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Abstract
For (A,m) a local ring, we study the natural map from the Koszul cohomology module
Hdim A(m; A) to the local cohomology module Hdim A

m (A). We prove that the injectivity of
this map characterizes the Cohen-Macaulay property of the ring A.We also answer a question
of Dutta by constructing normal rings A for which this map is zero.

1 Introduction

For a commutative Noetherian local ring (A,m), we study the natural map from the Koszul
cohomology module Hdim A(m; A) to the local cohomology module Hdim A

m (A), and use
this to answer a question raised by Dutta [6], Question 1.1 below. The motivation for Dutta’s
question stems from Hochster’s monomial conjecture [10, page 33] that occupies a central
place in local algebra; this is the conjecture that if z := z1, . . . , zn forma systemof parameters
for a local ring A, then for each t ∈ N one has

(z1 · · · zn)t /∈ (zt+1
1 , . . . , zt+1

n )A.

An equivalent formulation of the conjecture is that the natural map

ϕn
z : Hn(z; A) −→ Hn

zA(A),
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as discussed in §2, is nonzero. The monomial conjecture was proved for rings containing
a field by Hochster, in the same paper where it was first formulated. The case of rings of
dimension atmost two is straightforward; for decades, the conjecture remained unresolved for
mixed characteristic rings of dimension greater than or equal to three, as did its equivalent
formulations, the direct summand conjecture, the canonical element conjecture, and the
improved new intersection conjecture. In [9] Heitmann proved these equivalent conjectures
for mixed characteristic rings of dimension three; more recently, André [1] settled the mixed
characteristic case in full generality, with Bhatt [2] establishing a derived variant. Related
homological conjectures including Auslander’s zerodivisor conjecture and Bass’s conjecture
had been settled earlier by Roberts [16].

For the setup of Dutta’s question, let A be a complete local ring. Using the Cohen structure
theorem, A can be written as the homomorphic image of a complete regular local ring; this
surjection may be factored so as to obtain a complete Gorenstein local ring R, such that A is
the homomorphic image of R, and dim R = dim A. Dutta [6, page 50] asked:

Question 1.1 Let A be a complete normal local ring. Let (R,m) be a Gorenstein ring with a
surjective homomorphism R −! A, such that n := dim R = dim A. Does the natural map

ExtnR(R/m, A) −→ Hn
m(A) (1.1.1)

have a nonzero image?

We prove that the answer to the above is negative in the following strong sense: we
construct a complete normal local ring A such that for eachGorenstein ring R with R −! A
and dim R = dim A, the map (1.1.1) is zero. Our approach is via studying a related question
on maps from Koszul cohomology to local cohomology: Let z := z1, . . . , zt be elements of
R that generate anm-primary ideal. Let P• be a projective resolution of R/m as an R-module.
The canonical surjection R/zR −! R/m lifts to a map of complexes

K•(z; R) −→ P•,

where K•(z; R) denotes the homological Koszul complex. Applying HomR(−, A) to the
above and taking cohomology, one obtains the map

ExtnR(R/m, A) −→ Hn(z; A), (1.1.2)

where Hn(z; A) denotes Koszul cohomology. The map (1.1.1) factors as a composition
of (1.1.2) and the natural map from Koszul cohomology to local cohomology

Hn(z; A) −→ Hn
m(A); (1.1.3)

the map above is described explicitly in §2. Note that in (1.1.3), the ring R no longer plays
a role: the elements z may be replaced by their images in A; likewise, the maximal ideal of
R may be replaced by that of A. In Theorem 3.2 we construct normal graded rings A for
which the map (1.1.3) is zero; localizing at the homogeneous maximal ideal and taking the
completion, one obtains examples where the answer to Question 1.1 is negative.

Quite generally, for (A,m) a local ring and n := dim A, we prove that the injectivity of the
natural map Hn(a; A) −→ Hn

a (A) for some (or each)m-primary a is equivalent to the ring A
being Cohen-Macaulay, Theorem 3.1; here, and in the sequel, we use K •(a; A) to denote the
cohomological Koszul complex on a minimal set of generators for an ideal a, and H•(a; A)
for its cohomology. In §2 we record definitions and preliminary material. While §3 is largely
devoted to the injectivity of themap Hn(m; A) −→ Hn

m(A), §4 investigates the nonvanishing
and the kernel. Theorem 4.2 records a case where we obtain precise information on the kernel
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Koszul and local cohomology... 699

of the map Hn(m; A) −→ Hn
m(A), that we then illustrate with several examples, including

some involving Stanley-Reisner rings, §5.
All rings under consideration in this paper are Noetherian; by a local ring (A,m), we

mean a Noetherian ring A with a unique maximal ideal m.

2 Graded Koszul and local cohomology, and limit closure

We record some preliminaries on Koszul and local cohomology; the discussion below is in
the graded context, in the form used in the proof of Theorems 3.2. Ignoring the grading and
degree shifts, one has similar statements outside of the graded setting.

Let A be an N-graded ring, and z a homogeneous ring element. Then one has a degree-
preservingmap from theKoszul complex K •(z; A) to the Čech complexC•(z; A) as below:

0 −−−−→ A
z−−−−→ A(deg z) −−−−→ 0

1

" 1
z

"

0 −−−−→ A −−−−→ Az −−−−→ 0.

For a sequence of homogeneous elements z := z1, . . . , zt , one similarly has

K •(z; A) :=⊗
i K

•(zi ; A) −−−−→ ⊗
i C

•(zi ; A) =: C•(z; A).

For each m ≥ 0, the induced map from Koszul cohomology to local cohomology modules

ϕm
z : Hm(z; A) −→ Hm

zA(A)

is degree-preserving, and what we refer to as the natural map. For homogeneous elements z
and w in A, one has a commutative diagram with degree-preserving maps and exacts rows:

−−−→ Hm−1(z; A)
±w−−−→ Hm−1(z; A)(degw) −−−→ Hm(z, w; A) −−−→ Hm(z; A) −−−→

ϕm−1
z

" ± 1
w ϕm−1

z

" ϕm
z,w

" ϕm
z

"

−−−→ Hm−1
(z) (A) −−−→ Hm−1

(z) (Aw) −−−→ Hm
(z,w)(A) −−−→ Hm

(z)(A) −−−→
(2.0.1)

Set n := dim A, and fix a homogeneous system of parameters z := z1, . . . , zn for A. The
map ϕn

z : Hn(z; A) −→ Hn
zA(A) then takes form

A
zA

(
∑

deg zi ) −→ Az1···zn∑
Az1···ẑi ···zn

, 1 %−→
[

1
z1 · · · zn

]
. (2.0.2)

Following [13, §2.5], the limit closure of the parameter ideal zA is the ideal

(zA)lim := {x ∈ A | xz j1 · · · z
j
n ∈ (z j+1

1 , . . . , z j+1
n )A for j & 0}.

Using (2.0.2), it is readily seen that (zA)lim/zA is the kernel of ϕn
z : Hn(z; A) −→ Hn

zA(A).
It follows that (zA)lim is unchanged if one takes a different choice of minimal generators for
the ideal zA. When z is a regular sequence, it is easily checked that (zA)lim = zA.

Example 2.1 Consider A := R[x, y, i x, iy], which is a subring of the polynomial ring
C[x, y]. Then A is a standard graded ring, with homogeneous system of parameters x, y.
Since

i x(xy) = iy(x2) ∈ (x2, y2),
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700 L. Ma et al.

one has i x ∈ (x, y)lim. Similarly, iy ∈ (x, y)lim, so (x, y)lim equals the homogeneous
maximal ideal m of A. The map H2(m; A) −→ H2

m(A) is zero by an argument similar to
the one used in the proof of Theorem 3.2; alternatively, see Example 5.2.

The ring in the example above is not normal; this leads to:

Question 2.2 Does there exist a non-regular complete normal local ring (A,m), with a system
of parameters z, such that (zA)lim = m?

For a ring A thatmeets the conditions above, the answer toQuestion 1.1 is negative: let z :=
z1, . . . , zn be a system of parameters with (zA)lim = m, and take R as in Question 1.1. The
map ExtnR(R/mR, A) −→ Hn

m(A) factors through Hn(z; A) = A/zA. As ExtnR(R/mR, A)
is annihilated by m, so is its image in A/zA. Hence this image is a submodule of

0 :A/zA m ⊆ m/zA,

where the containment above holds since A is not regular. Since Hn(z; A) −→ Hn
m(A) has

kernel (zA)lim/zA = m/zA, it follows that ExtnR(R/mR, A) −→ Hn
m(A) must be zero.

3 Injectivity of themap from Koszul to local cohomology

We begin with a characterization of the Cohen-Macaulay property:

Theorem 3.1 Let (A,m) be a local ring; set n := dim A. Then the following are equivalent:

(1) The ring A is Cohen-Macaulay.
(2) The natural map Hn(a; A) −→ Hn

a (A) is injective for each m-primary ideal a of A.
(3) The natural map Hn(a; A) −→ Hn

a (A) is injective for some m-primary ideal a of A.

Proof Suppose a is an m-primary ideal. We claim that there exists a minimal generating set
z1, . . . , zt for a such that z1, . . . , zn is a system of parameters. For i < n, it suffices to choose
an element zi+1, not in any minimal prime of (z1, . . . , zi )A, such that

zi+1 ∈ a \ma.

This may be accomplished using the version of prime avoidance where up to two of the ideals
need not be prime, see for example [14, Theorem 81].

Assume (1). Suppose z generates anm-primary ideal, andw ∈ m is an additional element.
Using (2.0.1), the vanishing of Hn−1(z; A) implies that the map

Hn(z, w; A) −→ Hn(z; A)

is injective. Thus, if the map ϕn
z : Hn(z; A) −→ Hn

zA(A) = Hn
m(A) is injective, then so is

the map ϕn
z,w : Hn(z, w; A) −→ Hn

(z,w)A(A) = Hn
m(A). Hence the proof of (2) reduces to

the case where a is generated by a system of parameters z. But then z is a regular sequence,
and the injectivity follows.

It is immediate that (2) implies (3). Next, assume (3), i.e., that a is an m-primary ideal
and that Hn(a; A) −→ Hn

a (A) is injective. We first consider the case where a is generated
by a system of parameters z. In this case, the fact that z is a regular sequence on A follows
from [5, Corollary 2.4], though one may also argue as follows: The injectivity translates
as (zA)lim = zA. Using e(zA) to denote the multiplicity of the ideal zA, one has

e(zA) ≤ "(A/zA),
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with equality holding precisely if A is Cohen-Macaulay, see [4, Corollary 4.7.11]. But

"(A/(zA)lim) ≤ e(zA)

by [15, Theorem 9], so A is Cohen-Macaulay.
For the general case, take a minimal generating set z1, . . . , zt for a such that z1, . . . , zn

is a system of parameters. Suppose n < t . Using (2.0.1), one has a commutative diagram

Hn(z1, . . . , zt ; A) −−−−→ Hn(z1, . . . , zt−1; A)

ϕn
z

"
"

Hn
a (A) Hn

a (A)

Since ϕn
z is injective by assumption, it follows that

Hn(z1, . . . , zt ; A) −→ Hn(z1, . . . , zt−1; A)

is injective, and hence that multiplication by zt on Hn−1(z1, . . . , zt−1; A) is surjective. But
then, by Nakayama’s lemma, Hn−1(z1, . . . , zt−1; A) = 0, so A is Cohen-Macaulay. )*

The next theorem provides a large class of rings for which the answer to Question 1.1 is
negative; while the rings below are graded, the relevant issues are unchanged under localiza-
tion and completion.

Theorem 3.2 Let k be a field; take polynomial rings k[x1, . . . , xb] and C := k[y1, . . . , yc],
where b ≥ 3 and c ≥ 2. Let f (x) be a homogeneous polynomial such that the hypersurface

B := k[x1, . . . , xb]/( f (x))
is normal. Then the Segre product A := B #C is a normal ring of dimension b + c − 2.

Let m denote the homogeneous maximal ideal of A. Then the following are equivalent:

(1) The ring A is Cohen-Macaulay.
(2) The polynomial f (x) has degree less than b.
(3) The natural map Hb+c−2(m; A) −→ Hb+c−2

m (A) is injective.
(4) The natural map Hb+c−2(m; A) −→ Hb+c−2

m (A) is nonzero.

Proof Regarding the normality of A, note that B ⊗k C is a polynomial ring over B, hence
normal; it follows that its pure subring A is normal as well. The dimension of A and the
equivalence of (1) and (2)maybeobtained from theKünneth formula for local cohomology [7,
Theorem 4.1.5]. Note that (1) and (3) are equivalent by Theorem 3.1, and that (3) trivially
implies (4).

Set d := deg f (x) and assume that d ≥ b. To complete the proof, we show that the map

Hb+c−2(m; A) −→ Hb+c−2
m (A)

is zero. Fix the polynomial ring

S := k[zi j | 1 ≤ i ≤ b, 1 ≤ j ≤ c]
with the k-algebra surjectionπ : S −! A, where zi j %−→ xi y j .Weworkwith the standardN-
gradings on S and A, i.e., deg zi j = 1 = deg xi y j . Note that the minimal generators for ker π
have degree 2 and degree d , with the degree 2 generators being

zi j zrs − zis zr j .
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702 L. Ma et al.

Specifically,
At = [S/I2(Z)]t for t ≤ d − 1, (3.2.1)

where I2(Z) is the ideal generated by the size 2 minors of the matrix Z := (zi j ).
The Künneth formula gives

Hb+c−2
m (A) = Hb−1

mB
(B) # Hc

mC
(C).

Since [Hc
mC

(C)] j = 0 for j > −c, it follows that

[Hb+c−2
m (A)] j = 0 for j > −c.

The images of z := z11, . . . , zbc are minimal generators for m, so it suffices to show that

[Hb+c−2(z; A)] j = 0 for j ≤ −c.

Since deg zi j = 1 for each i, j , the Koszul complex K •(z; A) has the form

0 −−−−→ A −−−−→ ⊕
A(1) −−−−→ ⊕

A(2) −−−−→ ⊕
A(3) −−−−→ · · · .

Fix j with j ≤ −c. The graded strand of the Koszul complex computing [Hb+c−2(z; A)] j
is

⊕
Ab+c−3+ j

α−−−−→ ⊕
Ab+c−2+ j

β−−−−→ ⊕
Ab+c−1+ j , (3.2.2)

where the nonzero entries of thematrices for α and β are linear forms in the zi j . The condition
j ≤ −c implies that b + c − 1+ j ≤ b − 1 ≤ d − 1. In light of (3.2.1), it follows that the
cohomology of (3.2.2) coincides with that of

⊕ [S/I2(Z)]b+c−3+ j
α−−−−→ ⊕ [S/I2(Z)]b+c−2+ j

β−−−−→ ⊕ [S/I2(Z)]b+c−1+ j .

But the Koszul cohomology module Hb+c−2(z; S/I2(Z)) is zero since S/I2(Z) is a Cohen-
Macaulay ring of dimension b + c − 1. )*

4 Nonvanishing of themap from Koszul to local cohomology

Let (A,m) be a local ring; set n := dim A. Theorem 3.1 characterizes the injectivity of the
map ϕn

m : Hn(m; A) −→ Hn
m(A). We next discuss when this map is nonzero.

A canonical module for a local ring (A,m) is a finitely generated A-module ωA with

HomA(ωA, E) ∼= Hdim A
m (A),

where E is the injective hull of the residue field A/m in the category of A-modules. The
canonical module of A—when it exists—is unique up to isomorphism. Suppose A is the
homomorphic image of a Gorenstein local ring R. Then

Extdim R−dim A
R (A, R)

is an A-module satisfying the Serre condition S2, and is a canonical module for A.
A local ring A is said to be quasi-Gorenstein if it is the homomorphic image of aGorenstein

local ring, and ωA is isomorphic to A. Using André’s Theorem [1], one obtains:

Theorem 4.1 Let (A,m) be a local ring that is a homomorphic image of a Gorenstein local
ring. Set n := dim A. Then the natural map Hn(m; ωA) −→ Hn

m(ωA) is nonzero. In
particular, if A is quasi-Gorenstein, then the natural map Hn(m; A) −→ Hn

m(A) is nonzero.
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Proof Since the direct summand conjecture is true by [1], the local ring A satisfies the
canonical element property, see [12, Theorem 2.8]. By [12, Theorem 4.3], this is equivalent
to the map ExtnA(A/m, ωA) −→ Hn

m(ωA) being nonzero. This map factors as

ExtnA(A/m, ωA) −→ Hn(m; ωA) −→ Hn
m(ωA),

implying that the map Hn(m; ωA) −→ Hn
m(ωA) is nonzero. )*

The next theorem records an interesting case where we have substantial information on
the kernel of the map Hn(m; A) −→ Hn

m(A).

Theorem 4.2 Let A be a standard graded ring that is finitely generated over a field k := A0.
Set n := dim A and e := edim A, and let m denote the homogeneous maximal ideal of A.
Suppose there exists an integer d such that for each integer j with j < n, one has

H j
m(A) = [H j

m(A)]d .

Set s j := rank [H j
m(A)]d . Then:

(1) The kernel of the natural map ϕn
m : Hn(m; A) −→ Hn

m(A) has Hilbert series

∑

i

rank
[
ker ϕn

m

]
i T

i = sn−1

(
e
1

)
T d−1 + sn−2

(
e
2

)
T d−2 + · · · + s0

(
e
n

)
T d−n .

(2) If a is anm-primary ideal that is minimally generated by r homogeneous elements, each
of degree t, then the kernel of Hn(a; A) −→ Hn

m(A) has Hilbert series

sn−1

(
r
1

)
T d−t + sn−2

(
r
2

)
T d−2t + · · · + s0

(
r
n

)
T d−nt .

Proof It suffices to prove the second assertion. Fix minimal generators z of a. The Koszul
complex K • := K •(z; A) takes the form

0 −−−−→ A −−−−→ A(t)(
r
1) −−−−→ A(2t)(

r
2) −−−−→ · · · −−−−→ A(r t)(

r
r) −−−−→ 0,

and lives in cohomology degree 0, 1, . . . , r .
Let ω•

A be the graded normalized dualizing complex of A, in which case ωA = H−n(ω•
A)

is the graded canonical module of A. Set (−)∨ = HomA(−, ∗E), where ∗E is the injective
hull of A/m in the category of graded A-modules. Applying RHomA(K •, −) to the triangle

ωA[n] −−−−→ ω•
A −−−−→ τ>−nω

•
A

+1−−−−→
gives

RHomA(K •, ωA[n]) −−−−−→ RHomA(K •, ω•
A) −−−−−→ RHomA(K •, τ>−nω

•
A)

+1−−−−−→ .

Since the complex K • has Artinian cohomology, applying the functor (−)∨ gives

RHomA(K •, τ>−nω
•
A)

∨ −−−−−→ K • −−−−−→ RHomA(K •, ωA[n])∨ +1−−−−−→ .

This induces the exact sequence

0 −−−−−→ Hn(RHomA(K •, τ>−nω
•
A)

∨) −−−−−→ Hn(K •) −−−−−→ Hn(RHomA(K •, ωA[n])∨),

where the zero on the left is because RHomA(K •, ωA[n])∨ lives in cohomological
degrees n, n + 1, . . . , n + r . The module Hn(RHomA(K •, ωA[n])∨) is the kernel of the
map

Hn
m(A) −−−−→ Hn

m(A)(t)(
r
1)
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704 L. Ma et al.

given by multiplication by zi in the i-th coordinate. It follows that

Hn(RHomA(K •, ωA[n])∨) = 0 :Hn
m(A) a.

The map Hn(K •) −→ Hn(RHomA(K •, ωA[n])∨) may be identified naturally with

Hn(a; A) −→ 0 :Hn
m(A) a,

which has the same kernel as Hn(a; A) −→ Hn
m(A) since Hn(a; A) is annihilated by a.

Summarizing, one has

Hn(RHomA(K •, τ>−nω
•
A)

∨) = ker
(
Hn(a; A) −→ Hn

m(A)
)
.

The hypothesis that H j
m(A) = [H j

m(A)]d for each integer j with j < n implies that R
is Buchsbaum, see [17, Theorem 3.1]. Acknowledging the abuse of notation, we reuse the
symbol k below for the residue field A/m. By [17, Theorem2.3], τ>−nω

•
A is quasi-isomorphic

to the complex

0 −−−−→ ksn−1(d) −−−−→ · · · −−−−→ ks1(d) −−−−→ ks0(d) −−−−→ 0

of graded k-vector spaces, each in degree −d , with zero differentials; note that ks j in the
complex above has cohomology degree − j . Using this representative of τ>−nω

•
A to com-

pute RHomA(K •, τ>−nω
•
A)

∨, the corresponding double complex takes the form:
/

/
/

0 −−−−−→ k(2t − d)(
r
2)s0 −−−−−→ k(2t − d)(

r
2)s1 −−−−−→ · · · −−−−−→ k(2t − d)(

r
2)sn−1 −−−−−→ 0

/
/

/

0 −−−−−→ k(t − d)(
r
1)s0 −−−−−→ k(t − d)(

r
1)s1 −−−−−→ · · · −−−−−→ k(t − d)(

r
1)sn−1 −−−−−→ 0

/
/

/

0 −−−−−→ k(−d)s0 −−−−−→ k(−d)s1 −−−−−→ · · · −−−−−→ k(−d)sn−1 −−−−−→ 0

Note that all differentials are zero: the horizontal ones in light of the chosen represen-
tative for τ>−nω

•
A, and the vertical ones since each column is a Koszul complex of the

form K •(a; ks j )(−d). The bottom row sits in cohomology degree 0, 1, . . . , n− 1 as it is the
graded dual of τ>−nω

•
A. Taking the total complex, one obtains

Hn(RHomA(K •, τ>−nω
•
A)

∨) = k(t − d)(
r
1)sn−1 ⊕ k(2t − d)(

r
2)sn−2 ⊕ · · · ⊕ k(nt − d)(

r
n)s0 .

)*

We illustrate the preceding results with a number of examples, beginning with an elemen-
tary example taken from [6, Remark 3.9]:

Example 4.3 Let k be a field. Set A := k[x, y]/(x2, xy). Then H0
m(A) = x A, which is a

rank 1 vector space, concentrated in degree 1. By Theorem 4.2, ker
(
H1(m; A) −→ H1

m(A)
)

has rank 2, and is concentrated in degree 0. This is confirmed by examining K •(m; A), i.e.,

0 −−−−→ A

(
x
y

)

−−−−→ A2(1)

(
y −x

)

−−−−−→ A(2) −−−−→ 0,

to observe that H1(m; A) ∼= k2, with the generators corresponding to
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(
0
x

)
,

(
0
y

)
,

and that each of these maps to zero under H1(m; A) −→ H1
m(A). For integers t ≥ 2,

Theorem 4.2 says that the kernel of H1(yt ; A) −→ H1
m(A) has Hilbert series T 1−t . Indeed,

this map is

A(t)/Ayt −→ Ay/A,

with the kernel being the rank 1 vector space generated by x ∈ [A(t)/Ayt ]1−t .
Lastly, note that the image of H1(yt ; A) −→ H1

m(A) has Hilbert series

T−1 + T−2 + T−3 + · · · + T−t

which agrees with the Hilbert series of H1
m(A) as t −→ ∞.

Example 4.4 Let A be as in Theorem 3.2 where f (x) has degree b. Then the ring A is not
Cohen-Macaulay, and the Künneth formula gives

H j
m(A) =

{
k if j = b − 1,
0 if j 1= b − 1, b + c − 2.

The map Hb+c−2(m; A) −→ Hb+c−2
m (A) is zero by Theorem 3.2, while Theorem 4.2 says

that its kernel, i.e., Hb+c−2(m; A), has Hilbert series
(

bc
c − 1

)
T−(c−1).

Example 4.5 Let k be a field; take polynomial rings k[x1, . . . , xb] and C := k[y1, . . . , yc],
where b ≥ 3 and c ≥ 3. Let f (x) and g( y) be homogeneous polynomials of degrees b and c
respectively, such that the hypersurfaces

B := k[x1, . . . , xb]/( f (x)) and C := k[y1, . . . , yc]/(g( y))

are normal. The ring A := B #C is normal, and of dimension b + c − 3; let m denote the
homogeneous maximal ideal of A. Then

H j
m(A) =






0 if j 1= b − 1, c − 1, or b + c − 3,
k if b 1= c, and j equals either b − 1 or c − 1,
k2 if b = c and j = b − 1.

Since B and C are each Gorenstein with a-invariant 0, the ring A is quasi-Gorenstein by [7,
Theorem 4.3.1]. Hence Theorem 4.1 says that Hb+c−3(m; A) −→ Hb+c−3

m (A) is nonzero,
while Theorem 4.2 implies that the kernel has Hilbert series

(
bc

c − 2

)
T−(c−2) +

(
bc

b − 2

)
T−(b−2).

We conclude this section with an example where A is not Cohen-Macaulay or quasi-
Gorenstein, but the map Hdim A(m; A) −→ Hdim A

m (A) is nonzero:
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Example 4.6 Let k be a field, and set A := k[x, y, z]/(xz, y2, yz, z2). Then dim A = 1,
and x is a homogeneous parameter. The Koszul complex K •(m; A) is

0 −−−−→ A





x
y
z





−−−−→ A3(1)





0 −z y
−z 0 x
−y x 0





−−−−−−−−−→ A3(2)

(
x −y z

)

−−−−−−−→ A(3) −−−−→ 0,

from which it follows that H1(m; A) ∼= k4, with the four generators corresponding to



z
0
0



 ,




0
z
0



 ,




0
0
z



 ,




y
0
0



 .

The first three generators map to zero under H1(m; A) −→ H1
m(A), whereas the fourth

maps to the nonzero element of H1
m(A) represented by the Čech cocycle

( y
x
, 0, 0

)
∈ Ax ⊕ Ay ⊕ Az .

The ring A is not S2, and hence not quasi-Gorenstein.
Note that H0

m(A) = zA is a rank 1 vector space concentrated in degree 1, so Theorem 4.2
also confirms that ker

(
H1(m; A) −→ H1

m(A)
)
has rank 3, and is concentrated in degree 0.

For integers t ≥ 2, Theorem 4.2 says that the kernel of H1(xt ; A) −→ H1
m(A) has

Hilbert series T 1−t . Indeed, H1(xt ; A) has Hilbert series

1+ 2T−1 + 2T−2 + · · · + 2T 2−t + 3T 1−t + T−t ,

while H1
m(A) has Hilbert series 1+ 2T−1 + 2T−2 + 2T−3 + · · · .

5 Stanley-Reisner rings

Theorem 4.2 is perhaps best viewed in the broader context of filtering a local cohomology
module Hn

m(A)—that is typically not finitely generated—using natural finitely generated
submodules such as the images of Koszul cohomology or Ext modules, themes that are
pursued at length in [3] and [18]. This turns out to be fascinating even in the context of
Stanley-Reisner rings; in this section, we examine the implications of Theorem 4.2 in some
extensively studied examples such as triangulations of the torus and of the real projective
plane. First, some generalities:

Let( be a simplicial complexwith vertices 1, . . . , e. For k a field, consider the polynomial
ring k[x1, . . . , xe] and the ideal a generated by the square-free monomials

xi1 · · · xir
such that {i1, . . . , ir } is not a face of (. The Stanley-Reisner ring of ( over k is the ring

A := k[x1, . . . , xe]/a.

The ring A has a Ze-grading with deg xi being the i-th unit vector; this induces a grading on
the Čech complex C•(x; A). The module

Axi1 ···xir
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is nonzero precisely if xi1 · · · xir /∈ a, equivalently {i1, . . . , ir } ∈ (. Hence the graded strand
of C•(x; A) in degree 0 := (0, . . . , 0) is the complex that computes the reduced simplicial
cohomology H̃•((; k), with the indices shifted by one, so

[H j
m(A)]0 ∼= H̃ j−1((; k) for j ≥ 0 .

Theorem 4.2 yields the following corollary for Stanley-Reisner rings:

Corollary 5.1 Let A := k[x1, . . . , xe]/a be an equidimensional Stanley-Reisner ring over a
field k, such that Ap is Cohen-Macaulay for each p ∈ Spec A ! {m}. Set n := dim A. For t
a positive integer, set m[t] to be the ideal of A generated by the images of xt1, . . . , x

t
e.

Then the kernel of the natural map Hn(m[t]; A) −→ Hn
m(A) has Hilbert series

sn−1

(
e
1

)
T−t + sn−2

(
e
2

)
T−2t + · · · + s0

(
e
n

)
T−nt ,

where s j := rank H̃ j−1((; k), with ( denoting the underlying simplicial complex.

Proof The hypotheses that A is equidimensional and that Ap is Cohen-Macaulay for p 1= m

imply that each local cohomology module H j
m(A), for j < n, has finite length. Let F denote

the k-algebra endomorphism of Awith xi %−→ x2i for each i . Then F is a pure endomorphism
by [18, Example 2.2], so the induced map

F̃ : H j
m(A) −→ H j

m(A)

is injective for each j . Using the Ze-grading from the preceding discussion, F̃ restricts to an
injective map

[H j
m(A)]i −→ [H j

m(A)]2i
for each i ∈ Ze. But H j

m(A) has finite length for j < n, so

H j
m(A) = [H j

m(A)]0
for each j < n. The result now follows by Theorem 4.2. )*

We begin by using Corollary 5.1 to shed light on Example 2.1:

Example 5.2 Consider the simplicial complex corresponding to two disjoint line segments;
the corresponding Stanley-Reisner ring A, over a field k, is

k[x1, x2, x3, x4]/(x1x3, x1x4, x2x3, x2x4)

The ring A has dimension 2, and is not Cohen-Macaulay since

[H1
m(A)]0 ∼= H̃0((; k) ∼= k.

Since A is equidimensional and Cohen-Macaulay on the punctured spectrum, Corollary 5.1
says that the kernel of H2(m[t]; A) −→ H2

m(A) has Hilbert series 4T−t for each t ≥ 1. This
is consistent with the following table, where we record the rank of the vector spaces

[H2(m[t]; A)] j
as computed byMacaulay2 [8], in the case k is the field of rational numbers. Entries that are
0 are omitted. The last row records the rank of

[
lim
t→∞ H2(m[t]; A)

]

j
=
[
H2
m(A)

]
j ,
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which may be obtained using the exact sequence

0 −−−−→ A −−−−→ A/(x1, x2) ⊕ A/(x3, x3) −−−−→ A/m −−−−→ 0

and the induced isomorphism H2
m(A) ∼= H2

m(A/(x1, x2)) ⊕ H2
m(A/(x3, x4)).

j

t −1 −2 −3 −4 −5 −6 −7 −8 −9 −10

1 4
2 6 4
3 2 8 6 4
4 2 4 10 8 6 4
5 2 4 6 12 10 8 6 4
6 2 4 6 8 14 12 10 8 6
7 2 4 6 8 10 16 14 12 10
8 2 4 6 8 10 12 18 16 14
9 2 4 6 8 10 12 14 20 18
10 2 4 6 8 10 12 14 16 22
limt→∞ 2 4 6 8 10 12 14 16 18

Note that for the ring A := R[x, y, i x, iy] in Example 2.1, the tensor product A ⊗R C is
isomorphic to C[x1, x2, x3, x4]/(x1x3, x1x4, x2x3, x2x4) since

A ∼= R[x, y, u, v]/(x2 + u2, y2 + v2, vx − uy, xy + uv),

and hence A ⊗R C is isomorphic to C[x, y, u, v]/
(
(u − i x, v − iy) ∩ (u + i x, v + iy)

)
.

Example 5.3 Consider the triangulation of the torus below.

The corresponding Stanley-Reisner ring A is the homomorphic image of k[x1, . . . , x9]
modulo the ideal generated by the monomials x1x6, x1x8, x2x4, x2x9, x3x5, x3x7, x4x9, x5x7,
x6x8, x1x2x3, x1x4x7, x1x5x9, x2x5x8, x2x6x7, x3x4x8, x3x6x9, x4x5x6, and x7x8x9. The ring
A has dimension 3, and is not Cohen-Macaulay since

[H2
m(A)]0 ∼= H̃1((; k) ∼= k2.

It is readily verified that A is Cohen-Macaulay on the punctured spectrum. The canonical
module of A may be computed as

ωA = Ext6k[x](A, ωk[x]) ∼= A,

so the ring A is quasi-Gorenstein. Hence the natural map H3(m; A) −→ H3
m(A) is nonzero,

though not injective. Indeed, the module H3(m; A) has Hilbert series 1 + 18T−1, while

Fig. 1 A triangulation of the
torus

1 1

11

2

2

3

3

44 5 6

7 78 9

123



Koszul and local cohomology... 709

Corollary 5.1 implies that the kernel of H3(m[t]; A) −→ H3
m(A) has Hilbert series 18T−t

for each integer t ≥ 1. The following table records the rank of the vector spaces

[H3(m[t]; A)] j ,

as computed byMacaulay2 in the case k is the field of rational numbers. The last row records
the rank of

[
lim
t→∞ H3(m[t]; A)

]

j
=
[
H3
m(A)

]
j ,

which may be obtained using the Hilbert series of A: since the ring A is quasi-Gorenstein
with a-invariant 0, one has rank

[
H3
m(A)

]
j = rank [A]− j .

j

t 0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10

1 1 18
2 1 9 45 18
3 1 9 36 90 81 54 18
4 1 9 36 81 153 162 153 108 54 18
5 1 9 36 81 144 234 261 270 243 180 108
6 1 9 36 81 144 225 333 378 405 396 351
7 1 9 36 81 144 225 324 450 513 558 567
8 1 9 36 81 144 225 324 441 585 666 729
9 1 9 36 81 144 225 324 441 576 738 837
10 1 9 36 81 144 225 324 441 576 729 909
limt→∞ 1 9 36 81 144 225 324 441 576 729 900

We conclude with an example where the cohomology is characteristic-dependent:

Example 5.4 Consider the simplicial complex corresponding to the triangulation of the real
projective plane RP2 in Fig. 2.

The corresponding Stanley-Reisner ring A is the homomorphic image of k[x1, . . . , x6]
modulo the ideal generated x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6,
x3x4x5, and x3x4x6. Note that dim A = 3.

Suppose the field k has characteristic other than 2. Then A is Cohen-Macaulay, see for
example [11, page 180], so the natural map H3(m; A) −→ H3

m(A) is injective by Theo-
rem 3.1. However, A is not Gorenstein: the socle of the homomorphic image of A modulo a
system of parameters has rank 6.

Fig. 2 A triangulation of the real
projective plane

1

1

2

2

3

3

4 5

6
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Next, suppose k has characteristic 2; then A is not Cohen-Macaulay since

[H2
m(A)]0 ∼= H̃1((; k) ∼= k.

Indeed, in this case, A has depth 2, and the canonical module of A may be computed as

ωA = Ext3k[x](A, ωk[x]) ∼= A,

so A is quasi-Gorenstein. Hence the natural map H3(m; A) −→ H3
m(A) is nonzero, though

not injective. The module H3(m; A) has Hilbert series 1+ 6T−1, and Corollary 5.1 implies
that the kernel of H3(m[t]; A) −→ H3

m(A) has Hilbert series 6T−t for each t ≥ 1. The
ranks of the vector spaces

[H3(m[t]; A)] j
are recorded in the next table, with the last row computed as in the preceding example, using
that A is quasi-Gorenstein, with a-invariant 0.

j

t 0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10

1 1 6
2 1 6 21 10
3 1 6 21 46 45 30 10
4 1 6 21 46 81 90 85 60 30 10
5 1 6 21 46 81 126 145 150 135 100 60
6 1 6 21 46 81 126 181 210 225 220 195
7 1 6 21 46 81 126 181 246 285 310 315
8 1 6 21 46 81 126 181 246 321 370 405
9 1 6 21 46 81 126 181 246 321 406 465
10 1 6 21 46 81 126 181 246 321 406 501
limt→∞ 1 6 21 46 81 126 181 246 321 406 501
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