

NOTES ON CHARACTERISTIC p COMMUTATIVE ALGEBRA
MARCH 20TH, 2017

KARL SCHWEDE

1. FROBENIUS SPLITTINGS OF NON-NORMAL RINGS CONTINUED

While F -split and F -injective rings are not necessarily normal, they are something called weakly normal.

Definition 1.1. Suppose R is a reduced Noetherian ring R with finite normalization R^N . An extension of rings $R \subseteq R' \subseteq R^N$ is called *subintegral* if $\text{Spec } R' \rightarrow \text{Spec } R$ is a homeomorphism and if $Q' \in \text{Spec } R'$ then $k(Q' \cap R) \rightarrow k(Q')$ is an isomorphism. R is called *seminormal* if the only subintegral extension of R is $R' = R$.

An extension of rings $R \subseteq R' \subseteq R^N$ is called *weakly subintegral* if $\text{Spec } R' \rightarrow \text{Spec } R$ is a homeomorphism and if $Q' \in \text{Spec } R'$ then $k(Q' \cap R) \rightarrow k(Q')$ is inseparable. R is called *weakly normal* if the only weakly subintegral extension of R is $R' = R$.

We state some facts about weak and semi-normalization without proof.

Lemma 1.2. Suppose that R is an excellent Noetherian domain.

- The seminormalization of R exists. In other words there is a unique subintegral extension $R \subseteq R^{SN} \subseteq R^N$ with R^{SN} seminormal
- The formation of the seminormalization commutes with localization. In particular if R is seminormal so are its localizations.
- The weak normalization of R exists. In other words there is a unique weakly subintegral extension $R \subseteq R^{WN} \subseteq R^N$ with R^{WN} weakly normal.
- The formation of the weak normalization commutes with localization. In particular if R is weakly normal so are its localizations.

Our goal for now is to show that F -injective rings (and hence F -split rings) are weakly normal. First we give another characterization of weakly normal rings.

Proposition 1.3. Suppose that R is a reduced Noetherian ring of characteristic $p > 0$ with $R \subseteq R^N$ finite. Then the following are equivalent.

- (a) $x \in K(R)$ and $x^p \in R$ implies that $x \in R$.
- (b) R is weakly normal.

Proof. We first show that (a) \Rightarrow (b). Suppose that R is not weakly normal, this means that there exists $R \subsetneq R'$ weakly subintegral. By localizing, we may assume that (R, \mathfrak{m}, k) is weakly normal except at \mathfrak{m} and so (R', \mathfrak{m}', k') is local as well. Choose some $x \in R'$ which we will try to show is in R . Let \mathfrak{c} be the conductor of R'/R and note it is \mathfrak{m} -primary by assumption (and also \mathfrak{m}' -primary in R'). It is easy to see that R is the gluing of $(R' \rightarrow R'/\mathfrak{c} \leftarrow R/\mathfrak{c})$. Now, there are two possibilities.

- (1) $x \in \mathfrak{m}'$. In this case $x^{p^e} \in \mathfrak{c}$ for some e . But $\mathfrak{c} \subseteq R$ and this case is taken care of.

(2) x is a unit in R' and so consider $\bar{x} \in R'/\mathfrak{m}' = k'$. Thus $\overline{x^{p^e}} \in k$ for some $e > 0$ since $k \subseteq k'$ is purely inseparable. Consider $y \in R$ with the same image in k . It follows that $z = x^{p^e} - y \in \mathfrak{m}'$ and so applying (1) to z , we see that $z \in R$. But then $x^{p^e} = z + y \in R$ as well. But now $x \in R$ again.

In either case, $x \in R$.

Now we prove that (b) \Rightarrow (a). Choose $x \in K(R)$ with $x^p \in R$. Consider the extension $R \subseteq R[x]$. It suffices to prove that this is weakly subintegral. Since we have $R \subseteq R[x] \subseteq R^{1/p}$ are all integral extensions, we see that $\text{Spec } R[x] \rightarrow \text{Spec } R$ is a bijection. On the other hand for each $Q' \in \text{Spec } R[x]$ with $Q = R \cap Q'$, we see that $k(Q) \subseteq k(Q') \subseteq k(Q)^{1/p}$ by the above factorization. Thus $k(Q) \subseteq k(Q')$ is purely inseparable and so $R \subseteq R[x]$ is weakly subintegral as claimed. \square

We need one more lemma before proving our result on weak normality of F -injective rings.

Lemma 1.4. *Suppose that (R, m) is a reduced local ring of characteristic p , $X = \text{Spec } R$ and that $X - m$ is weakly normal. Then X is weakly normal if and only if the action of Frobenius is injective on $H_m^1(R)$.*

Proof. We assume that the dimension of R is greater than 0 since the zero-dimensional case is trivial. Embed R in its weak normalization $R \subset R^{\text{WN}}$ (which is of course an isomorphism outside of m). We have the following diagram of R -modules.

$$\begin{array}{ccccccc} 0 & \longrightarrow & R & \hookrightarrow & \Gamma(X - m, \mathcal{O}_{X-m}) & \twoheadrightarrow & H_m^1(R) \longrightarrow 0 \\ & & \downarrow & & \downarrow \cong & & \downarrow \\ 0 & \longrightarrow & R^{\text{WN}} & \hookrightarrow & \Gamma(X^{\text{wn}} - m, \mathcal{O}_{X^{\text{wn}}-m}) & \twoheadrightarrow & H_m^1(R^{\text{WN}}) \longrightarrow 0 \end{array}$$

The left horizontal maps are injective because R and $*R$ are reduced. One can check that Frobenius is compatible with all of these maps. Now, R is weakly normal if and only if R is weakly normal in R^{WN} if and only if every $r \in R^{\text{WN}}$ with $r^p \in R$ also satisfies $r \in R$ by Proposition 1.3.

First assume that the action of Frobenius is injective on $H_m^1(R)$. So suppose that there is such an $r \in R^{\text{WN}}$ with $r^p \in R$. Then r has an image in $\Gamma(X - m, \mathcal{O}_{X-m})$ and therefore an image in $H_m^1(R)$. But r^p has a zero image in $H_m^1(R)$, which means r has zero image in $H_m^1(R)$ which guarantees that $r \in R$ as desired.

Conversely, suppose that R is weakly normal. Let $r \in \Gamma(X - m, \mathcal{O}_{X-m})$ be an element such that the action of Frobenius annihilates its image \bar{r} in $H_m^1(R)$. Since $r \in \Gamma(X - m, \mathcal{O}_{X-m})$ we identify r with a unique element of the total field of fractions of R . On the other hand, $r^p \in R$ so $r \in *R = R$. Thus we obtain that $r \in R$ and so \bar{r} is zero as desired. \square

Theorem 1.5. *Suppose that R is a reduced F -finite F -injective Noetherian ring. Then R is weakly normal.*

Proof. It is not difficult to verify that weak normality can be checked locally and so suppose that (R, \mathfrak{m}) is a local ring. Also recall that if Q is any prime of R then R_Q is also F -injective by the worksheet (here we use that R is F -finite). Now we need to show that R is weakly normal. If R is not weakly normal, choose a prime $P \in \text{Spec } R$ of minimal

height with respect to the condition that R_P is not weakly normal. Apply 1.4 to get a contradiction. \square

REFERENCES