

NOTES ON CHARACTERISTIC p COMMUTATIVE ALGEBRA

APRIL 3RD, 2017

KARL SCHWEDE

1. DIVISORS, FROBENIUS SPLITTINGS AND FINITE EXTENSIONS CONTINUED

Last time we proved the following Lemma.

Lemma 1.1. *Suppose L/K is a separable extension of fields and that $\phi : K^{1/p^e} \rightarrow K$ extends to $\phi_L : L^{1/p^e} \rightarrow L$. Let $\text{Tr} : L \rightarrow K$ be the trace map. Then the following diagram commutes*

$$\begin{array}{ccc} L^{1/p^e} & \xrightarrow{\phi_L} & L \\ \text{Tr}^{1/p^e} \downarrow & & \downarrow \text{Tr} \\ K^{1/p^e} & \xrightarrow{\phi} & K. \end{array}$$

We need the following standard result because we are going to restrict the compatibility from last time to an extension of rings $R \subseteq S$.

Lemma 1.2. *Suppose $R \subseteq S$ is a finite¹ inclusion of normal Noetherian domains. Let $\text{Tr} : K(S) \rightarrow K(R)$ denote the trace map, then $\text{Tr}(S) \subseteq R$.*

Proof. Since R is \mathbf{S}_2 , it suffices to prove the result after localizing at a height one prime of R (to see this, simply notice that $\text{Tr}(S) \subseteq R$ is a finite R -module and so if it agrees with R in codimension 1, it is contained in R). But since R is normal, such a localization is a DVR and so we may assume that R is a DVR. But now S is a free R -module so a basis for S/R becomes a basis for L/K . It follows that for any $s \in S$, $S \xrightarrow{s} S$ is written as a matrix with entries in R and so $\text{Tr}(s) \in R$ as claimed. \square

We now also explain how to pullback divisors under finite maps of normal domains.

Definition 1.3. Suppose $R \subseteq S$ is a finite inclusion of normal domains with induced map $\pi : \text{Spec } S \rightarrow \text{Spec } R$. For any Weil divisor D on R , we define π^*D to be the divisor such that $(R(D) \cdot S)^{\vee\vee} = S(\pi^*D)$. Alternately, for each height one prime Q of R , let Q_1, \dots, Q_d be the primes of S lying over Q . In this case $R(D)_Q = g_Q R_Q$ since each R_Q is a DVR. We define $\pi^*D = \sum_Q \sum_{Q_i} -v_{Q_i}(g_Q) Q_i$. In particular, if $D = \text{div}_R(f)$, then $\pi^*D = \text{div}_S(f)$.

Example 1.4. If $S = F_*^e R$, then $\pi^*D = p^e D$.

If $R \subseteq S$ is a finite inclusion of normal domains such that $K(R) \subseteq K(S)$ is separable (with $\pi : \text{Spec } S \rightarrow \text{Spec } R$ the induced map), the map $\text{Tr} \in \text{Hom}_R(S, R)$ is a nonzero²

¹Finite means S is a finitely generated R -module.

²Tr of an extension of fields is nonzero if and only if the extension is separable.

element in a rank-1 \mathbf{S}_2 S -module. Also note that if $\omega_S := \text{Hom}_S(R, \omega_S)$, then

$$\begin{aligned} & \text{Hom}_R(S, R) \\ &= \text{Hom}_R(S \otimes_R \omega_R, \omega_R) \\ &= \text{Hom}_R(S(\pi^* K_R), \omega_R) \\ &= \text{Hom}_S(S(\pi^* K_R), \omega_S) \\ &= S(K_S - \pi^* K_R). \end{aligned}$$

and so the effective divisor D_{Tr} corresponding to Tr is linearly equivalent to $K_S - \pi^* K_R$.

Definition 1.5. With notation as above the effective divisor D_{Tr} corresponding to Tr is called the *ramification divisor (of $R \subseteq S$)*. Throughout the rest of the paper, it will be denoted by $\text{Ram} = \text{Ram}_{S/R}$.

You may have seen the ramification divisor defined somewhat differently, these two definitions are indeed the same.

We spent the rest of the class thinking about the worksheet.

REFERENCES