably high Frobenius iterations on the equation above and the fact that for @, = n
we have m@F¢(y) = 0 for all eeN, to replace the above equation by one in which
the coefficients which occur are indeed units. Hence we have an equation F(y) =
a, Fom)+ - +a,I'n) where e <e, <e, <" <e, and a,,...,a, are units. Let
q=7p°q,=p%for 1 <i<kandX =z 2, Rewriting our equation we have
[29X U0 4 (2%, ... a%) S] = a,[20X %0+ (a2, ..., a%) S]

+ a2 A (g, L adr) S,
ie. [29XU 1 —q, 20 XU~ D — - —q, 29 4 (29, ..., 2%)S] = 0. Since the ring S may not
necessarily be Cohen—Macaulay, we cannot assume that the maps in the direct limit
system lim S/ (2%, ..., x%) are injective. However for a suitable positive integer b we
do obtain the equation

(zX0H)%e (b9, ... af@, 2 XV 2P XPeTP | RIPXVRQIP) §

where ) = ¢,. Going back to the earlier notation and setting { = bc, we have

(sTY" )9 e (i, ... yR2, sTY Ot (sT)P Y1072 . (sT)9P YIe-Q/P) S,

Note that 1/7 = oT" '€ S and, multiplying the above by 1/79, we get

1 1 1 ! !
(sYt")@e (%QTQ’ o ?/leW’ sYyte-t =k si"YtQ—pm,. ., s@pyre-elp TQ—Q/:D) 8.

Since (sY'"1)?e[S], = R, we may intersect the ideal above with R to obtain

(Sytfl)Qe (ytlQ,ﬂQ), ,y;QJ(@, sYIQ-LJ@-D) gpytQ-p J@=D) ,SQ/thQfQ/pJ(QfQ/p))R_
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Replacing s = uy, above, we get
(g, YO (0D .y 2T D, () Y101 @D,
(uy,)? yte-r j@-n , (W/I)Q/p Yte—Q/p J(@—Q/p) R
Let Z =Y/y, =y, y,. We then have
(,uZt_l)Q ytlQ € (ytlQQ](Q)’ ytZQ7 o y(t,iQ’ uytletQ_I'](Q_l)’
uPylRZID @D | @IpytR710=Q/D J@-QID) R
Using the fact that y,, ..., y, are a system of parameters for the Cohen—Macaulay ring
R, we get
(uZt’l)Qe (J(Q)) 1/{;@, ey Z/&Q, wZ!Q 1 g ypztR—p J@=p) uQ/pZthQ/pJ(QfQ/w) R.
Consequently there exists aeJ @, b;eR and ¢,.€J@ 2?9 such that
a
(UZ' N = a+ X byl ey uZt 9T e uP 2P 4 ey uQIP LR
i=2
For 2 <7 < d, consider the following equations in the variables V,..., V:
Z\te—t AR Z\tR-tQ/p
Vﬁzbﬁ-clVi(—) +chZ.P(—) +"'+cQ/pVZ.Q/p(—> :

Since these are monic equations defined over R, there exists a module finite normal
extension ring R, with solutions »; of these equations. Working in the ring R, let

a
2y — o 71 t
w=uZ'"t— 2 vyl
i=2

Combining the earlier equations, we have
w? = a4+ ¢ wZtet + p WPZIQto v Colp wIPZtR-tQ/p

Multiplying this equation by ¥ and using the fact that 3 J® < 'R for all positive
integers i, we get

(“”Z/z)Q =d, VQ +d, wy, '}’Q_l + dp(w?lz)p VQ_p +o dQ/p(’«”Z/z)Q/p VQ_Q/p~

The above equation gives an equation by which wy,/y is integral over the ring R,.
Since R, is normal, we have wy, e yR,. Combining this with w = uZ*' =22, v, 4., we
have

d
uZ' "y, = wy,+ (Z v; y‘) Y2 € Loy Y Yo Y Ya) By

i=2
and so
t+1

uZ Ny e (L s o s YT = (LY s sy ) R

Since y, is not in any minimal prime of J, we get uZ'™te(J, ¥\ o, ..., ¥4 R.
Multiplying this by y,. we get

t

sV () o Yo i Yo Y B S (Y0 s s W)
but this contradicts the fact that s generates the socle in J/(y,,...,y,)J.
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CorOLLARY 3-1. Let (R, m) be an excellent integral domain of dimension two over a
field of characteristic p > 0. Then R is a splinter of and only if it vs F-regular.

Proof. The hypotheses imply that R is F-rational, and so has a torsion divisor class
group by a result of Lipman [Li]. Hence R must be Q-Gorenstein.

Definition 3-2. Let R = K[X,,...,X,]/I be a domain finitely generated over a field
K of characteristic zero. We say R is of splinter type if there exists a finitely generated
Z-algebra 4 = K and a finitely generated free 4-algebra B, = A|X,,...,X,]/I, such
that R @ R, ® 4, K, and for all maximal ideals ¢ in a Zariski dense subset of Spec 4,
the fibre rings R, ® 4, 4/p (which are rings over fields of characteristic p) are splinter.

Using the equivalence of F-regular type and log-terminal singularities for rings
finitely generated over a field of characteristic zero (see [Ha, Sm3, Wa]) we obtain
the following corollary:

COROLLARY 3:3. Let R be a finitely generated Q-Gorenstein domain over a field of
characteristic zero. Then R has log-terminal singularities if and only if it is of splinter

type.
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