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Proposition 0.1. Suppose that R ⊆ S is an inclusion of Noetherian domains such that
S ∼= R⊕M as R-modules. Then if S is strongly F -regular, so is R.

Proof. Choose 0 6= c ∈ R. Since S is strongly F -regular, there exists a φ : F e
∗S −→ S such

that φ(F e
∗ c) = 1. Let ρ : S −→ R be such that ρ(1S) = 1R (this exists since S ∼= R⊕M).

Then the composition F e
∗R ⊂ F e

∗S
φ−→ S

ρ−→ R sends F e
∗ c to 1 which proves that R is

strongly F -regular. �

Remark 0.2. The above is an open problem in characteristic zero for KLT singularities.

Corollary 0.3. A direct summand of a regular ring in characteristic p > 0 is Cohen-
Macaulay.

The above is obvious if we are taking a finite local inclusion of local rings of the same
dimension. It is not so obvious otherwise (indeed, it has perhaps only recently been
discovered how to show that direct summands of regular rings in mixed characteristic are
Cohen-Macaulay).

Proposition 0.4. If R is an F -finite ring such that Rm is strongly F -regular for each
maximal m ∈ SpecR, then R is strongly F -regular.

Proof. Obviously strongly F -regular rings are F -split (take c = 1) and so R is F -split. By
post composing with Frobenius splittings, if we have a map φ : F e

∗R −→ R which sends
F e
∗ c 7→ 1, then we can replace e by a larger e. Now, pick 0 6= c ∈ R. For each m ∈ SpecR,

HomR(F e
∗R,R)m

eval@c−−−−→ Rm is surjective for e � 0. But thus for each m, there exists a

neighborhood Um of m and some em such that HomR(F e
∗R,R)n

eval@c−−−−→ Rn surjects for all
n ∈ Um where we take e = em. These Um cover SpecR and since SpecR is quasi-compact,
we may pick finitely many of them, choose a common large enough e > 0 and observer

that HomR(F e
∗R,R)

eval@c−−−−→ R surjects as desired. �

Theorem 0.5. Suppose that 0 6= d ∈ R is such that R[d−1] is strongly F -regular and
such that there exists a map φ : F e

∗R −→ R satisfying φ(F e
∗d) = 1. Then R is strongly

F -regular.

Proof. Note first that R is F -split (pre-multiply φ by F e
∗d). Choose 0 6= c ∈ R and

consider the map Φf : HomR(F f
∗ R,R)

eval@c−−−−→ R for some f � 0. Because R[d−1] is
strongly F -regular, dm ∈ Image(Φf ) for some f � 0 and some m > 0. Without loss
of generality, we may assume that m = pl for some integer l (note making m larger is

harmless). In particular, there exists ψ ∈ HomR(F f
∗ R,R) such that ψ(F f

∗ c) = dp
l
. Let

κ : F l
∗R −→ R be a Frobenius splitting and notice that κ(F l

∗ψ(F f
∗ c)) = κ(dp

l
) = d. Finally

φ(F e
∗κ(F l

∗ψ(F f
∗ c))) = φ(F e

∗d) = 1
1
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and so φ ◦ (F e
∗κ) ◦ (F e+f

∗ ψ) is the desired map. �

For a computer, the above is not so bad. To show that R = S/I (where S is a
polynomial ring say) is strongly F -regular, you just need to find d ∈ S in the ideal of
the singular locus of V (I) such that Φ(c · (I [pe] : I)) = S where Φ is the map from the
second Macaulay2 assignment. Note that this can only prove that a singularity is strongly
F -regular, it can’t prove that a singularity isn’t. We don’t have a good algorithm to do
this in general but we do have algorithms that work if the ring is quasi-Gorenstein (or
Q-Gorenstein, a notion we’ll learn about later).

1. A crash course in (ab)normality

Definition 1.1. Suppose that R is a ring. We let

K(R) = {a/b | a, b ∈ R where b is not a zero divisor }.
denote the total ring of fractions.

In the case that R is a reduced Noetherian ring with minimal primes Q1, . . . , Qt, then
each R/Qi is an integral domain with field of fractions K(R/Qi). In this case, K(R) ∼=∏
K(R/Qi) (easy exercise, or look it up).

Definition 1.2. Given a reduced Noetherian ring R, the normalization RN of R in K(R)
(or just the normalization of R) is defined to be

{x ∈ K(R) | x satisfies a monic polynomial with coefficients in R}.
R is called normal if R = RN.

Fact 1.3. Under moderate hypotheses (excellence, so for all rings we care about), RN is
a finitely generated R-module. We will take this as a fact at least for now.

Lemma 1.4. In a reduced ring R, the set of zero divisors is equal to
⋃
Qi where Qi is

the set of minimal primes.

Proof. Suppose x is a zero divisor xy = 0, y 6= 0. If x /∈ Qi for any i, then since
xy = 0 ∈ Qi, y ∈ Qi for all i. But

⋂
Qi = 〈0〉 since R is reduced.

For the reverse direction fix some minimal prime Qi and let W be the multiplicative
set generated by R \ Qi and by the set of nonzero divisors of R. Note 0 /∈ W because if
it was, then 0 = ab for a /∈ Qi and b not a zero divisor. Let W−1P be a maximal ideal of
W−1R with P ⊆ R the inverse image in R. Thus P is a prime ideal of R which doesn’t
contain any element of W . Obviously then P ⊆ Qi, but since Qi is minimal P = Qi.
But P doesn’t contain any non-zero divisors, and so Qi is completely composed of zero
divisors. �

Our goal for this section is to understand normal rings, non-normal rings, and some
weakenings of the condition that R is normal. First let’s understand K(R).

Lemma 1.5. Suppose that R is a reduced Noetherian ring, then K(R) =
∏t

i=1Ki is a
finite product of fields.

Proof. First we observe that R has only finitely many minimal primes. To see this write
〈0〉 =

⋂t
i=1 Pi as a primary decomposition of 〈0〉. Any prime (minimal with respect to the

condition that it contains 0 – any prime) is among this set (since the primes in primary
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decomposition commute with localization in as much as possible). Next let Qi be the
minimal primes, we claim that 〈0〉 =

⋂
iQi, one containment is obvious. On the other

hand, if x is in every minimal prime then it is in every prime, and so x is nilpotent.
Now, if we localize a reduced ring at a minimal prime, we get a reduced ring with a

single prime, in other words a field. Consider the diagonal map

δ : R −→
∏
i

RQi
.

Note that QiRQi
is zero since it’s a nonzero ideal in a field hence each R −→ RQi

factors
through R/Qi (which injects into RQi

). Thus ker δ =
⋂
Qi = 〈0〉. On the other hand,

every nonzero divisor of R certainly maps to a nonzero divisor of
∏

iRQi
where it is

already invertible and so we have map γ : K(R) −→
∏

iRQi
. We need to show that this

map is a bijection. It is injective since K(R) is itself Noetherian and the minimal primes
of R contain only zero divisors and so the minimal primes of K(R) agree with the minimal
primes of R. From hear on, we may assume K(R) = R. Let Q1, Q2 be minimal primes of
K(R) and consider Q1 +Q2. Since Q1 +Q2 is not contained in any single minimal prime
Qi, Q1 +Q2 is not contained in

⋃
Qi by prime avoidance. But in a reduced ring,

⋃
Qi is

the set of zero divisors and so Q1 +Q2 contains a nonzero divisor and so Q1 +Q2 = K(R)
(since nonzero divisors are invertible). But now we’ve show that the Qi are pairwise
relatively prime and so γ is surjective by the Chinese Remainder Theorem. �

Lemma 1.6. If we have an extension of rings R ⊆ R′ ⊆ K(R) such that R′ is a finite
R-module and R is Noetherian, then R′ = R.

Proof. Choose x ∈ R′ and so reduce to the case where R′ = R[x] ⊆ K(R). On the
other hand, consider the ascending chain of R-submodules of K(R) R ⊆ R ⊕ xR ⊆
R ⊕ xR ⊕ x2R ⊆ · · · ⊆

⊕n
i=1 x

iR ⊆ . . . . Eventually this stabilizes to R′ and since
R′ is a Noetherian R-module, this happens at a finite step. Thus for some n � 0,
xn ∈

⊕n
i=1 x

iR ⊆ R′. In other words, x satisfies a monic polynomial with coefficients in
R and so x ∈ R and thus R′ = R as claimed. �

Exercise 1.1. The formation of RN commutes with localization, in particular if W ⊆ R
is a multiplicative set then (W−1R)N = W−1(RN).

As a corollary of the previous exercise, we immediately obtain the following.

Corollary 1.7. A ring is normal if and only if each of its localizations Rm are normal
for maximal ideals m.

Proposition 1.8. If (R,m) is a reduced Noetherian local normal ring then R is an integral
domain.

Proof. Suppose that K(R) =
∏t

i=1Ki is a product of fields. We need to show that t = 1
since R ⊆ K(R). �

Definition 1.9. A ring is called Rn if for every prime Q ∈ SpecR of height ≤ n, RQ is
regular.

Lemma 1.10. A Noetherian normal local 1-dimensional domain is regular. In particular,
normal rings are R1.
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Proof. For the first statement, such a domain obviously has two prime ideals, 0 and m.
We need to show that m is principal and so choose x ∈ m \m2. Now, R/〈x〉 is dimension
zero and so as an R-module, has m as an associated prime. Thus there exists y ∈ R with
y ∈ R/〈x〉 such that AnnR y = m. In other words

y /∈ 〈x〉 but y ·m ∈ 〈x〉.
Now consider y/x ∈ K(R), we observe that (y/x) · m ⊆ R even though y/x /∈ R (since
otherwise y ∈ 〈x〉).

Form m−1 = R :K(R) m = {a ∈ K(R) | am ⊆ R} and consider m · m−1 ⊆ R. Since
R ⊆ m−1, we see that m ⊆ m·m−1. By construction, y/x ∈ m−1 and so if m = m·m−1, then
y/x ·m ⊆ m. Thus we can view (·(y/x)) ∈ HomR(m,m) and thus (y/x)n + a1(y/x)n−1 +
· · ·+an = 0 with ai ∈ mi by the determinant trick (which leads to the proof of Nakayama’s
lemma). But then y/x is integral over R and thus since R is integrally closed, y/x ∈ R
a contradiction to the assumption that m = m · m−1. Thus m · m−1 = R. Now consider
x · m−1 ⊆ m · m−1 = R and observe that if x · m−1 ⊆ m, then 〈x〉 = x · m−1m ⊆ m2

contradicting our choice of x. Hence x ·m−1 = R as well and so

〈x〉 = x ·m−1 ·m = m ·R = m

proving that m is principal as desired.
The second statement is a direct corollary for the first since normality of Noetherian

rings localizes by Exercise 1.1. �

Lemma 1.11. A normal Noetherian reduced local ring (R,m) is a domain.

Proof. Let Q1, . . . , Qm be the minimal primes of R. Then consider the inclusion R ↪→∏
iR/Qi = R′. Obviously R′ is a finite R-module (since it’s a product of finitely many

finite R-modules). Thus since R is normal, and obviously R′ ⊆ K(R), we have that
R = R′. But R′ is not local unless there is only one Qi (each R/Qi is local). �

Lemma 1.12. A normal Noetherian ring with a dualizing complex is S2.

Proof. The statement is local so we assume that R is a normal local domain. It is easy
to see that normal domains are S1 since they are domains and so regular elements are
not hard to find. Thus we need to show that H1

Q(RQ) = 0 for all Q ∈ SpecR of height
at least 2. Thus we may as well assume (R,m) is a local Noetherian, normal domain of
dimension ≥ 2 and set U = SpecR \m to be the punctured spectrum. We denote by ω

q
R

a normalized dualizing complex. By ?? it suffices to show that

R −→ R′ := Γ(U,R)

is surjective. It is not difficult to see that R′ ⊆ K(R) since if you tensor map defining
R′ by K(R), the kernel of the tensored map is clearly K(R). We know that the cokernel
of R −→ R′ is H1

m(R). Since R is reduced it is S1 so it is an easy exercise in localizing
dualizing complexes to verify that h−1ω

q
R has zero dimensional support (is supported at

the closed point). In particular, md · h−1ω q
R = 0 and so h−1ω

q
R is Artinian. It follows

that its Matlis dual H1
m(R) is Noetherian. Thus R′ is an extension of Noetherian R-

modules, R and H1
m(R) and so R′ is Noetherian. But now every element of R′ is integral1

over R (basically for the same reason that finite field extensions are algebraic) and so
R′ ⊆ RN = R which completes the proof. �
1satisfy a monic polynomial equation
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Theorem 1.13. An excellent2 reduced Noetherian ring R with a dualizing complex is
normal if and only if it is S2 and R1.

Proof. We already have seen that normal rings are S2 and R1. Conversely, if R is S2 and
R1 and RN is the normalization of R, then since R is is excellent, RN is a finite R-module
and so the locus where R is not normal, Z = V (AnnR(RN/R)), is closed. Since R is R1,
Z has codimension at least 2 locally in SpecR, thus U = SpecR \ Z is the complement
of a codimension 2 set and so R −→ Γ(U,R) is an isomorphism since R is S2 using ??.

Claim 1.14. RN is S2 as an R-module.

Proof of claim. Choose P a prime ideal of R and suppose that P = Q ∩ R a prime ideal
of RN. We know that H i

QRN
Q

(RN) = 0 for i = 0, 1 since RN is S2. On the other hand,
√
PRN is an intersection of finitely many prime ideals, Q1, . . . , Qd such that Qj ∩R = P .

Then
H i
PRP

(RN
P ) = H i

PRN
P

(RN
P ) = H i√

PRN
P

(RN
P ) =

⊕
j

H i
Qj

(RN
Qj

)

where the last equality comes from the fact that the functors Γ√PRN( ) =
⊕

j ΓQj
( ) for

the semi-local ring RN
P . But now we are done since the right side is zero for i = 0, 1. �

Since RN is a S2 R-module, we have that RN −→ Γ(U,RN) is an isomorphism. Finally,
we see that Γ(U,R) −→ Γ(U,RN) is an isomorphism as well (since R and RN agree on U).
Putting this together we get the commutative diagram

R

∼
��

// RN

∼
��

Γ(U,R) ∼
// Γ(U,RN)

from which it follows that R −→ RN is an isomorphism as well. �
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