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Consider the problem of measuring how singular an F -finite local ring (R,m) is. Based
on Kunz’s theorem, we should measure:

How close to free is F e
∗R as an R-module.

Hilbert-Kunz multiplicity and F -signature are both attempts at quantifying that notion,
asymptotically as e −→∞.

Hilbert-Kunz multiplicity: Measures how many generators F e
∗R has relative to

the expected number if R was regular.
F -signature: Measures how many free summands F e

∗R has relative to the expected
number if R was regular.

1. Hilbert-Kunz multiplicity

Suppose that (R,m, k) is a local Noetherian ring and that M is an R-module. We
let µR(M) denote the minimal number of generators of M as an R-module. Note that
µR(M) = `R(M/m ·M) = rankk(M/m ·M) by Nakayama’s lemma.

Suppose that R = kJx1, . . . , xdK and that k = kp is perfect of characteristic p > 0.
In this case, F e

∗R is a free R-module with ped generators. Because of this we make the
following definition:

Definition 1.1 (Hilbert-Kunz multiplicity, perfect residue field case). Suppose that (R,m, k)
is a Noetherian local ring of characteristic p > 0 and dimension d. Suppose further that
k = kp is perfect. Then we define the Hilbert-Kunz multiplicity of R to be the

lim
e−→∞

`(R/µ[pe])

ped
= lim

e−→∞
µR(F e

∗R)

ped

if it exists. It is denoted by eHK(R).

Example 1.2. If R = kJx1, . . . , xdK and k = kp is perfect, then eHK(R) = 1.

We’ll show that this limit always exists later, after we generalize this definition a bit.
For now, suppose that R is the localization (at some maximal ideal) of some finite type
algebra over a perfect field. If dimR = d, it follows that [F e

∗K(R) : K(R)] = ped, and so
the generic rank of F e

∗R over R is ped. Hence µR(F e
∗R) ≥ ped. On the other hand if we

ever had that µR(F e
∗R) = ped, then F e

∗R would be a free R-module and hence R would be
regular (and then an argument similar to the one above would show that eHK(R) = 1).

Next let’s figure out what to do when k is not perfect, we’ll use the case of an F -finite
residue field as our starting point.

Lemma 1.3. Suppose that (R,m, k) is a local ring with F -finite residue field (i.e. such
that [k : kp] <∞). If M is an R-module of finite length then

(1.3.1) `R(F e
∗M) = [k : kp

e

] · `F e
∗R(F e

∗M) = [k : kp
e

] · `R(M).
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In particular, µR(F e
∗R), the number of generators of F e

∗R as an R-module satisfies

(1.3.2) µR(F e
∗R) = `R((F e

∗R)/m) = `R
(
F e
∗ (R/m

[pe])
)

= [k : kp
e

] · `R
(
R/m[pe]

)
Proof. In (1.3.1), the second equality is trivial. The first equality follows from the fact
that [k : kp

e
] = `R(F e

∗k).
In (1.3.2), the first equality is just Nakayama’s lemma and the second is the fact that

(R/m) · F e
∗R
∼= F∗(R/m

[pe]). The third equality is simply (1.3.1) applied to the finite
length module M = R/m[p]. �

On the other hand if R = k is an imperfect but F -finite field, we still might want
eHK(R) = 1 (since R is regular). Now, if µk(F∗k) = [F∗k : k] = [k : kp] = n, then
µk(F 2

∗ k) = [F 2
∗ k : k] = n2 and more generally, µk(F e

∗k) = ne. Thus it is natural to try
to normalize at the very least for the residue field. In particular, it would be natural to
simply define

eHK(R) = lim
e−→∞

µR(F e
∗R)

[F e
∗k : k]ped

= lim
e−→∞

`R(()F e
∗ (R/m

[pe])

[F∗k : k]eped
.

However, based on our above lemma, this is already the same as:

eHK(R) = lim
e−→∞

`R
(
R/m[pe]

)
ped

.

We take this to be our definition of Hilbert-Kunz multiplicity independent of whether or
not k is perfect (even if k is not F -finite). At this point, there is one more generalization
we will make. Instead of modding out by m[pe], we fix J to be an m-primary ideal (ie,√
J = m) and mod out by J [pe].

Definition 1.4 (Hilbert-Kunz multiplicity, general case). Suppose that (R,m) is a Noe-
therian local ring of characteristic p > 0 and dimension d. Suppose further that J is an
m-primary ideal. Then we define the Hilbert-Kunz multiplicity of R along J to be

eHK(J ;R) = lim
e−→∞

`R
(
R/J [pe]

)
ped

,

if it exists.

Before showing it exists, let’s figure out what it is for regular rings in general.

Proposition 1.5. Suppose (R,m, k) is a regular local Noetherian ring of characteristic
p > 0 and dimension d. Then eHK(J ;R) = `(R/J) and in particular, eHK(m;R) =
eHK(R) = 1.

Proof. We first handle the case when J = m. Consider R̂ ∼= kJx1, . . . , xdK. By construc-

tion, R̂/(JR̂)[p
e] ∼= R/J [pe], and so eHK(J ;R) = eHK(JR̂; R̂). Thus we may assume that

R = kJx1, . . . , xdK. But clearly then `R
(
R/m[pe]

)
= ped.

For the general case, we will show that

`R
(
R/J [pe]

)
= ped`R(R/J)

which will complete the proof. Consider a decomposition 0 = N0 ( N1 ( N2 ( · · · (
Ns = R/J where s = `R(R/J) and Ni+1/Ni

∼= k = R/m. Tensoring with the flat module
F e
∗R we obtain

0 = (F e
∗R)⊗R N0 ( (F e

∗R)⊗R N1 ( (F e
∗R)⊗R N2 ( · · · ( (F e

∗R)⊗R Ns
∼= F e

∗ (R/J
[pe]).
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Each (F e
∗R)⊗R Ni+1/(F

e
∗R)⊗R Ni is isomorphic to F e

∗ (R/m
[pe]) and so has length ped as

an F e
∗R-module. It follows that

`R
(
R/J [pe]

)
= ped`R(R/J)

as desired. �

Theorem 1.6. For (R,m) a Noetherian local d-dimensional ring of characteristic p > 0,
the following are equivalent:

(a) R is regular.
(b) `R

(
R/m[pe]

)
= ped for every e > 0.

(c) `R
(
R/m[pe]

)
= ped for some e > 0.

Proof. We just showed that (a) ⇐ (b) and obviously (b) ⇐ (c), so it suffices to show
that (c) implies (a). We essentially already sketched this when the residue field is perfect
(since then (c) implies that F ed

∗ R is free). The general case is left as an exercise (if time
permits, we may prove a more general theorem later showing that eHK(R) = 1 actually
implies that R is regular). �

Exercise 1.1. Prove Theorem 1.6.

Before moving on to existence, let me make one more observation.

Proposition 1.7. With notation as above

padeHK(J ;R) = eHK(J [pa];R).

Proof. It is obvious. �
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