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Last time we saw the following:

Theorem 0.1. An excellent1 reduced Noetherian ring R with a dualizing complex is nor-
mal if and only if it is S2 and R1.

Remark 0.2. We included some hypotheses above to make our lives easier that are not
strictly necessary. Indeed, the above holds even without assuming that R is excellent with
a dualizing complex.

Note, in many cases it is easy to verify that certain rings are normal. Indeed if R is
Gorenstein (for example, if it is defined by a hypersurface or a complete intersection) and
R1, then it is automatically normal. For example, k[x, y, z]/〈xa + yb − zc〉 is normal if p
does not divide a, b, c since then the singular locus is at the origin (using the Jacobian
criterion).

In the previous proof, the ideal AnnR(RN/R) appeared, this ideal has a special name.

Definition 0.3. The ideal c := AnnR(RN/R) is called the conductor of RN over R. It is
also an ideal of RN.

Let’s now move towards a proof that strongly F -regular rings are normal.

Lemma 0.4. Suppose that R is an F -finite Noetherian reduced ring of characteristic
p > 0 and pick φ ∈ HomR(F e

∗R,R). Then φ(F e
∗ c) ⊆ c.

Proof. Tensoring φ : F e
∗R −→ R by K(R) induces a map φK(R) : F e

∗K(R) −→ K(R) which
restricts to φ and so which we also denote by φ. Choose x ∈ c and r ∈ RN. Then
φ(F e

∗x) · r = φ(F e
∗ (rp

e
x)). But rp

e ∈ RN and xRN ⊆ R so φ(F e
∗ (rp

e
x)) ∈ R. Thus

φ(F e
∗x) ·RN ⊆ R and so φ(F e

∗x) ∈ c as desired. �

Corollary 0.5. Strongly F -regular rings are normal.

Proof. IfR was not normal, then the conductor satisfies 0 6= c 6= R and so choose 0 6= c ∈ c.
By hypothesis, φ(F e

∗ c) ⊆ c and so φ(F e
∗ c) 6= 1 for any φ ∈ HomR(F e

∗R,R) which proves
that R is not strongly F -regular. �

Example 0.6. R = k[x, y]/〈xy〉 is F -split, by Fedder’s criterion, but not normal since it
is not R1. So we cannot weaken the above strongly F -regular hypothesis to simply being
F -split.

Let’s discuss an example of a non-normal ring.

1We only include this to guarantee that RN is a finitely generated R-module
1
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Example 0.7 (The node). Consider the ring S = k[x] and consider the subring R =
{f ∈ S | f(0) = f(1)} which one can also view as the pullback of the diagram

S
α−→ S/〈x〉 ∩ 〈x− 1

β←−← k.

In other words {(s, t) ∈ S ⊕ k | α(s) = β(t)}. We claim that

R = k[x(x− 1), x2(x− 1)] ⊆ k[x] = S.

Obviously x(x−1) and x2(x−1) are both in R. On the other hand, if f ∈ R with f(0) =
f(1) = λ, then f − λ ∈ R and viewing f − λ ∈ S, we see that f ∈ 〈x(x− 1)〉S = IS ⊆ R.
Thus the question is, are the elements a = x(x − 1), b = x2(x − 1) enough to produce
all of IS by multiplying a, b together and scaling them by elements of k. For example,
if we have hx(x − 1) ∈ I with h = h0 + h1x + h2x

2 + . . . , we can certainly assume that
h = h2x

2 + . . . (since lower degree terms are easy to handle with a, b). But

c = x2 · x(x− 1) = a2 + b, d = x3 ∗ (x− 1) = a ∗ b− c
and so on...

On the other hand, it is easy to verify that R = k[a, b]/〈a3 + a ∗ b− b2〉.

Example 0.8. Similarly, it is not difficult to see that R = k[x2, x3] ⊆ k[x] = S is the
pullback of (S −→ S/〈x2〉 ← k). In particular, the cusp can be thought of as what you
get when you kill first order tangent information at the origin of A1.

Theorem 0.9. Suppose that we have a diagram of rings (A � A/I
g←− B) and let C =

{(a, b) | a = g(b)} be the pullback. Then SpecC is the pushout of the diagram of induced
map of topological spaces {SpecA← SpecA/I → SpecB}.
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