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Abstract. We show that an excellent local domain of characterigtltas a separable big
Cohen—Macaulay algebra. In the course of our work we prove that an element which is in the
Frobenius closure of an ideal can be forced into the expansion of the ideal to a module-finite
separable extension ring.

1. Introduction

Let R be an excellent domain of characteristicand letR™ denote the
integral closure oR in an algebraic closure of its fraction field. A celebrated
theorem of M. Hochster and C. Huneke states tRatis a big Cohen—
Macaulay algebra foR, see [HH2]. Theplus closurel ™ of an ideall of R

is defined ad* = IR™ N R, and has close connections with tight closure
theory: the containmert™ C I* is easily verified, and in [Sm] K. E. Smith
showed that/* = I* if the ideal I is generated by part of a system of
parameters foR. In this paper we establish the somewhat surprising result
that for any element € It there exists an integral domai) which is a
separablemodule—finite extension @&, such that € 1.5. We use this idea
to obtain a separable big Cohen—Macaulay algér#&P for any excellent
local domain(R, m) of characteristig.

For related work orR™ and plus closure see [Ab2] and [AH]. Our refer-
ences for the theory of tight closure are [HH1], [HH3] and [HH4].

In Section 4 we present an explicit computation of plus closure, specif-
ically we show thattyz € (x?, y2,z2)* in the cubic hypersurfac® =
K[X,Y, Z1/(X® + Y3 + Z3). This strengthens a result obtained in [Si2]
where it was established thatz € (x2, y2, z2)*.
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2. Preliminaries

Let R be a Noetherian ring of characteristic- 0. The letter shall denote

a variable nonnegative integer, ajpghall denote the corresponding power
of the characteristic, i.eq = p¢. For anideall = (x1,...,x,) € R, let
19" = (x4, ..., x}). For a reduced ringR of characteristico > 0, RY/4
shall denote the ring obtained by adjoiningaath roots of elements aR.

For an element of R we say that € 17, theFrobenius closuref I, if
there exists an integer= p¢ such thate? € 1'%, The ringR is said to be
F-pure if the Frobenius homomorphism is pure, i.e.Fif M — F(M) is
injective for all R-modulesM .

In specific examples which are homomorphic images of polynomial
rings, we shall use lower case letters to denote the images of the corre-
sponding variables.

3. Separable integral extensions

Our main result regarding Frobenius closure and separable extensions is the
following theorem:

Theorem 3.1. Let R be a excellent domain of characterispic> 0,1 C R
an ideal, andz € R an element such that € I*. Then there exists an
integral domainS, which is a module-finite separable extensiorRptuch
thatz € IS.

Proof. Sincez e I, there exists a positive integer= p¢, nonzero ele-
mentsxg, ..., x, € I, anday, ..., a, € R such that

n

q
71 = E ax; .

i=0
For 1< i < n, consider the equations
Ul-q + U,-xg —a; = 0.

These are monic separable equations in the varidhleand therefore have
solutionsu; in a separable field extension of the fraction fieldRofLet S
be the integral closure of the rirRju., ..., u,] in its field of fractions. We
shall show that € IS. Let

uo = (z — inui)/xo,

i=1
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which is an element of the fraction field §f Taking theg th power of this
element, we have

n n n
= = A/ = (VCand - Y aful /g
i=1 i=0 i=1

n n
ay,4q 7.4 q
= ap+ Z(ai —u; )x; /xg = aop + Zu,-xi .

i=1 i=1

Consequentlyy is integral overs, but sinces is a normal domain, we then
haveug € S. Thisimpliesthat = > _jxu; € IS. O

Remark 3.2.LetGL, (F,) be the generallinear group over the finite figld

In [Si1] the author constructed examples to show that the ring of invariants
for the natural action of a subgroup of GL, (FF,) on the polynomial ring
F,[X1, ..., X,]need notbe F—pure. Specifically, consider the natural action
of the symplectic grougpa(FF,) onthe polynomial rindf, [ X1, X2, X3, Xa4].

Then the ring of invariants is isomorphic to the hypersurface

R=F,[X,Y,Z, A, B]/(Z9 — AX? — BYY)

which is not F-pure since € I = (x, y)¥', more precisely the element

is forced into the expanded ideBR*/¢ in the purely inseparable extension
RY4,_However; is also forced into the expansionbfo the linearly disjoint
separable extensidf [ X1, X», X3, X4]. These examples provided the basic
case of the equational construction used in the proof of Theorem 3.1 above.

Definition 3.3. Let R be an integral domain with fraction field. LetK be
an algebraic closure of the fiell, and £ be the maximal separable field
extension ok in K. ThenR*s*Pshall denote the integral closure &fin L.

With this notation, Theorem 3.1 gives us the following corollary:

Corollary 3.4. LetR be a excellent integral domain of characteristiclf

I is anideal ofR andz an element oR such that € I, then there exists a
module-finite separable extension domé&such that € 7S. Consequently
for all ideals I of R we have

IRTYNR=IRT*"NR.

Proof. Sincez € I there exists a integral domaity, module-finite over

R, such thatz € IR;. If R, denotes the largest separable extension of
R contained inR1, we havez € (IR»)F. By Theorem 3.1 there exists a
separable module-finite extensiSrof R, suchthat € IS. O
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Let R = @;nR; be anN-graded integral domain over a field = Ry of
characteristip. An element € R* is said to bdhomogeneoui$it satisfies
an equation of integral dependence oReof the form

4"t 4a,=0

wherea; € R;, for somed € Q, forall 1 < i < n. (The element can
then be assigned weigtif and satisfies a homogeneous equation of integral
dependence ova&R.) Let RT®R denote th&)-graded subalgebra & which
is generated by homogeneous elements R™. In this setting, Hochster
and Huneke show that*©R is a graded big Cohen—Macaulay algebra for
R, i.e., that every homogeneous system of parameter® fiera regular
sequence oR*CR, see [HH2].

The following example shows that f& as above, a homogeneous ideal
I of R, and a homogeneous eleméng& I, there need not exist a graded
separable module-finite extensiSwith &€ € IS.

Example 3.5.Let R = K[X,Y, Z]/(X® + Y3 + Z%) whereK is an al-
gebraically closed field of characteristic 2. Note thate (x, y)F since
7% = zx3 + zy®. We claimR has no module-finite graded separable exten-
sion S with z2 € IS. If S were such an extension, there exist homogeneous
elements:, v € S (of weight 1) withz? = ux + vy. In R*®R we then have

2 = ux + vy = xJ/x2 + y 2,

and sinceR*©Ris a graded big Cohen—Macaulay algebrafothe relation

x(u + 4/xz) = y(v + /yz) must be trivial inR*©R. Hence there exists

¢ € R™®Rsuch thatu + ,/xz = cy andv + /yz = cx, but thenc must

have weight 0, and so satisfies an equation of integral dependence over the
algebraically closed fiel&. Consequently € K, and therefore/xz and

J/yz are elements of a separable extensio® ph contradiction.

Remark 3.6.Let R be a ring of characteristip which is not F-pure, i.e.,
such that there existse R with z € 17 — I. By Theorem 3.1 there exists a
module-finite separable extensiSrsuch that € 1S. In general we cannot
expectS to be F-regular or even F-rational: K is the coordinate ring of

an elliptic curve, a normal module-finite extension dom&inill continue

to have elements of infinite order in the divisor class groupSland
consequently the two dimensional risgcannot be F-rational by a result

of J. Lipman, [Li]. However there do exist examples where the separable
extension is F-regular, moreover is a polynomial ring.

Example 3.7.LetR = K[X,Y, Z, A, B]/(Z9 — AX? — BY?) whereK is
a field of characteristip andg = p°. Thenz € (x, y)¥, and we construct
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a separable module-finite extensi®such that € (x, y)S. Letu be a root
of the separable equation

U —a+Uy’=0

and letS be the normalization oR[u]. Thenv = (z — ux)/y is easily seen
to be an element of and we haveés = K[X, Y, u, v], which is a polynomial
ring.

We next recall a definition from [Ma]:

Definition 3.8. A Noetherian integral domair is said to be a splinter if it
is a direct summand, as ai-module, of every module-finite extension ring
of R.

In the case thak contains the field of rational numbers, it is easily seen
that R is a splinter if and only if it is @ normal ring, but the notion is more
subtle for rings of characteristje. F-regular rings are always splinter and
the converse is known to hold f@)-Gorenstein rings, see [Si3]. Corollary
3.4 above gives a new characterization of splinter rings of charactepistic

Corollary 3.9. Let R be an excellent integral domain on characterispic
ThenR isasplinterifand only ifitis a direct summand of every module-finite
separable extension domain.

Proof. Excellent integral domains are approximately Gorenstein, and so an
inclusionR — S splits if and only if/S N R = I for all ideals! of R, see
[Ho]. The result now follows from Corollary 3.40

We also obtain the following theorem which is separable analogue of the
main result of [HHZ2].

Theorem 3.10. Let (R, m) be an excellent local domain of characteristic

p. Then every sequence of elements which is part of a system of parameters
for R is a regular sequence aR*¢P. Consequentlg t¢Pis a balanced big
Cohen—Macaulay module fdt.

Proof. Let x1, ..., x; be part of a system of parameters #®r Given a
relationzf.‘:l rix; = 0withr; € RT5®*Pwe may replac® by a module-finite
separable extension and (after a change of notation) assume thak.

SinceR* is a big Cohen—Macaulay algebra f&; [HH2, Theorem 1.1],
we haver, € (x4, ..., xk,]_)R-i_ N R, but thenr, € (x1,..., xk,]_)R_ﬁ_sep by

Corollary 3.4. O
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4. A computation of plus closure

In [Si2] we showed thatyz € (x2, y2, z2)* in the cubic hypersurfack =
K[X,Y, Z]/(X34+Y3+Z3%) whereK is afield of prime characteristje # 3.
This question arose in M. McDermott’s study of the tight closure and plus
of various irreducible ideals iR, see [Mc]. We furthermore showed that
xyz € (x2, y?, z22)¥ wheneverR is not F-pure, i.e., whep = 2 mod 3. In
this section we settle the one unresolved issue by establishingthat
(x2, y2, z%)* when the characteristic of the fieldjs= 1 mod 3.

The following lemma is a basic version of a more powerful equational
criterion, but will suffice for our needs.

Lemma 4.1. Let R be a integral domain of characteristje and consider

nonzero elements xy, ..., x; € R which satisfy
el ox)Ha((xd,x]) (X)),

Then there exists an integral domairwhich is a module-finite extension of
R such thatt € (xq1,...,x:)S.

Proof. See [Abl]. O

We record a determinant identity that we shall find useful. For integers
n andm wherem > 1, we shall use the notation:
(n) (M —=1)---(n—m+1)
m (my(m-1---1)

Lemma4.2.

(1) Gken) - ()

(-1 () - (zied) (" )(n+1) . (n+k)

a+k) \a+k a+k

......................... —_— (Zi:) (al_—’::]tl) o (aa_:—zkk) .

det

Proof. This is evaluated in [Mu, page 682] as well as [Raj.

As a first application of this, we prove the following lemma:

Lemma 4.3. Let K[A, B] be a polynomial ring over a fiel& of charac-
teristic p = 3k + 1, wherek is a positive integer. Then

(A, BY* S 1 = (A%, B*H (A + B)%).
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Proof. Note that/ contains the following elements:
(A + B)* Ak, (A+ B)*A* 1B, ..., (A+ B)*B*.
We consider the binomial expansions of these elements modulo the ideal
(A%+1 B%+1) Consequently the following elements are/in
()4 (Z)A% B ()aB™,
(P)A%B 4 ()APEB 4 ()48,

The coefficients ofA% BX, AZ-1gk+tl Ak BZ% form the matrix:

(szl) (zkk) o (21351)
o) @) )
To show that all monomials of degregé B A andB are in/, it suffices to
show that this matrix is invertible. By Lemma 4.2, the determinant of this
matrix is o 21 o

(k)( k )(k)

WD ()
which is immediately seen to be invertible since the characteristic of the
fieldisp=3k+1. O

Lemma 4.4. LetR = K[X,Y, Z]/(X® + Y3 + Z3) whereK is a field of
prime characteristiczp = 3k + 1. Then

—-1.2p-2 2 2 2 . 2 2 2
xP7Ey P e (x°P Y 2Py (x, v, 29).

Proof. We first show thak?*1y2r=2 ¢ (x?7, y2P, z?7), i.e., that

2 2 2 2
x3k+ ka c (x6k+ , y6k+ , ZGk+ )

This would follow if we establish that
x3ky6k

6k | 6k+3 _6k+3
€ (x, y¥rE, ),
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SettingA = y3, B = z3andA + B = —x3, we need to show
(A + B)kAZk el = ((A 4 B)Zk, A2k+1, BZk-i—l)‘

This follows immediately from Lemma 4.3.
It remains to check that?~1y?r=2z2 ¢ (x?, y?7, z%7). This would fol-
low if we show

x3ky6k 6k+3 6k+3’ ZGk).

€@,y

SettingA = x3, B = y®andA + B = —z%, we now need to show
AKB% ¢ [ = (A2k+l’ B¥+1 (A + B)Zk)’

which again follows from Lemma 4.300

We are now ready to prove our main result of this section.

Theorem 4.5. LetR = K[X, Y, Z]/(X3 + Y2 + Z3) whereK is a field of
prime characteristip = 1 mod 3 Thenxyz € (x2, y2, z9)*.

Proof. By Lemma 4.1, it suffices to show
(xy2)? € (&P, y?P, 2%7) + xyz (&P, y?P, 2%7) 1 (x%, y2, 22)).
By Lemma 4.4 we have
(P Thy22 B2yl © (6, yP 27 1 (6% y2 2P,
and hence it is enough to show
(xyz)P € (x2F, y?P, 227, xPy?P~1z x2=lyry),

i.e., that

’

(xyZ)BkJrl c (X6k+2, y6k+2’ Z6k+2, x3k+1y6k+1z X6k+1y3k+lz).

This follows if we show
(xyz)3k c (Z6k+3, x3ky6k’ kay3k)_
SettingA = x3, B = y®andA + B = —z%, we need to show
(AB(A+ B)f e I = ((A+ B)**, A*B%* A% Bk,

Note that/ contains the following elements:

(A 4 B)2k+1Ak_2B, (A 4 B)2k+1Ak_3Bz, e (A 4 B)2k+lBk_l.
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We consider the binomial expansions of these elements modulo the ideal
(A*B?% A% B¥). This shows that the following are elements/af

(ZkIj—l)AZklek+l + (Zklc—:—ll)AZkuBk+2 4o+ (gkki-;)AkJrlBZkfl,

(2kkj-l:L)A2k_13k+1 + (Zk]j-l)AZk—ZBk-q-Z T (gité)Ak+lek_l,

(2k2+l)A2klek+1 + (Zk;l)AZk—szJrz L+ (Zk]jl)A’”lBZk*l.

The coefficients ofAZx—1Bkt1  A2%-2pk+2 = Ak+tl1p2-1form the ma-
trix:

Y G - G

G Y - G5

e

By Lemma 4.2, the determinant of this matrix is
GO D
k\ (k+1 2k—2
which is invertible since the characteristic of the fielghis- 3k 4+ 1. Hence
all monomials of degreek3n A and B are elements of the ideal 0O
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