

NOTES ON CHARACTERISTIC p COMMUTATIVE ALGEBRA
APRIL 19TH, 2017

KARL SCHWEDE

1. TRANSFORMATION OF F -SIGNATURE UNDER ÉTALE IN CODIMENSION 1
 EXTENSIONS

Our goal in this section is to understand how F -signature behaves under finite extensions.

Lemma 1.1. *Suppose that $(R, \mathfrak{m}, k) \subseteq (S, \mathfrak{n}, k)$ is a finite extension of local domains with the same residue field. Then $\text{Tr}(\mathfrak{n}) \subseteq \mathfrak{m}$.*

Proof. We prove it only in the case where the extension is generically Galois since the proof there is easier.

Let $G = \text{Gal}(L/K)$ where $L = K(S)$ and $K = K(R)$. Then $\text{Tr}(x) = \sum_{g \in G} g.x$. But if $x \in \mathfrak{n}$, then $g.x \in g.\mathfrak{n} = \mathfrak{n}$ (since the extension is local and finite). Thus $\text{Tr}(x) \in \mathfrak{n} \cap R = \mathfrak{m}$. \square

Lemma 1.2. *Suppose that $(R, \mathfrak{m}, k) \subseteq (S, \mathfrak{n}, k)$ is a finite extension of local domains with the same residue field. Further suppose that $R \subseteq S$ is étale in codimension 1 (or in other words that the ramification divisor is zero). Then S has at most one free R -summand.*

Proof. The fact that the ramification divisor is zero means that $\text{Tr} \in \text{Hom}_R(S, R)$ generates the Hom-set. Consider $J = \{s \in S \mid \text{Tr}(sS) \subseteq \mathfrak{m}\}$. Now $\ell_S(S/J)$ is the number of free R -summands by the same argument as [??](#). But this length is at most one by Lemma 1.1 since $\mathfrak{n} \subseteq J$. \square

We need another result we probably should have proven earlier.

Theorem 1.3. *If R is strongly F -regular and $R \subseteq S$ is a module finite extension, then $R \rightarrow S$ splits as a map of R -modules.*

Proof. For any $\phi \in \text{Hom}_R(F_*^e R, R)$, consider the composition

$$\eta : F_*^e \text{Hom}_R(S, R) = \text{Hom}_{F_*^e R}(F_*^e S, F_*^e R) \rightarrow \text{Hom}_R(S, F_*^e R) \rightarrow \text{Hom}_R(S, R)$$

where the first map is induced by restriction and the second by ϕ . It is not difficult to verify that the follow diagram commutes

$$\begin{array}{ccc} \text{Hom}_{F_*^e R}(F_*^e S, F_*^e R) & \xrightarrow{\eta} & \text{Hom}_R(S, R) \\ \text{ev}@1 \downarrow & & \downarrow \text{ev}@1 \\ F_*^e R & \xrightarrow{\phi} & R. \end{array}$$

But then the image of $\text{Hom}_R(S, R)$ in R is stable under every ϕ . Any nonzero element in the image can be sent to 1 by some ϕ and hence $\text{Hom}_R(S, R) \rightarrow R$ must surject. \square

We spent the rest of the class on presentations.

