
NOTES ON CHARACTERISTIC p COMMUTATIVE ALGEBRA
APRIL 3RD, 2017

KARL SCHWEDE

1. Divisors, Frobenius splittings and finite extensions continued

Last time we proved the following Lemma.

Lemma 1.1. Suppose L/K is a separable extension of fields and that φ : K1/pe −→ K
extends to φL : L1/pe −→ L. Let Tr : L −→ K be the trace map. Then the following diagram
commutes

L1/pe φL
//

Tr1/p
e

��

L

Tr
��

K1/pe

φ
// K.

We need the following standard result because we are going to restrict the compatibility
from last time to an extension of rings R ⊆ S.

Lemma 1.2. Suppose R ⊆ S is a finite1 inclusion of normal Noetherian domains. Let
Tr : K(S) −→ K(R) denote the trace map, then Tr(S) ⊆ R.

Proof. Since R is S2, it suffices to prove the result after localizing at a height one prime
of R (to see this, simply notice that Tr(S) ⊆ R is a finite R-module and so if it agrees
with R in codimension 1, it is contained in R). But since R is normal, such a localization
is a DVR and so we may assume that R is a DVR. But now S is a free R-module so a
basis for S/R becomes a basis for L/K. It follows that for any s ∈ S, S

·s−→ S is written
as a matrix with entries in R and so Tr(s) ∈ R as claimed. �

We now also explain how to pullback divisors under finite maps of normal domains.

Definition 1.3. Suppose R ⊆ S is a finite inclusion of normal domains with induced
map π : SpecS −→ SpecR. For any Weil divisor D on R, we define π∗D to be the divisor
such that (R(D) · S)∨∨ = S(π∗D). Alternately, for each height one prime Q of R, let
Q1, . . . , Qd be the primes of S lying over Q. In this case R(D)Q = gQRQ since each RQ

is a DVR. We define π∗D =
∑

Q

∑
Qi
−vQi

(gQ)Qi. In particular, if D = divR(f), then

π∗D = divS(f).

Example 1.4. If S = F e
∗R, then π∗D = peD.

If R ⊆ S is a finite inclusion of normal domains such that K(R) ⊆ K(S) is separable
(with π : SpecS −→ SpecR the induced map), the map Tr ∈ HomR(S,R) is a nonzero2

1Finite means S is a finitely generated R-module.
2Tr of an extension of fields is nonzero if and only if the extension is separable.
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element in a rank-1 S2 S-module. Also note that if ωS := HomS(R,ωS), then

HomR(S,R)
= HomR(S ⊗R ωR, ωR)
= HomR(S(π∗KR), ωR)
= HomS(S(π∗KR), ωS)
= S(KS − π∗KR).

and so the effective divisor DTr corresponding to Tr is linearly equivalent to KS − π∗KR.

Definition 1.5. With notation as above the effective divisor DTr corresponding to Tr is
called the ramification divisor (of R ⊆ S). Throughout the rest of the paper, it will be
denoted by Ram = RamS/R.

You may have seen the ramification divisor defined somewhat differently, these two
definitions are indeed the same.

We spent the rest of the class thinking about the worksheet.
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