

NOTES ON CHARACTERISTIC p COMMUTATIVE ALGEBRA

APRIL 7TH, 2017

KARL SCHWEDE

Consider the problem of measuring how singular an F -finite local ring (R, \mathfrak{m}) is. Based on Kunz's theorem, we should measure:

How close to free is $F_*^e R$ as an R -module.

Hilbert-Kunz multiplicity and F -signature are both attempts at quantifying that notion, asymptotically as $e \rightarrow \infty$.

Hilbert-Kunz multiplicity: Measures how many generators $F_*^e R$ has relative to the expected number if R was regular.

F -signature: Measures how many free summands $F_*^e R$ has relative to the expected number if R was regular.

1. HILBERT-KUNZ MULTIPLICITY

Suppose that (R, \mathfrak{m}, k) is a local Noetherian ring and that M is an R -module. We let $\mu_R(M)$ denote the minimal number of generators of M as an R -module. Note that $\mu_R(M) = \ell_R(M/\mathfrak{m} \cdot M) = \text{rank}_k(M/\mathfrak{m} \cdot M)$ by Nakayama's lemma.

Suppose that $R = k[[x_1, \dots, x_d]]$ and that $k = k^p$ is perfect of characteristic $p > 0$. In this case, $F_*^e R$ is a free R -module with p^{ed} generators. Because of this we make the following definition:

Definition 1.1 (Hilbert-Kunz multiplicity, perfect residue field case). Suppose that (R, \mathfrak{m}, k) is a Noetherian local ring of characteristic $p > 0$ and dimension d . Suppose further that $k = k^p$ is perfect. Then we define the Hilbert-Kunz multiplicity of R to be the

$$\lim_{e \rightarrow \infty} \frac{\ell(R/\mu^{[p^e]})}{p^{ed}} = \lim_{e \rightarrow \infty} \frac{\mu_R(F_*^e R)}{p^{ed}}$$

if it exists. It is denoted by $e_{\text{HK}}(R)$.

Example 1.2. If $R = k[[x_1, \dots, x_d]]$ and $k = k^p$ is perfect, then $e_{\text{HK}}(R) = 1$.

We'll show that this limit always exists later, after we generalize this definition a bit. For now, suppose that R is the localization (at some maximal ideal) of some finite type algebra over a perfect field. If $\dim R = d$, it follows that $[F_*^e K(R) : K(R)] = p^{ed}$, and so the generic rank of $F_*^e R$ over R is p^{ed} . Hence $\mu_R(F_*^e R) \geq p^{ed}$. On the other hand if we ever had that $\mu_R(F_*^e R) = p^{ed}$, then $F_*^e R$ would be a free R -module and hence R would be regular (and then an argument similar to the one above would show that $e_{\text{HK}}(R) = 1$).

Next let's figure out what to do when k is not perfect, we'll use the case of an F -finite residue field as our starting point.

Lemma 1.3. Suppose that (R, \mathfrak{m}, k) is a local ring with F -finite residue field (i.e. such that $[k : k^p] < \infty$). If M is an R -module of finite length then

$$(1.3.1) \quad \ell_R(F_*^e M) = [k : k^{p^e}] \cdot \ell_{F_*^e R}(F_*^e M) = [k : k^{p^e}] \cdot \ell_R(M).$$

In particular, $\mu_R(F_*^e R)$, the number of generators of $F_*^e R$ as an R -module satisfies

$$(1.3.2) \quad \mu_R(F_*^e R) = \ell_R((F_*^e R)/\mathfrak{m}) = \ell_R(F_*^e(R/\mathfrak{m}^{[p^e]})) = [k : k^{p^e}] \cdot \ell_R(R/\mathfrak{m}^{[p^e]})$$

Proof. In (1.3.1), the second equality is trivial. The first equality follows from the fact that $[k : k^{p^e}] = \ell_R(F_*^e k)$.

In (1.3.2), the first equality is just Nakayama's lemma and the second is the fact that $(R/\mathfrak{m}) \cdot F_*^e R \cong F_*(R/\mathfrak{m}^{[p^e]})$. The third equality is simply (1.3.1) applied to the finite length module $M = R/\mathfrak{m}^{[p]}$. \square

On the other hand if $R = k$ is an imperfect but F -finite field, we still might want $e_{HK}(R) = 1$ (since R is regular). Now, if $\mu_k(F_* k) = [F_* k : k] = [k : k^p] = n$, then $\mu_k(F_*^2 k) = [F_*^2 k : k] = n^2$ and more generally, $\mu_k(F_*^e k) = n^e$. Thus it is natural to try to normalize at the very least for the residue field. In particular, it would be natural to simply define

$$e_{HK}(R) = \lim_{e \rightarrow \infty} \frac{\mu_R(F_*^e R)}{[F_*^e k : k] p^{ed}} = \lim_{e \rightarrow \infty} \frac{\ell_R((F_*^e R)/\mathfrak{m}^{[p^e]})}{[F_* k : k]^e p^{ed}}.$$

However, based on our above lemma, this is already the same as:

$$e_{HK}(R) = \lim_{e \rightarrow \infty} \frac{\ell_R(R/\mathfrak{m}^{[p^e]})}{p^{ed}}.$$

We take this to be our definition of Hilbert-Kunz multiplicity independent of whether or not k is perfect (*even* if k is not F -finite). At this point, there is one more generalization we will make. Instead of modding out by $\mathfrak{m}^{[p^e]}$, we fix J to be an \mathfrak{m} -primary ideal (ie, $\sqrt{J} = \mathfrak{m}$) and mod out by $J^{[p^e]}$.

Definition 1.4 (Hilbert-Kunz multiplicity, general case). Suppose that (R, \mathfrak{m}) is a Noetherian local ring of characteristic $p > 0$ and dimension d . Suppose further that J is an \mathfrak{m} -primary ideal. Then we define the *Hilbert-Kunz multiplicity of R along J* to be

$$e_{HK}(J; R) = \lim_{e \rightarrow \infty} \frac{\ell_R(R/J^{[p^e]})}{p^{ed}},$$

if it exists.

Before showing it exists, let's figure out what it is for regular rings in general.

Proposition 1.5. Suppose (R, \mathfrak{m}, k) is a regular local Noetherian ring of characteristic $p > 0$ and dimension d . Then $e_{HK}(J; R) = \ell(R/J)$ and in particular, $e_{HK}(\mathfrak{m}; R) = e_{HK}(R) = 1$.

Proof. We first handle the case when $J = \mathfrak{m}$. Consider $\widehat{R} \cong k[[x_1, \dots, x_d]]$. By construction, $\widehat{R}/(J\widehat{R})^{[p^e]} \cong R/J^{[p^e]}$, and so $e_{HK}(J; R) = e_{HK}(J\widehat{R}; \widehat{R})$. Thus we may assume that $R = k[[x_1, \dots, x_d]]$. But clearly then $\ell_R(R/\mathfrak{m}^{[p^e]}) = p^{ed}$.

For the general case, we will show that

$$\ell_R(R/J^{[p^e]}) = p^{ed} \ell_R(R/J)$$

which will complete the proof. Consider a decomposition $0 = N_0 \subsetneq N_1 \subsetneq N_2 \subsetneq \dots \subsetneq N_s = R/J$ where $s = \ell_R(R/J)$ and $N_{i+1}/N_i \cong k = R/\mathfrak{m}$. Tensoring with the flat module $F_*^e R$ we obtain

$$0 = (F_*^e R) \otimes_R N_0 \subsetneq (F_*^e R) \otimes_R N_1 \subsetneq (F_*^e R) \otimes_R N_2 \subsetneq \dots \subsetneq (F_*^e R) \otimes_R N_s \cong F_*^e(R/J^{[p^e]}).$$

Each $(F_*^e R) \otimes_R N_{i+1} / (F_*^e R) \otimes_R N_i$ is isomorphic to $F_*^e(R/\mathfrak{m}^{[p^e]})$ and so has length p^{ed} as an $F_*^e R$ -module. It follows that

$$\ell_R(R/J^{[p^e]}) = p^{ed} \ell_R(R/J)$$

as desired. \square

Theorem 1.6. *For (R, \mathfrak{m}) a Noetherian local d -dimensional ring of characteristic $p > 0$, the following are equivalent:*

- (a) R is regular.
- (b) $\ell_R(R/\mathfrak{m}^{[p^e]}) = p^{ed}$ for every $e > 0$.
- (c) $\ell_R(R/\mathfrak{m}^{[p^e]}) = p^{ed}$ for some $e > 0$.

Proof. We just showed that (a) \Leftarrow (b) and obviously (b) \Leftarrow (c), so it suffices to show that (c) implies (a). We essentially already sketched this when the residue field is perfect (since then (c) implies that $F_*^{ed} R$ is free). The general case is left as an exercise (if time permits, we may prove a more general theorem later showing that $e_{\text{HK}}(R) = 1$ actually implies that R is regular). \square

Exercise 1.1. Prove Theorem 1.6.

Before moving on to existence, let me make one more observation.

Proposition 1.7. *With notation as above*

$$p^{ad} e_{\text{HK}}(J; R) = e_{\text{HK}}(J^{[p^a]}; R).$$

Proof. It is obvious. \square

REFERENCES