
NOTES ON CHARACTERISTIC p COMMUTATIVE ALGEBRA
MARCH 22ND, 2017

KARL SCHWEDE

1. A quick introduction to Q-Weil divisors

Setting 1.1. Throughout this section R is a normal Noetherian domain.

We first state some facts about S2 and reflexive modules.

Definition 1.2. A finitely generated R-module M is called reflexive if the canonical map
M 7→ HomR(HomR(M,R), R) is an isomorphism. Given M , the reflexification of M is
simply HomR(HomR(M,R), R) =: M∨∨.

Exercise 1.1. Show that for any finitely generated module M , HomR(M,R) is reflexive.

Lemma 1.3. A finitely generated R-module M is reflexive if and only if it is S2.

Proof. We leave at as an exercise, see [Har94] for details. �

Example 1.4. If M is a torsion-free R-module of rank-1 (meaning that M ⊗R K(R) ∼=
K(R)), then because M is torsion free, the canonical map M −→M ⊗RK(R) is injective.
Thus we can embed M ⊆ K(R). In this case, we see that HomR(M,R) ∼= R :K(R) M .
Indeed, any such a ∈ R :K(R) M yields a homomorphism by multiplication. Conversely,
given any φ ∈ HomR(M,R) ⊆ HomK(R)(M ⊗R K(R), K(R)) and then our identification
M ⊗R K(R) ∼= K(R) lets us identify φ with multiplication by some element of K(R).

In this case, M∨∨, the reflexification of M , can be viewed as R :K(R) (R :K(R) M). This
is a subset of K(R) that obviously contains M .

Definition 1.5. A Weil divisor D =
∑
aiDi on SpecR (or on R) is a finite formal Z-sum

of distinct height one prime ideals Di. A Q-(Weil-)divisor D =
∑
aiDi on SpecR is a

finite formal Q-sum of distinct height one prime ideals Di. In either case, the divisor is
called effective if all the ai ≥ 0.

Given any 0 6= g ∈ K(R), we define div(g) =
∑
vDi

(g)Di where vDi
(g) is the value of

g with respect to the discrete valuation vDi
which one obtains after localizing R at Di.

Associated to any Weil divisorD is a reflexive fractional ideal1R(D) (frequently denoted
in the sheaf theory language as OSpecR(D)). In particular, if D =

∑
aiDi then R(D) is

the subset of K(R) that have poles of order at most ai at Di whenever ai > 0 and have
zeros of order at least |ai| at Di whenever ai < 0. Explicitly,

R(D) = {g ∈ K(R) | div(g) +D ≥ 0}.

Exercise 1.2. Using the definition, show that R(D) is reflexive, or equivalently that it
is S2.

Let’s say what this is explicitly in some special cases.

1A fractional ideal is by definition a finitely generated submodule of K(R).
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(i) If D = 0, then R(D) = R.
(ii) If D = Di is a single prime ideal, then R(D) := R :K(R) D.
(iii) If D = −Di is the negative of a single prime, then R(D) = Di.
(iv) If D = −nDi (for n ≥ 0) is the negative of a single divisor, then R(D) = (Dn

i )∨∨.

(v) If D = −
∑
aiDi (for ai ≥ 0), then R(D) =

(∏
Dai

i

)∨∨
.

(vi) If D ≥ 0 (is effective) then R(D) = R :K(R) R(−D).

(vii) If D = A+B, then R(D) =
(
R(A) ·R(B)

)∨∨
.

(viii) For any D, R(−D) = R :K(R) R(D).
(ix) If D = A−B then R(D) ∼= HomR(R(B), R(A)) ∼= R(A) :K(R) R(B).
(x) For any 0 6= f, g ∈ K(R), − div(g) = div(1/g) and also div(f ·g) = div(f)+div(g).
(xi) R(div(g)) = 1

g
·R.

Definition 1.6 (Cartier divisors). A Weil divisor D is called Cartier if R(D) is projective
(locally free). A (Q-)divisor D is called Q-Cartier if there exists an integer n > 0 such
that nD is Cartier.

Example 1.7. In k[x2, xy, y2] the ideal Q = 〈x2, xy〉 corresponds to a prime divisor D
but D is not Cartier (since it is not generated by a single element locally). However, D
is Q-Cartier since R(−2D) = 〈x2〉 (and hence R(2D) = 1

x2R).

Definition 1.8 (Linear equivalence). Two Weil divisors D1, D2 are said to be linearly
equivalent if D1−D2 = div(g) for some 0 6= g ∈ K(R). In this case we write D1 ∼ D2. If
D1, D2 are Q-divisors, we say that they are Q-linearly equivalent if there exists an integer
n > 0 such that nD1 and nD2 are linearly equivalent Weil divisors.

Example 1.9. Working in k[x2, xy, y2] set D1 to be the prime divisor 〈x2, xy〉 and D2 to
be the prime divisor 〈xy, y2〉, then D1 −D2 = div(x/y) and so D1 ∼ D2.

Lemma 1.10. Two divisors D1 and D2 are linearly equivalent if and only if there is an
(abstract) isomorphism R(D1) ∼= R(D2).

Proof. Suppose first that D1 and D2 are linearly equivalent, and so D1− div(g) = D2 for
some 0 6= g ∈ K(R). We claim that

R(D1) · g = R(D2).

Choose f ∈ R(D1). Then div(f)+D1 ≥ 0. It follows that div(f ·g)+D1 = div(f)+D1 +
div(g) ≥ div(g). Thus div(f · g) +D1−div(g) = div(f · g) +D2 ≥ 0 and so f · g ∈ R(D2).
Conversely, if h ∈ R(D2) then div(h) + D2 ≥ 0 and so 0 ≤ div(h) + D1 − div(g) =
div(h/g) +D1 which implies that h/g ∈ R(D1) and so h ∈ R(D1) · g as desired.

Conversely, suppose that R(D1) ∼= R(D2) and so HomR(R(D1), R(D2)) ∼= R. Since we
have R(D1), R(D2) ⊆ K(R) we see that R(D2) :K(R) R(D1) = h · R for some h ∈ K(R).
We see that h · R(D1) = R(D2) and so an argument similar to the one above shows that
D1 −D2 = div(h). �

Lemma 1.11. If D is a divisor on R, then every g ∈ R(D) determines an effective divisor
Dg ∼ D, explicitly Dg := D+div(g). Furthermore h ∈ R(D) determines the same divisor
as g if and only if h and g are associates in R (unit multiplies).
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