

NOTES ON CHARACTERISTIC p COMMUTATIVE ALGEBRA
MARCH 29TH, 2017

KARL SCHWEDE

1. DIVISORS, FROBENIUS SPLITTINGS AND FINITE EXTENSIONS CONTINUED

Last time we saw that if $R \subseteq S$ is a finite inclusion of normal domains then $\text{Hom}_R(S, R) \cong S(K_S - \pi^*K_R)$ (assuming ω_S is defined to be $\text{Hom}_R(S, \omega_R)$). We then made the following definition.

Definition 1.1. With notation as above the effective divisor D_{Tr} corresponding to Tr is called the *ramification divisor* (of $R \subseteq S$). Throughout the rest of the paper, it will be denoted by $\text{Ram} = \text{Ram}_{S/R}$.

You may have seen the ramification divisor defined somewhat differently, these two definitions are indeed the same. Let's do a hopefully convincing example.

Example 1.2. Consider $R = k[x^n] \subseteq k[x] = S$ where $\text{char}k$ does not divide n . We will compute the trace map and thus the ramification divisor. Note that S is a free R -module with basis $1, x, \dots, x^{n-1}$. It is easy to see that $\text{Tr}(x^i) = 0$ for $0 < i < n$ and $\text{Tr}(1) = n$ (just write down the matrices). On the other hand the map Φ that projects onto x^{n-1} obviously generates $\text{Hom}_R(S, R)$ as an S -module. Note $\text{Tr}(_) = n \cdot \Phi(x^{n-1}_)$ so that because $D_{\Phi} = 0$, we see that $D_{\text{Tr}} = \text{div}(x^{n-1})$.

Definition-Proposition 1.3. If $R \subseteq S$ is a finite separable extension of rings with R a DVR with uniformizer s , then it is said to have *tame ramification* at a maximal ideal $Q \in \text{Spec } S$ (so that S_Q is a DVR with uniformizer s) if it satisfies the following two conditions:

- when we write $r = us^n$, p does not divide n
- and if $R/rR \subseteq S_Q/sS_Q$ is separable.

In this case, the coefficient of Ram at Q is equal to $n - 1$.

Exercise 1.1. Verify the above definition - proposition.

Lemma 1.4. Suppose we have finite inclusions of normal domains $A \subseteq B \subseteq C$ with $\rho : \text{Spec } C \rightarrow \text{Spec } B$ the induced map. If $\phi \in \text{Hom}_A(B, A)$ and $\psi \in \text{Hom}_B(C, B)$ then $D_{\phi \circ \psi} = D_{\psi} + \rho^*D_{\phi}$.

Proof. Since we are concerned above divisors, we may assume that A is a DVR so that B and C are semi-local. In this case if Φ and Ψ generate their respective Hom groups, we see from an older homework assignment that so does $\Phi \circ \Psi$ and thus all divisors in question are zero. On the other hand, if $\phi(_) = \Phi(b \cdot _)$ and $\psi(_) = \Psi(c \cdot _)$, then $D_{\phi} = \text{div}_B(b)$ and $D_{\psi} = \text{div}_C(c)$ and $\text{div}_{\phi \circ \psi} = \text{div}_C(bc) = D_{\psi} + \rho^*D_{\phi}$. \square

Theorem 1.5. Suppose that $R \subseteq S$ is a finite generically separable inclusion of F -finite normal domains with induced $\pi : \text{Spec } S \rightarrow \text{Spec } R$. Then a map $\phi \in \text{Hom}_R(F_*^e R, R)$

extends to a map $\phi_S \in \text{Hom}_S(F_*^e S, S)$ if and only if $\pi^* \Delta_\phi - \text{Ram} \geq 0$. In this case $\Delta_{\phi_S} = \pi^* \Delta_\phi - \text{Ram}$.

Proof. Suppose first that ϕ extends to ϕ_S (note Δ_{ϕ_S} is automatically effective) and so by ?? we have a commutative diagram

$$\begin{array}{ccc} S^{1/p^e} & \xrightarrow{\phi_S} & S \\ \text{Tr}^{1/p^e} \downarrow & & \downarrow \text{Tr} \\ R^{1/p^e} & \xrightarrow{\phi} & R. \end{array}$$

It follows from Lemma 1.4 that $\text{Ram} + \pi^* D_\phi = D_{\phi_S} + p^e \text{Ram}$. Thus $0 \leq \Delta_{\phi_S} = \frac{1}{p^e-1}(\pi^* D_\phi) - \text{Ram} = \pi^* \Delta_\phi - \text{Ram}$.

Conversely assume that $\pi^* \Delta_\phi - \text{Ram} \geq 0$. We can still extend ϕ to $\phi_S : S^{1/p^e} \rightarrow L = K(S)$. We need to show that the image of is contained in S . After localizing at a height one prime of R if necessary, we can assume that $\Phi_S \in \text{Hom}_S(S^{1/p^e}, S)$ generates the Hom-set as an S^{1/p^e} -module. We may then write $\phi(\underline{}) = \Phi_S(y^{1/p^e} \underline{})$ for some $y \in K(S)$. It suffices to show that $y \in S$, or in other words that $\text{div}(y) \geq 0$. We still have the following diagram

$$\begin{array}{ccc} S^{1/p^e} & \xrightarrow{\phi_S} & K(S) \\ \text{Tr}^{1/p^e} \downarrow & & \downarrow \text{Tr} \\ R^{1/p^e} & \xrightarrow{\phi} & K(R). \end{array}$$

An argument similar to the one above proves that $\text{div}(y) = \pi^* D_\phi - (1 - p^e) \text{Ram}$ (note this requires a slight modification of the proof of Lemma 1.4). \square

Corollary 1.6. *Suppose that $R \subseteq S$ is a finite generically separable inclusion of F -finite normal domains with $\pi : \text{Spec } S \rightarrow \text{Spec } R$ the induced map. Suppose R is F -split and that $\phi : F_*^e R \rightarrow R$ is a Frobenius splitting such that $\pi^* \Delta_\phi \geq \text{Ram}$. Then S is F -split as well.*

Definition 1.7. A finite inclusion of normal domains $R \subseteq S$ is *finite étale in codimension 1* if the ramification divisor $\text{Ram} = 0$.

Corollary 1.8. *Suppose that $R \subseteq S$ is an inclusion of normal domains that is finite étale in codimension 1. If R is F -split, then so is S .*

Remark 1.9. The converse to these results does *not* hold in general, but it does hold with the additional hypothesis that $R \subseteq S$ splits (as we have seen). Note that in the case that $R \subseteq S$ is étale in codimension 1, this is equivalent to the hypothesis that $\text{Tr}(S) = R$ since in that case $\text{Tr} \in \text{Hom}_R(S, R)$ generates the Hom-set.

There is a version that we can easily state for F -regularity as well.

Corollary 1.10. *Suppose that $R \subseteq S$ is a finite inclusion of normal F -finite domains. Fix a $0 \neq c \in R$ such that R_c and S_c are strongly F -regular. If there exists a map $\phi \in \text{Hom}_R(F_*^e R, R)$ such that $\phi(F_*^e c) = 1$ and such that $\pi^* \Delta_\phi \geq \text{Ram}$, then S is strongly F -regular as well. In particular, if $R \subseteq S$ is étale in codimension 1 and R is strongly F -regular, then so is S .*

Proof. We saw earlier that if the map $R \rightarrow F_*^e R$ which sends 1 to $F_*^e c$ splits and $R[c^{-1}]$ is strongly F -regular, then R is strongly F -regular. \square

REFERENCES