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Consider the problem of measuring how singular an F-finite local ring (R, m) is. Based
on Kunz’s theorem, we should measure:

How close to free is FYR as an R-module.

Hilbert-Kunz multiplicity and F-signature are both attempts at quantifying that notion,
asymptotically as e — oo.

Hilbert-Kunz multiplicity: Measures how many generators F¢R has relative to
the expected number if R was regular.

F-signature: Measures how many free summands F¢R has relative to the expected
number if R was regular.

1. HILBERT-KUNZ MULTIPLICITY

Suppose that (R,m, k) is a local Noetherian ring and that M is an R-module. We
let ur(M) denote the minimal number of generators of M as an R-module. Note that
ur(M) = lp(M/m - M) = rank,(M/m - M) by Nakayama’s lemma.

Suppose that R = k[zy,...,z4] and that k = kP is perfect of characteristic p > 0.
In this case, F°R is a free R-module with p°¢ generators. Because of this we make the
following definition:

Definition 1.1 (Hilbert-Kunz multiplicity, perfect residue field case). Suppose that (R, m, k)
is a Noetherian local ring of characteristic p > 0 and dimension d. Suppose further that
k = kP is perfect. Then we define the Hilbert-Kunz multiplicity of R to be the
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if it exists. It is denoted by ek (R).
Example 1.2. If R = k[xy,...,24] and k = kP is perfect, then ey (R) = 1.

We'll show that this limit always exists later, after we generalize this definition a bit.
For now, suppose that R is the localization (at some maximal ideal) of some finite type
algebra over a perfect field. If dim R = d, it follows that [F¢K(R) : K(R)] = p*, and so
the generic rank of F°R over R is p°d. Hence pur(F¢R) > p®. On the other hand if we
ever had that pur(F¢R) = p°?, then F¢R would be a free R-module and hence R would be
regular (and then an argument similar to the one above would show that egx(R) = 1).

Next let’s figure out what to do when k is not perfect, we’ll use the case of an F-finite
residue field as our starting point.

Lemma 1.3. Suppose that (R,m, k) is a local ring with F-finite residue field (i.e. such
that [k : kP] < 00). If M is an R-module of finite length then

(1.3.1) (R(FEM) = [k : k] - bper(FEM) = [k« k7] - Lp(M).
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In particular, ur(FER), the number of generators of FER as an R-module satisfies
(1.3.2) nr(FLR) = (r((FLR)/m) = (r(F(R/mP)) = [k« k7] - £r(R/mP)

Proof. In |(1.3.1)} the second equality is trivial. The first equality follows from the fact
that [k : kP"] = (g(FCk).

In|(1.3.2) the first equality is just Nakayama’s lemma and the second is the fact that
(R/m) - F°R = F,(R/m/). The third equality is simply applied to the finite
length module M = R/m/). O

On the other hand if R = k is an imperfect but F-finite field, we still might want
enk(R) = 1 (since R is regular). Now, if ux(Fik) = [Fik : k] = [k : kP] = n, then
wr(F2k) = [F2k : k] = n? and more generally, ux(F¢k) = n°. Thus it is natural to try
to normalize at the very least for the residue field. In particular, it would be natural to
simply define

1r(FYR) . Lr(QFL(R/mP )
R)y=lim ——————— =1
eaclF) = B o — B TR e
However, based on our above lemma, this is already the same as:
(r(R/ml"]
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We take this to be our definition of Hilbert-Kunz multiplicity independent of whether or
not k is perfect (even if k is not F-finite). At this point, there is one more generalization
we will make. Instead of modding out by mP’l, we fix J to be an m-primary ideal (ie,
v/J =m) and mod out by J¥I.

Definition 1.4 (Hilbert-Kunz multiplicity, general case). Suppose that (R, m) is a Noe-
therian local ring of characteristic p > 0 and dimension d. Suppose further that J is an
m-primary ideal. Then we define the Hilbert-Kunz multiplicity of R along J to be

(r(R/JP]
en(J; B) = lim %

)

if it exists.

Before showing it exists, let’s figure out what it is for regular rings in general.
Proposition 1.5. Suppose (R, m, k) is a regular local Noetherian ring of characteristic
p > 0 and dimension d. Then eux(J; R) = ((R/J) and in particular, egx(m; R) =
Proof. We first handle the case when J = m. Consider R & k[, ..., z4]. By construc-
tion, R/(JR)? = R/JP1 and so epk(J; R) = enx(JR; R). Thus we may assume that
R = k[xq,...,x4]. But clearly then (g (R/m[pe}) = pe.

For the general case, we will show that

tr(R)TPTY = p*p(R/J)

which will complete the proof. Consider a decomposition 0 = Ny € Ny C Ny C --- C
Ns; = R/J where s = {gr(R/J) and N;1/N; = k = R/m. Tensoring with the flat module
F?R we obtain

0= (F°R)®r Ny C (FR)®r Ny C (FCR)®r Ny C -+ C (FCR) ®p N, = F(R/JPY).
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Each (F°R) ®r Nii1/(F¢R) ®pg N; is isomorphic to F¢(R/mP1) and so has length p*® as
an F¢R-module. It follows that
Cr(R/JPT) = p*Up(R/J)
as desired. O

Theorem 1.6. For (R, m) a Noetherian local d-dimensional ring of characteristic p > 0,
the following are equivalent:

(a) R is regular.

(b) Lr(R/mlPT) = ped for every e > 0.

(c) Lr(R/mPPT) = pe for some e > 0.
Proof. We just showed that (a) < (b) and obviously (b) < (c), so it suffices to show
that (c) implies (a). We essentially already sketched this when the residue field is perfect
(since then (c) implies that F°/R is free). The general case is left as an exercise (if time
permits, we may prove a more general theorem later showing that egx(R) = 1 actually
implies that R is regular). O

Exercise 1.1. Prove [Theorem 1.6
Before moving on to existence, let me make one more observation.
Proposition 1.7. With notation as above
p enk(J; R) = enk (JP); R).
Proof. Tt is obvious. OJ
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