

IN CLASS WORKSHEET #2, GETTING A FEEL FOR SERRE'S CONDITION S_n

MARCH 8TH, 2017

Our goal is to prove the following result.

Proposition 1. *Suppose that (R, \mathfrak{m}) is a d -dimensional S_n ($n \leq d$) Noetherian equidimensional¹ local ring with normalized dualizing complex ω_R^\bullet . Then $\dim \text{Supp } h^{-i}(\omega_R^\bullet) \leq i - n$ for $i < d$.*

To prove this, you may use the following facts:

- Local duality, $\text{Hom}_R(\mathbf{R}\text{Hom}_R(M, \omega_R^\bullet), E) \cong \mathbf{R}\Gamma_{\mathfrak{m}}(M)$.
- Since $h^{-i}(\omega_R^\bullet)$ is a finitely generated R -module, $\text{Supp } h^{-i}(\omega_R^\bullet) = V(\text{Ann}_R(h^{-i}(\omega_R^\bullet)))$
- Since R is equidimensional, $\omega_R = h^{-d}(\omega_R^\bullet)$ has support equal to $\text{Spec } R$.
- Rings with dualizing complexes are catenary, and so every maximal chain of primes between two fixed primes has the same length.

1. For any prime Q of R , show that $d = \dim R_Q + \dim R_Q$. Give an example where this does not hold for a *non-equidimensional* (but otherwise nice) ring.

Now we prove the following weak version of the proposition.

2. Suppose that (R, \mathfrak{m}) is a d -dimensional Noetherian ring with normalized dualizing complex ω_R^\bullet . Show that $h^i(\omega_R^\bullet) = 0$ for $i > 0$.

¹This means for each minimal prime \mathfrak{q} of R , $\dim R_{\mathfrak{q}} = \dim R$.

3. Suppose that $Q \in \text{Spec } R$ is a prime ideal such that $\dim R_Q = c$. Find a normalized dualizing complex for R_Q .

4. Suppose that (R, \mathfrak{m}) is \mathbf{S}_n ($n \leq d$) show that $h^{-i}(\omega_R^\bullet) = 0$ for $i < n$.

5. Prove the proposition from the first page.

Hint: If $\dim \text{Supp } h^{-i}(\omega_R^\bullet) > i - n$ for some $i < d$ choose an appropriate prime to localize at, then keep track of the *normalized* dualizing complex.

Let's do some other applications of dualizing complexes. Recall that a local ring (R, \mathfrak{m}) is called F -injective if for every $i \geq 0$, the induced Frobenius action

$$H_{\mathfrak{m}}^i(R) \rightarrow H_{\mathfrak{m}}^i(F_*R)$$

is injective. A Noetherian ring in general is called F -injective if for each maximal $\mathfrak{m} \in \text{Spec } R$, $R_{\mathfrak{m}}$ is F -injective.

6. Suppose that (R, \mathfrak{m}) is an F -finite Noetherian local ring. Show that for each $Q \in \text{Spec } R$, R_Q is F -injective.

7. Suppose that R is an F -finite Noetherian ring with dualizing complex ω_R^\bullet . Show that R is F -injective if and only if the induced map $F_*\omega_{R^\bullet} \cong \omega_{F_*R}^\bullet \rightarrow \omega_R^\bullet$ surjects on all cohomology (*i.e.*, $F_*h^i(\omega_R^\bullet) \rightarrow h^i\omega_R^\bullet$ for all i).