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Abstract We give a new proof of a polynomial identity involving the minors of a
matrix, that originated in the study of integer torsion in a local cohomology module.

1 Introduction

Our study of integer torsion in local cohomology modules began in the paper [Si],
where we constructed a local cohomology module that has p-torsion for each prime
integer p, and also studied the determinantal example H3

I2(Z[X ]) where X is a 2×3
matrix of indeterminates, and I2 the ideal generated by its size 2 minors. In that
paper, we constructed a polynomial identity that shows that the local cohomology
module H3

I2(Z[X ]) has no integer torsion; it then follows that this module is a ra-
tional vector space. Subsequently, in joint work with Lyubeznik and Walther, we
showed that the same holds for all local cohomology modules of the form Hk

It (Z[X ]),
where X is a matrix of indeterminates, It the ideal generated by its size t minors,
and k an integer with k > height It , [LSW, Theorem 1.2]. In a related direction,
in joint work with Bhatt, Blickle, Lyubeznik, and Zhang, we proved that the local
cohomology of a polynomial ring over Z can have p-torsion for at most finitely
many p; we record a special case of [BBLSZ, Theorem 3.1]:

Theorem 1. Let R be a polynomial ring over the ring of integers, and let f1, . . . , fm
be elements of R. Let n be a nonnegative integer. Then each prime integer that is a
nonzerodivisor on the Koszul cohomology module Hn( f1, . . . , fm; R) is also a nonze-
rodivisor on the local cohomology module Hn

( f1,..., fm)
(R).

A. K. Singh
Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, UT 84112, USA
e-mail: singh@math.utah.edu

1



2 Anurag K. Singh

These more general results notwithstanding, a satisfactory proof or conceptual
understanding of the polynomial identity from [Si] had previously eluded us; ex-
tensive calculations with Macaulay2 had led us to a conjectured identity, which we
were then able to prove using the hypergeometric series algorithms of Petkovšek,
Wilf, and Zeilberger [PWZ], as implemented in Maple. The purpose of this note is
to demonstrate how techniques using differential operators underlying the papers
[BBLSZ] and [LSW] provide the “right” proof of the identity, and, indeed, provide
a rich source of similar identities.

We remark that there is considerable motivation for studying local cohomology
of rings of polynomials with integer coefficients such as Hk

It (Z[X ]): a matrix of inde-
terminates X specializes to a given matrix of that size over an arbitrary commutative
noetherian ring (this is where Z is crucial), which turns out to be useful in proving
vanishing theorems for local cohomology supported at ideals of minors of arbitrary
matrices. See [LSW, Theorem 1.1] for these vanishing results, that build upon the
work of Bruns and Schwänzl [BS].

2 Preliminary remarks

We summarize some notation and facts. As a reference for Koszul cohomology and
local cohomology, we mention [BH]; for more on local cohomology as a D-module,
we point the reader towards [Ly1] and [BBLSZ].

Koszul and Čech cohomology

For an element f in a commutative ring R, the Koszul complex K•( f ; R) has a
natural map to the Čech complex C•( f ; R) as follows:

K•( f ; R) := 0 −−→ R
f−−→ R −−→ 0y ∥∥∥ y 1

f

C•( f ; R) := 0 −−→ R −−→ R f −−→ 0.

For a sequence of elements fff = f1, . . . , fm in R, one similarly obtains

K•( fff ; R) :=
⊗

i K•( fi; R) −−→
⊗

i C
•( fi; R) =: C•( fff ; R),

and hence, for each n > 0, an induced map on cohomology modules

Hn( fff ; R) −−→ Hn
( fff )(R). (1)
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Now suppose R is a polynomial ring over a field F of characteristic p > 0. The
Frobenius endomorphism ϕ of R induces an additive map

Hn
( fff )(R) −−→ Hn

( fff p)(R) = Hn
( fff )(R),

where fff p = f p
1 , . . . , f p

m. Set R{ϕ} to be the extension ring of R obtained by adjoining
the Frobenius operator, i.e., adjoining a generator ϕ subject to the relations ϕr = rpϕ

for each r ∈ R; see [Ly2, Section 4]. By an R{ϕ}-module we will mean a left R{ϕ}-
module. The map displayed above gives Hn

( fff )(R) an R{ϕ}-module structure. It is not
hard to see that the image of Hn( fff ; R) in Hn

( fff )(R) generates the latter as an R{ϕ}-
module; what is much more surprising is a result of Àlvarez, Blickle, and Lyubeznik,
[ABL, Corollary 4.4], by which the image of Hn( fff ; R) in Hn

( fff )(R) generates the
latter as a D(R,F)-module; see below for the definition. The result is already notable
in the case m = 1 = n, where the map (1) takes the form

H1( f ; R) = R/ f R −→ R f /R = H1
( f )(R)

[1] 7−→ [1/ f ] .

By [ABL], the element 1/ f generates R f as a D(R,F)-module. It is of course evi-
dent that 1/ f generates R f as an R{ϕ}-module since the elements ϕe(1/ f ) = 1/ f pe

with e > 0 serve as R-module generators for R f . See [BDV] for an algorithm to
explicitly construct a differential operator δ with δ (1/ f ) = 1/ f pe

, along with a
Macaulay2 implementation.

Differential operators

Let A be a commutative ring, and x an indeterminate; set R = A[x]. The divided
power partial differential operator

1
k!

∂ k

∂xk

is the A-linear endomorphism of R with

1
k!

∂ k

∂xk (x
m) =

(
m
k

)
xm−k for m > 0,

where we use the convention that the binomial coefficient
(m

k

)
vanishes if m < k.

Note that
1
r!

∂ r

∂xr ·
1
s!

∂ s

∂xs =

(
r+ s

r

)
1

(r+ s)!
∂ r+s

∂xr+s .

For the purposes of this paper, if R is a polynomial ring over A in the indeter-
minates x1, . . . ,xd , we define the ring of A-linear differential operators on R, de-
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noted D(R,A), to be the free R-module with basis

1
k1!

∂ k1

∂xk1
1

· · · · · 1
kd!

∂ kd

∂xkd
d

for ki > 0,

with the ring structure coming from composition. This is consistent with more gen-
eral definitions; see [Gr, 16.11]. By a D(R,A)-module, we will mean a left D(R,A)-
module; the ring R has a natural D(R,A)-module structure, as do localizations
of R. For a sequence of elements fff in R, the Čech complex C•( fff ; R) is a com-
plex of D(R,A)-modules, and hence so are its cohomology modules Hn

( fff )(R). Note
that for m > 1, one has

1
k!

∂ k

∂xk

(
1

xm

)
= (−1)k

(
m+ k−1

k

)
1

xm+k .

We also recall the Leibniz rule, which states that

1
k!

∂ k

∂xk ( f g) = ∑
i+ j=k

1
i!

∂ i

∂xi ( f )
1
j!

∂ j

∂x j (g).

3 The identity

Let R be the ring of polynomials with integer coefficients in the indeterminates(
u v w
x y z

)
.

The ideal I generated by the size 2 minors of the above matrix has height 2; our
interest is in proving that the local cohomology module H3

I (R) is a rational vector
space. We label the minors as ∆1 = vz−wy, ∆2 = wx−uz, and ∆3 = uy− vx. Fix a
prime integer p, and consider the exact sequence

0 −−→ R
p−−→ R −−→ R −−→ 0,

where R = R/pR. This induces an exact sequence of local cohomology modules

−−→ H2
I (R)

π−−→ H2
I (R) −−→ H3

I (R)
p−−→ H3

I (R) −−→ H3
I (R) −−→ 0.

The ring R/IR is Cohen-Macaulay of dimension 4, so [PS, Proposition III.4.1] im-
plies that H3

I (R) = 0. As p is arbitrary, it follows that H3
I (R) is a divisible abelian

group. To prove that it is a rational vector space, one needs to show that multiplica-
tion by p on H3

I (R) is injective, equivalently that π is surjective. We first prove this
using the identity (2) below, and then proceed with the proof of the identity.

For each k > 0, one has



A polynomial identity via differential operators 5

∑
i, j>0

(
k

i+ j

)(
k+ i

k

)(
k+ j

k

)
(−wx)i(vx) juk+1

∆
k+1+i
2 ∆

k+1+ j
3

+ ∑
i, j>0

(
k

i+ j

)(
k+ i

k

)(
k+ j

k

)
(−uy)i(wy) jvk+1

∆
k+1+i
3 ∆

k+1+ j
1

+ ∑
i, j>0

(
k

i+ j

)(
k+ i

k

)(
k+ j

k

)
(−vz)i(uz) jwk+1

∆
k+1+i
1 ∆

k+1+ j
2

= 0. (2)

Since the binomial coefficient
( k

i+ j

)
vanishes if i or j exceeds k, this equation may

be rewritten as an identity in the polynomial ring Z[u,v,w,x,y,z] after multiplying
by (∆1∆2∆3)

2k+1.
Computing H2

I (R) as the cohomology of the Čech complex C•(∆1,∆2,∆3; R),
equation (2) gives a 2-cocycle in

C2(∆1,∆2,∆3; R) = R∆1∆2 ⊕R∆1∆3 ⊕R∆2∆3 ;

we denote the cohomology class of this cocycle in H2
I (R) by ηk. When k = pe−1,

one has (
k

i+ j

)(
k+ i

k

)(
k+ j

k

)
≡ 0 mod p for (i, j) 6= (0,0),

so (2) reduces modulo p to

upe

∆
pe

2 ∆
pe

3

+
vpe

∆
pe

3 ∆
pe

1

+
wpe

∆
pe

1 ∆
pe

2

≡ 0 mod p,

and the cohomology class ηpe−1 has image

π(ηpe−1) =

[(
wpe

∆
pe

1 ∆
pe

2

,
−vpe

∆
pe

1 ∆
pe

3

,
upe

∆
pe

2 ∆
pe

3

)]
in H2

I (R).

Since R is a regular ring of positive characteristic, H2
I (R) is generated as an R{ϕ}-

module by the image of

H2(∆1,∆2,∆3; R) −−→ H2
I (R).

The Koszul cohomology module H2(∆1,∆2,∆3; R) is readily seen to be generated,
as an R-module, by elements corresponding to the relations

u∆1 + v∆2 +w∆3 = 0 and x∆1 + y∆2 + z∆3 = 0.

These two generators of H2(∆1,∆2,∆3; R) map, respectively, to

α :=
[(

w
∆1∆2

,
−v

∆1∆3
,

u
∆2∆3

)]
and β :=

[(
z

∆1∆2
,
−y

∆1∆3
,

x
∆2∆3

)]
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in H2
I (R). Thus, H2

I (R) is generated over R by ϕe(α) and ϕe(β ) for e > 0. But

ϕ
e(α) = π(ηpe−1)

is in the image of π , and hence so is ϕe(β ) by symmetry. Thus, π is surjective.

The proof of the identity

We start by observing that C2(∆1,∆2,∆3; R) is a D(R,Z)-module. The element(
w

∆1∆2
,
−v

∆1∆3
,

u
∆2∆3

)
is a 2-cocycle in C2(∆1,∆2,∆3; R) since

w
∆1∆2

+
v

∆1∆3
+

u
∆2∆3

= 0. (3)

We claim that the identity (2) is simply the differential operator

D =
1
k!

∂ k

∂uk ·
1
k!

∂ k

∂yk ·
1
k!

∂ k

∂ zk

applied termwise to (3); we first explain the choice of this operator: set k = pe−1,
and consider D = D mod p as an element of

D(R,Z)/pD(R,Z) = D(R/pR,Z/pZ).

It is an elementary verification that

D(u∆
pe−1
2 ∆

pe−1
3 ) ≡ upe

D(v∆
pe−1
3 ∆

pe−1
1 ) ≡ vpe

mod p.

D(w∆
pe−1
1 ∆

pe−1
2 ) ≡ wpe

Since k < pe, the differential operator D is Rpe
-linear; dividing the above equations

by ∆
pe

2 ∆
pe

3 , ∆
pe

3 ∆
pe

1 , and ∆
pe

1 ∆
pe

2 respectively, we obtain

D
(

w
∆1∆2

,
−v

∆1∆3
,

u
∆2∆3

)
≡

(
wpe

∆
pe

1 ∆
pe

2

,
−vpe

∆
pe

1 ∆
pe

3

,
upe

∆
pe

2 ∆
pe

3

)
mod p,

which maps to the desired cohomology class ϕe(α) in H2
I (R). Of course, the oper-

ator D is not unique in this regard.
Using elementary properties of differential operators recorded in §2, we have
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D
(

v
∆3∆1

)
=

1
k!

∂ k

∂uk ·
1
k!

∂ k

∂yk ·
1
k!

∂ k

∂ zk

[
v

(uy− vx)(vz−wy)

]
=

1
k!

∂ k

∂uk ·
1
k!

∂ k

∂yk

[
v(−v)k

(uy− vx)(vz−wy)k+1

]
=

1
k!

∂ k

∂yk

[
v(−v)k(−y)k

(uy− vx)k+1(vz−wy)k+1

]
= vk+1 1

k!
∂ k

∂yk

[
yk

(uy− vx)k+1(vz−wy)k+1

]
= vk+1

∑
i, j

[
1
i!

∂ i

∂yi
1

(uy− vx)k+1

][
1
j!

∂ j

∂y j
1

(vz−wy)k+1

][
1

(k− i− j)!
∂ k−i− j

∂yk−i− j yk
]

= vk+1
∑
i, j

(
k+ i

i

)
(−u)i

(uy− vx)k+1+i

(
k+ j

j

)
w j

(vz−wy)k+1+ j

(
k

i+ j

)
yi+ j

= vk+1
∑
i, j

(
k+ i

i

)(
k+ j

j

)(
k

i+ j

)
(−uy)i(wy) j

∆
k+1+i
3 ∆

k+1+ j
1

.

A similar calculation shows that

D
(

w
∆1∆2

)
= wk+1

∑
i, j

(
k+ i

i

)(
k+ j

j

)(
k

i+ j

)
(−vz)i(uz) j

∆
k+1+i
1 ∆

k+1+ j
2

.

It remains to evaluate D
(

u
∆2∆3

)
; we reduce this to the previous calculation as

follows. First note that the differential operators
∂

∂u
· ∂

∂y
and

∂

∂v
· ∂

∂x
commute; it

is readily checked that they agree on
u

∆2∆3
. Consequently the operators

1
k!

∂ k

∂uk ·
1
k!

∂ k

∂yk ·
1
k!

∂ k

∂ zk and
1
k!

∂ k

∂vk ·
1
k!

∂ k

∂ zk ·
1
k!

∂ k

∂xk

agree on
u

∆2∆3
as well. But then

D
(

u
∆2∆3

)
=

1
k!

∂ k

∂vk ·
1
k!

∂ k

∂ zk ·
1
k!

∂ k

∂xk

[
u

(wx−uz)(uy− vx)

]
which, using the previous calculation and symmetry, equals

uk+1
∑
i, j

(
k+ i

i

)(
k+ j

j

)(
k

i+ j

)
(−wx)i(vx) j

∆
k+1+i
2 ∆

k+1+ j
3

.
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Identities in general

Suppose fff = f1, . . . , fm are elements of a polynomial ring R over Z, and g1, . . . ,gm
are elements of R such that

g1 f1 + · · ·+gm fm = 0.

Then, for each prime integer p and e > 0, the Frobenius map on R = R/pR gives

gpe

1 f pe

1 + · · ·+gpe

m f pe

m ≡ 0 mod p. (4)

Now suppose p is a nonzerodivisor on the Koszul cohomology module Hm( fff ; R).
Then Theorem 1 implies that (4) lifts to an equation

G1 f N
1 + · · ·+Gm f N

m = 0 (5)

in R in the sense that the cohomology class corresponding to (5) in Hm−1
( fff ) (R) maps

to the cohomology class corresponding to (4) in Hm−1
( fff ) (R).
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