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Abstract. We show that an excellent local domain of characteristicp has a separable big
Cohen–Macaulay algebra. In the course of our work we prove that an element which is in the
Frobenius closure of an ideal can be forced into the expansion of the ideal to a module-finite
separable extension ring.

1. Introduction

Let R be an excellent domain of characteristicp, and letR+ denote the
integral closure ofR in an algebraic closure of its fraction field.A celebrated
theorem of M. Hochster and C. Huneke states thatR+ is a big Cohen–
Macaulay algebra forR, see [HH2]. Theplus closureI+ of an idealI of R

is defined asI+ = IR+ ∩ R, and has close connections with tight closure
theory: the containmentI+ ⊆ I ∗ is easily verified, and in [Sm] K. E. Smith
showed thatI+ = I ∗ if the ideal I is generated by part of a system of
parameters forR. In this paper we establish the somewhat surprising result
that for any elementz ∈ I+ there exists an integral domainS, which is a
separablemodule–finite extension ofR, such thatz ∈ IS. We use this idea
to obtain a separable big Cohen–Macaulay algebraR+sep for any excellent
local domain(R, m) of characteristicp.

For related work onR+ and plus closure see [Ab2] and [AH]. Our refer-
ences for the theory of tight closure are [HH1], [HH3] and [HH4].

In Section 4 we present an explicit computation of plus closure, specif-
ically we show thatxyz ∈ (x2, y2, z2)+ in the cubic hypersurfaceR =
K[X, Y, Z]/(X3 + Y 3 + Z3). This strengthens a result obtained in [Si2]
where it was established thatxyz ∈ (x2, y2, z2)∗.
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2. Preliminaries

Let R be a Noetherian ring of characteristicp > 0. The lettere shall denote
a variable nonnegative integer, andq shall denote the corresponding power
of the characteristic, i.e.,q = pe. For an idealI = (x1, . . . , xn) ⊆ R, let
I [q] = (x

q

1 , . . . , x
q
n ). For a reduced ringR of characteristicp > 0, R1/q

shall denote the ring obtained by adjoining allq th roots of elements ofR.
For an elementx of R we say thatx ∈ IF , theFrobenius closureof I , if

there exists an integerq = pe such thatxq ∈ I [q]. The ringR is said to be
F-pure if the Frobenius homomorphism is pure, i.e., ifF : M → F(M) is
injective for allR-modulesM.

In specific examples which are homomorphic images of polynomial
rings, we shall use lower case letters to denote the images of the corre-
sponding variables.

3. Separable integral extensions

Our main result regarding Frobenius closure and separable extensions is the
following theorem:

Theorem 3.1. LetR be a excellent domain of characteristicp > 0, I ⊆ R

an ideal, andz ∈ R an element such thatz ∈ IF . Then there exists an
integral domainS, which is a module-finite separable extension ofR, such
that z ∈ IS.

Proof. Sincez ∈ IF , there exists a positive integerq = pe, nonzero ele-
mentsx0, . . . , xn ∈ I , anda0, . . . , an ∈ R such that

zq =
n∑

i=0

aix
q

i .

For 1≤ i ≤ n, consider the equations

U
q

i + Uix
q

0 − ai = 0.

These are monic separable equations in the variablesUi , and therefore have
solutionsui in a separable field extension of the fraction field ofR. Let S

be the integral closure of the ringR[u1, . . . , un] in its field of fractions. We
shall show thatz ∈ IS. Let

u0 = (z −
n∑

i=1

xiui)/x0,
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which is an element of the fraction field ofS. Taking theq th power of this
element, we have

u
q

0 = (zq −
n∑

i=1

x
q

i u
q

i )/x
q

0 = (

n∑
i=0

aix
q

i −
n∑

i=1

x
q

i u
q

i )/x
q

0

= a0 +
n∑

i=1

(ai − u
q

i )x
q

i /x
q

0 = a0 +
n∑

i=1

uix
q

i .

Consequentlyu0 is integral overS, but sinceS is a normal domain, we then
haveu0 ∈ S. This implies thatz = ∑n

i=0 xiui ∈ IS. ut
Remark 3.2.LetGLn(Fq)be the general linear group over the finite fieldFq .
In [Si1] the author constructed examples to show that the ring of invariants
for the natural action of a subgroupG of GLn(Fq) on the polynomial ring
Fq[X1, . . . , Xn] need not be F–pure. Specifically, consider the natural action
of the symplectic groupSp4(Fq) on the polynomial ringFq[X1, X2, X3, X4].
Then the ring of invariants is isomorphic to the hypersurface

R = Fq[X, Y, Z, A, B]/(Zq − AXq − BYq)

which is not F-pure sincez ∈ I = (x, y)F , more precisely the elementz

is forced into the expanded idealIR1/q in the purely inseparable extension
R1/q . Howeverz is also forced into the expansion ofI to the linearly disjoint
separable extensionFq[X1, X2, X3, X4]. These examples provided the basic
case of the equational construction used in the proof of Theorem 3.1 above.

Definition 3.3. LetR be an integral domain with fraction fieldK. LetK be
an algebraic closure of the fieldK, andL be the maximal separable field
extension ofK in K. ThenR+sepshall denote the integral closure ofR in L.

With this notation, Theorem 3.1 gives us the following corollary:

Corollary 3.4. LetR be a excellent integral domain of characteristicp. If
I is an ideal ofR andz an element ofR such thatz ∈ I+, then there exists a
module-finite separable extension domainS such thatz ∈ IS. Consequently
for all idealsI of R we have

IR+ ∩ R = IR+sep∩ R.

Proof. Sincez ∈ I+ there exists a integral domainR1, module-finite over
R, such thatz ∈ IR1. If R2 denotes the largest separable extension of
R contained inR1, we havez ∈ (IR2)

F . By Theorem 3.1 there exists a
separable module-finite extensionS of R2 such thatz ∈ IS. ut
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Let R = ⊕i∈NRi be anN-graded integral domain over a fieldK = R0 of
characteristicp. An elementz ∈ R+ is said to behomogeneousif it satisfies
an equation of integral dependence overR of the form

zn + a1z
n−1 + · · · + an = 0

whereai ∈ Rid for somed ∈ Q, for all 1 ≤ i ≤ n. (The elementz can
then be assigned weightd, and satisfies a homogeneous equation of integral
dependence overR.) LetR+GR denote theQ-graded subalgebra ofR+ which
is generated by homogeneous elementsz ∈ R+. In this setting, Hochster
and Huneke show thatR+GR is a graded big Cohen–Macaulay algebra for
R, i.e., that every homogeneous system of parameters forR is a regular
sequence onR+GR, see [HH2].

The following example shows that forR as above, a homogeneous ideal
I of R, and a homogeneous elementξ ∈ I+, there need not exist a graded
separable module-finite extensionS with ξ ∈ IS.

Example 3.5.Let R = K[X, Y, Z]/(X3 + Y 3 + Z3) whereK is an al-
gebraically closed field of characteristic 2. Note thatz2 ∈ (x, y)F since
z4 = zx3 + zy3. We claimR has no module-finite graded separable exten-
sionS with z2 ∈ IS. If S were such an extension, there exist homogeneous
elementsu, v ∈ S (of weight 1) withz2 = ux + vy. In R+GR we then have

z2 = ux + vy = x
√

xz + y
√

yz,

and sinceR+GR is a graded big Cohen–Macaulay algebra forR, the relation
x(u + √

xz) = y(v + √
yz) must be trivial inR+GR. Hence there exists

c ∈ R+GR such thatu + √
xz = cy andv + √

yz = cx, but thenc must
have weight 0, and so satisfies an equation of integral dependence over the
algebraically closed fieldK. Consequentlyc ∈ K, and therefore

√
xz and√

yz are elements of a separable extension ofR, a contradiction.

Remark 3.6.Let R be a ring of characteristicp which is not F-pure, i.e.,
such that there existsz ∈ R with z ∈ IF − I . By Theorem 3.1 there exists a
module-finite separable extensionS such thatz ∈ IS. In general we cannot
expectS to be F-regular or even F-rational: ifR is the coordinate ring of
an elliptic curve, a normal module-finite extension domainS will continue
to have elements of infinite order in the divisor class group Cl(S), and
consequently the two dimensional ringS cannot be F-rational by a result
of J. Lipman, [Li]. However there do exist examples where the separable
extension is F-regular, moreover is a polynomial ring.

Example 3.7.Let R = K[X, Y, Z, A, B]/(Zq − AXq − BYq) whereK is
a field of characteristicp andq = pe. Thenz ∈ (x, y)F , and we construct
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a separable module-finite extensionS such thatz ∈ (x, y)S. Letu be a root
of the separable equation

Uq − a + Uyq = 0

and letS be the normalization ofR[u]. Thenv = (z − ux)/y is easily seen
to be an element ofS and we haveS = K[X, Y, u, v], which is a polynomial
ring.

We next recall a definition from [Ma]:

Definition 3.8. A Noetherian integral domainR is said to be a splinter if it
is a direct summand, as anR-module, of every module-finite extension ring
of R.

In the case thatR contains the field of rational numbers, it is easily seen
thatR is a splinter if and only if it is a normal ring, but the notion is more
subtle for rings of characteristicp. F-regular rings are always splinter and
the converse is known to hold forQ-Gorenstein rings, see [Si3]. Corollary
3.4 above gives a new characterization of splinter rings of characteristicp:

Corollary 3.9. Let R be an excellent integral domain on characteristicp.
ThenR is a splinter if and only if it is a direct summand of every module-finite
separable extension domain.

Proof. Excellent integral domains are approximately Gorenstein, and so an
inclusionR → S splits if and only ifIS ∩ R = I for all idealsI of R, see
[Ho]. The result now follows from Corollary 3.4.ut

We also obtain the following theorem which is separable analogue of the
main result of [HH2].

Theorem 3.10. Let (R, m) be an excellent local domain of characteristic
p. Then every sequence of elements which is part of a system of parameters
for R is a regular sequence onR+sep. ConsequentlyR+sep is a balanced big
Cohen–Macaulay module forR.

Proof. Let x1, . . . , xk be part of a system of parameters forR. Given a
relation

∑k
i=1 rixi = 0 with ri ∈ R+sepwe may replaceR by a module-finite

separable extension and (after a change of notation) assume thatri ∈ R.
SinceR+ is a big Cohen–Macaulay algebra forR, [HH2, Theorem 1.1],
we haverk ∈ (x1, . . . , xk−1)R

+ ∩ R, but thenrk ∈ (x1, . . . , xk−1)R
+sep by

Corollary 3.4. ut
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4. A computation of plus closure

In [Si2] we showed thatxyz ∈ (x2, y2, z2)∗ in the cubic hypersurfaceR =
K[X, Y, Z]/(X3+Y 3+Z3) whereK is a field of prime characteristicp 6= 3.
This question arose in M. McDermott’s study of the tight closure and plus
of various irreducible ideals inR, see [Mc]. We furthermore showed that
xyz ∈ (x2, y2, z2)F wheneverR is not F-pure, i.e., whenp ≡ 2 mod 3. In
this section we settle the one unresolved issue by establishing thatxyz ∈
(x2, y2, z2)+ when the characteristic of the field isp ≡ 1 mod 3.

The following lemma is a basic version of a more powerful equational
criterion, but will suffice for our needs.

Lemma 4.1. Let R be a integral domain of characteristicp and consider
nonzero elementsz, x1, . . . , xk ∈ R which satisfy

zp ∈ (x
p

1 , . . . , x
p

k ) + z((x
p

1 , . . . , x
p

k ) : (x1, . . . , xk)).

Then there exists an integral domainS which is a module-finite extension of
R such thatz ∈ (x1, . . . , xk)S.

Proof. See [Ab1]. ut
We record a determinant identity that we shall find useful. For integers

n andm wherem ≥ 1, we shall use the notation:(
n

m

)
= (n)(n − 1) · · · (n − m + 1)

(m)(m − 1) · · · (1)
.

Lemma 4.2.

det




(
n

a+k

) (
n

a+k+1

)
. . .

(
n

a+2k

)
(

n

a+k−1

) (
n

a+k

)
. . .

(
n

a+2k−1

)
. . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .(
n

a

) (
n

a+1

)
. . .

(
n

a+k

)




=
(

n

a+k

)(
n+1
a+k

) · · · (n+k

a+k

)
(
a+k

a+k

)(
a+k+1
a+k

) · · · (a+2k

a+k

) .

Proof. This is evaluated in [Mu, page 682] as well as [Ro].ut
As a first application of this, we prove the following lemma:

Lemma 4.3. Let K[A, B] be a polynomial ring over a fieldK of charac-
teristicp = 3k + 1, wherek is a positive integer. Then

(A, B)3k ⊆ I = (A2k+1, B2k+1, (A + B)2k).
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Proof. Note thatI contains the following elements:

(A + B)2kAk, (A + B)2kAk−1B, . . . , (A + B)2kBk.

We consider the binomial expansions of these elements modulo the ideal
(A2k+1, B2k+1). Consequently the following elements are inI :

(2k

k

)
A2kBk + ( 2k

k+1

)
A2k−1Bk+1 + · · · + (2k

2k

)
AkB2k,( 2k

k−1

)
A2kBk + (2k

k

)
A2k−1Bk+1 + · · · + ( 2k

2k−1

)
AkB2k,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2k

0

)
A2kBk + (2k

1

)
A2k−1Bk+1 + · · · + (2k

k

)
AkB2k.

The coefficients ofA2kBk, A2k−1Bk+1, . . . , AkB2k form the matrix:


(2k

k

) ( 2k

k+1

) · · · (2k

2k

)
( 2k

k−1

) (2k

k

) · · · ( 2k

2k−1

)
. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .(2k

0

) (2k

1

) · · · (2k

k

)




.

To show that all monomials of degree 3k in A andB are inI , it suffices to
show that this matrix is invertible. By Lemma 4.2, the determinant of this
matrix is (2k

k

)(2k+1
k

) · · · (3k

k

)
(
k

k

)(
k+1
k

) · · · (2k

k

)
which is immediately seen to be invertible since the characteristic of the
field isp = 3k + 1. ut
Lemma 4.4. Let R = K[X, Y, Z]/(X3 + Y 3 + Z3) whereK is a field of
prime characteristicp = 3k + 1. Then

xp−1y2p−2 ∈ (x2p, y2p, z2p) : (x2, y2, z2).

Proof. We first show thatxp+1y2p−2 ∈ (x2p, y2p, z2p), i.e., that

x3k+2y6k ∈ (x6k+2, y6k+2, z6k+2).

This would follow if we establish that

x3ky6k ∈ (x6k, y6k+3, z6k+3).
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SettingA = y3, B = z3 andA + B = −x3, we need to show

(A + B)kA2k ∈ I = ((A + B)2k, A2k+1, B2k+1).

This follows immediately from Lemma 4.3.
It remains to check thatxp−1y2p−2z2 ∈ (x2p, y2p, z2p). This would fol-

low if we show
x3ky6k ∈ (x6k+3, y6k+3, z6k).

SettingA = x3, B = y3 andA + B = −z3, we now need to show

AkB2k ∈ I = (A2k+1, B2k+1, (A + B)2k),

which again follows from Lemma 4.3.ut
We are now ready to prove our main result of this section.

Theorem 4.5. LetR = K[X, Y, Z]/(X3 + Y 3 + Z3) whereK is a field of
prime characteristicp ≡ 1 mod 3. Thenxyz ∈ (x2, y2, z2)+.

Proof. By Lemma 4.1, it suffices to show

(xyz)p ∈ (x2p, y2p, z2p) + xyz((x2p, y2p, z2p) : (x2, y2, z2)).

By Lemma 4.4 we have

(xp−1y2p−2, x2p−2yp−1) ⊆ (x2p, y2p, z2p) : (x2, y2, z2)),

and hence it is enough to show

(xyz)p ∈ (x2p, y2p, z2p, xpy2p−1z, x2p−1ypz),

i.e., that

(xyz)3k+1 ∈ (x6k+2, y6k+2, z6k+2, x3k+1y6k+1z, x6k+1y3k+1z).

This follows if we show

(xyz)3k ∈ (z6k+3, x3ky6k, x6ky3k).

SettingA = x3, B = y3 andA + B = −z3, we need to show

(AB(A + B))k ∈ I = ((A + B)2k+1, AkB2k, A2kBk).

Note thatI contains the following elements:

(A + B)2k+1Ak−2B, (A + B)2k+1Ak−3B2, . . . , (A + B)2k+1Bk−1.
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We consider the binomial expansions of these elements modulo the ideal
(AkB2k, A2kBk). This shows that the following are elements ofI :

(2k+1
k

)
A2k−1Bk+1 + (2k+1

k+1

)
A2k−2Bk+2 + · · · + (2k+1

2k−2

)
Ak+1B2k−1,(2k+1

k−1

)
A2k−1Bk+1 + (2k+1

k

)
A2k−2Bk+2 + · · · + (2k+1

2k−3

)
Ak+1B2k−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2k+1
2

)
A2k−1Bk+1 + (2k+1

3

)
A2k−2Bk+2 + · · · + (2k+1

k

)
Ak+1B2k−1.

The coefficients ofA2k−1Bk+1, A2k−2Bk+2, . . . , Ak+1B2k−1 form the ma-
trix: 



(2k+1
k

) (2k+1
k+1

) · · · (2k+1
2k−2

)
(2k+1

k−1

) (2k+1
k

) · · · (2k+1
2k−3

)
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .(2k+1
2

) (2k+1
3

) · · · (2k+1
k

)




.

By Lemma 4.2, the determinant of this matrix is
(2k+1

k

)(2k+2
k

) · · · (3k−1
k

)
(
k

k

)(
k+1
k

) · · · (2k−2
k

)
which is invertible since the characteristic of the field isp = 3k + 1. Hence
all monomials of degree 3k in A andB are elements of the idealI . ut
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