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Proposition 0.1. Suppose that R C S is an inclusion of Noetherian domains such that
S = R® M as R-modules. Then if S is strongly F-reqular, so is R.

Proof. Choose 0 # ¢ € R. Since S is strongly F-regular, there exists a ¢ : F£S — S such
that ¢(Ffc) = 1. Let p: S — R be such that p(lg) = 1 (this exists since S = R @ M).

Then the composition FfR C F¢S % 8 % R sends Ffc to 1 which proves that R is
strongly F-regular. 0

Remark 0.2. The above is an open problem in characteristic zero for KLT singularities.

Corollary 0.3. A direct summand of a regular ring in characteristic p > 0 is Cohen-
Macaulay.

The above is obvious if we are taking a finite local inclusion of local rings of the same
dimension. It is not so obvious otherwise (indeed, it has perhaps only recently been
discovered how to show that direct summands of regular rings in mixed characteristic are
Cohen-Macaulay).

Proposition 0.4. If R is an F-finite ring such that Ry is strongly F-reqular for each
maximal m € Spec R, then R is strongly F'-reqular.

Proof. Obviously strongly F-regular rings are F-split (take ¢ = 1) and so R is F-split. By
post composing with Frobenius splittings, if we have a map ¢ : FYR — R which sends
Ffc— 1, then we can replace e by a larger e. Now, pick 0 # ¢ € R. For each m € Spec R,

evalQc

Homg(FfR, R)y ——
neighborhood Uy, of m and some e, such that Homg(FfR, R), cval@e, R, surjects for all

n € U, where we take e = e,. These U, cover Spec R and since Spec R is quasi-compact,

we may pick finitely many of them, choose a common large enough e > 0 and observer
eval@c

that Hompg(F¢R, R) —— R surjects as desired. O

Theorem 0.5. Suppose that 0 # d € R is such that R[d™'] is strongly F-reqular and
such that there exists a map ¢ : FER — R satisfying ¢(F¢d) = 1. Then R is strongly
F-regular.

Proof. Note first that R is F-split (pre-multiply ¢ by F¢d). Choose 0 # ¢ € R and

evalQc

consider the map ®; : Homg(F/R,R) —— R for some f > 0. Because R[d'] is
strongly F-regular, d™ € Image(®;) for some f > 0 and some m > 0. Without loss
of generality, we may assume that m = p’ for some integer [ (note making m larger is
harmless). In particular, there exists ¢ € Homp(F/ R, R) such that o(F/¢c) = d*'. Let
% : FLR — R be a Frobenius splitting and notice that x(Flp(F7c)) = x(d"') = d. Finally

cb(Ffff(Fiw(FfC)l)) = o(Fd) =1

R, is surjective for e > 0. But thus for each m, there exists a
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and so ¢ o (F¢k) o (Fe*/)) is the desired map. O

For a computer, the above is not so bad. To show that R = S/I (where S is a
polynomial ring say) is strongly F-regular, you just need to find d € S in the ideal of
the singular locus of V(I) such that ®(c- (Il : I)) = S where ® is the map from the
second Macaulay?2 assignment. Note that this can only prove that a singularity is strongly
F-regular, it can’t prove that a singularity isn’t. We don’t have a good algorithm to do
this in general but we do have algorithms that work if the ring is quasi-Gorenstein (or
Q-Gorenstein, a notion we’ll learn about later).

1. A CRASH COURSE IN (AB)NORMALITY

Definition 1.1. Suppose that R is a ring. We let
K(R) ={a/b| a,b € R where b is not a zero divisor }.

denote the total ring of fractions.

In the case that R is a reduced Noetherian ring with minimal primes )1, . .., Q;, then
each R/Q); is an integral domain with field of fractions K(R/Q;). In this case, K(R) =
[ K(R/Q;) (easy exercise, or look it up).

Definition 1.2. Given a reduced Noetherian ring R, the normalization RN of R in K(R)
(or just the normalization of R) is defined to be

{z € K(R) | = satisfies a monic polynomial with coefficients in R}.
R is called normal if R = RN.

Fact 1.3. Under moderate hypotheses (excellence, so for all rings we care about), RY is
a finitely generated R-module. We will take this as a fact at least for now.

Lemma 1.4. In a reduced ring R, the set of zero divisors is equal to |JQ; where Q; is
the set of minimal primes.

Proof. Suppose z is a zero divisor xy = 0, y # 0. If z ¢ Q; for any ¢, then since
xy=0€ Q;, y € Q, for all i. But (Q; = (0) since R is reduced.

For the reverse direction fix some minimal prime ); and let W be the multiplicative
set generated by R\ @); and by the set of nonzero divisors of R. Note 0 ¢ W because if
it was, then 0 = ab for a ¢ Q; and b not a zero divisor. Let W' P be a maximal ideal of
W=IR with P C R the inverse image in R. Thus P is a prime ideal of R which doesn’t
contain any element of W. Obviously then P C @, but since (); is minimal P = @);.
But P doesn’t contain any non-zero divisors, and so (); is completely composed of zero
divisors. O

Our goal for this section is to understand normal rings, non-normal rings, and some
weakenings of the condition that R is normal. First let’s understand K (R).

Lemma 1.5. Suppose that R is a reduced Noetherian ring, then K(R) = [[._, Ki is a
finite product of fields.

Proof. First we observe that R has only finitely many minimal primes. To see this write
(0) = 02:1 P; as a primary decomposition of (0). Any prime (minimal with respect to the
condition that it contains 0 — any prime) is among this set (since the primes in primary
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decomposition commute with localization in as much as possible). Next let @); be the
minimal primes, we claim that (0) = (), @Q;, one containment is obvious. On the other
hand, if x is in every minimal prime then it is in every prime, and so x is nilpotent.

Now, if we localize a reduced ring at a minimal prime, we get a reduced ring with a
single prime, in other words a field. Consider the diagonal map

0: R — ] Ra.

Note that Q;Rg, is zero since it’s a nonzero ideal in a field hence each R — Ry, factors
through R/(Q); (which injects into Rg,). Thus kerd = (Q; = (0). On the other hand,
every nonzero divisor of R certainly maps to a nonzero divisor of [[, R, where it is
already invertible and so we have map v : K(R) — [], Rg,- We need to show that this
map is a bijection. It is injective since K (R) is itself Noetherian and the minimal primes
of R contain only zero divisors and so the minimal primes of K (R) agree with the minimal
primes of R. From hear on, we may assume K(R) = R. Let ()1, Q2 be minimal primes of
K(R) and consider @)1 + (5. Since Q1 + ()2 is not contained in any single minimal prime
Qi, Q1 + Q2 is not contained in | @; by prime avoidance. But in a reduced ring, |J Q; is
the set of zero divisors and so @1 + Q2 contains a nonzero divisor and so Q1 + Q2 = K(R)
(since nonzero divisors are invertible). But now we’ve show that the @; are pairwise
relatively prime and so 7 is surjective by the Chinese Remainder Theorem. U

Lemma 1.6. If we have an extension of rings R C R C K(R) such that R’ is a finite
R-module and R is Noetherian, then R = R.

Proof. Choose x € R’ and so reduce to the case where R' = R[z] C K(R). On the
other hand, consider the ascending chain of R-submodules of K(R) R C R @ xR C
R®zR® xR C --- C @;_,2'R C .... Eventually this stabilizes to R’ and since
R’ is a Noetherian R-module, this happens at a finite step. Thus for some n > 0,

" € @;_, 'R C R'. In other words, z satisfies a monic polynomial with coefficients in
R and so z € R and thus R’ = R as claimed. O

Exercise 1.1. The formation of RN commutes with localization, in particular if W C R
is a multiplicative set then (W 1R)N = W-1(RN).

As a corollary of the previous exercise, we immediately obtain the following.

Corollary 1.7. A ring is normal if and only if each of its localizations Ry, are normal
for mazimal ideals m.

Proposition 1.8. If (R, m) is a reduced Noetherian local normal ring then R is an integral
domain.

Proof. Suppose that K(R) = H§:1 K; is a product of fields. We need to show that ¢t =1
since R C K(R). O

Definition 1.9. A ring is called R,, if for every prime () € Spec R of height < n, R is
regular.

Lemma 1.10. A Noetherian normal local 1-dimensional domain is reqular. In particular,
normal rings are Ry.
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Proof. For the first statement, such a domain obviously has two prime ideals, 0 and m.
We need to show that m is principal and so choose z € m \ m?. Now, R/(z) is dimension
zero and so as an R-module, has m as an associated prime. Thus there exists y € R with
y € R/(x) such that Anngy = m. In other words

y ¢ (z) but y-m € (x).
Now consider y/x € K(R), we observe that (y/x)-m C R even though y/x ¢ R (since
otherwise y € (z)).

Form m™ = R ;s m = {a € K(R) | am C R} and consider m - m™' C R. Since
R C m™! wesee that m C m-m~!. By construction, y/r € m~! and so if m = m-m™!, then
y/x-m C m. Thus we can view (-(y/z)) € Hompg(m, m) and thus (y/x)" + ai(y/z)" ' +
-+ ++a, = 0 with a; € m’ by the determinant trick (which leads to the proof of Nakayama’s
lemma). But then y/x is integral over R and thus since R is integrally closed, y/z € R
a contradiction to the assumption that m = m-m~!. Thus m - m~! = R. Now consider
r-m ' Cm-m ! = R and observe that if z - m™' C m, then (z) = z-m™'m C m?
contradicting our choice of . Hence z - m™! = R as well and so

1

(r)=x-m -m=m-R=m

proving that m is principal as desired.
The second statement is a direct corollary for the first since normality of Noetherian

rings localizes by [Exercise 1.1] O

Lemma 1.11. A normal Noetherian reduced local ring (R, m) is a domain.

Proof. Let @, ...,Q,, be the minimal primes of R. Then consider the inclusion R —
I, R/Q:; = R'. Obviously R’ is a finite R-module (since it’s a product of finitely many
finite R-modules). Thus since R is normal, and obviously R’ C K(R), we have that
R = R'. But R’ is not local unless there is only one @; (each R/Q); is local). O

Lemma 1.12. A normal Noetherian ring with a dualizing complez is Ss.

Proof. The statement is local so we assume that R is a normal local domain. It is easy
to see that normal domains are S; since they are domains and so regular elements are
not hard to find. Thus we need to show that H}(Rg) = 0 for all Q € Spec R of height
at least 2. Thus we may as well assume (R, m) is a local Noetherian, normal domain of
dimension > 2 and set U = Spec R \ m to be the punctured spectrum. We denote by wy,
a normalized dualizing complex. By ?7? it suffices to show that

R — R =T(U,R)

is surjective. It is not difficult to see that R’ C K(R) since if you tensor map defining
R’ by K(R), the kernel of the tensored map is clearly K(R). We know that the cokernel
of R — R’ is H.(R). Since R is reduced it is S; so it is an easy exercise in localizing
dualizing complexes to verify that h~'w}, has zero dimensional support (is supported at
the closed point). In particular, m® - h=lw;, = 0 and so h~'w;, is Artinian. It follows
that its Matlis dual H!(R) is Noetherian. Thus R’ is an extension of Noetherian R-
modules, R and H}(R) and so R’ is Noetherian. But now every element of R’ is integral]
over R (basically for the same reason that finite field extensions are algebraic) and so
R' C RN = R which completes the proof. O

Lsatisfy a monic polynomial equation
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Theorem 1.13. An excellemﬂ reduced Noetherian ring R with a dualizing complex is
normal if and only if it is Sy and R;.

Proof. We already have seen that normal rings are S, and R;. Conversely, if R is So and
R, and RY is the normalization of R, then since R is is excellent, RY is a finite R-module
and so the locus where R is not normal, Z = V(Anng(RN/R)), is closed. Since R is Ry,
Z has codimension at least 2 locally in Spec R, thus U = Spec R \ Z is the complement
of a codimension 2 set and so R — I'(U, R) is an isomorphism since R is S, using ?7.

Claim 1.14. RN is Sy as an R-module.

Proof of claim. Choose P a prime ideal of R and suppose that P = () N R a prime ideal
of RN. We know that Hf,.x(RY) = 0 for ¢ = 0,1 since B is S5. On the other hand,
Q

V PRN is an intersection of finitely many prime ideals, ()1, ..., Qq such that Q, N R = P.
Then
i Ny _ i Ny _ pri Ny i (pN
Hppy (RY) = Hppy (RE) = H' /e (R5) = €D Ho, (Rg))
J

where the last equality comes from the fact that the functors I' zzx(_) = @, T'g,(_) for
the semi-local ring RY. But now we are done since the right side is zero for i = 0,1. [

Since RN is a Sy R-module, we have that RN — T'(U, RY) is an isomorphism. Finally,
we see that T'(U, R) — T'(U, RY) is an isomorphism as well (since R and RN agree on U).
Putting this together we get the commutative diagram

R— RN

NJ }
I'(U, R) —— I'(U, RN)

from which it follows that R — RN is an isomorphism as well. 0J
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