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Recall from last time.

Definition 0.1. Suppose that (R,m) is a d-dimensional Noetherian local ring with dual-
izing complex ω

q
R ∈ Db

f.g(R). The dualizing complex ω
q
R is called normalized if hj(ω

q
R) = 0

for j < −d and h−d(ω
q
R) 6= 0.

The module h−d(ω
q
R) is called the canonical module and typically denoted by ωR.

Theorem 0.2 (Local duality). Suppose that (R,m, k) is a local Noetherian domain with
dualizing complex ω

q
R and C

q ∈ Db
f.g.(R) and injective hull of the residue field E. Then

Hom(R HomR(C
q
, ω

q
R), E) 'qis RΓm(C

q
).

In the case that R is complete, this can also be written as

R HomR(C
q
, ω

q
R) 'qis HomR(RΓm(C

q
), E).

Corollary 0.3. With notation as above, R is Gorenstein if and only if the normalized
dualizing complex ω

q
R 'qis R[dimR].

Definition 0.4. A local ring (R,m) with a dualizing complex is called quasi-Gorenstein
(or 1-Gorenstein) if the canonical module ωR ∼= R.

Corollary 0.5. An F -injective quasi-Gorenstein F -finite local ring is F -split.

Proof. Since R is F -injective, Hd
m(R) −→ Hd

m)(F∗R) is injective. But this map is Matlis
dual to what we called the trace F∗ωR −→ ωR, which now must be surjective (if it had
a cokernel, then the map on local cohomology would have a cokernel, which it doesn’t).
But since R is quasi-Gorenstein, ωR ' R and so we have a surjective map F∗R −→ R.
This implies that R is F -split. �

We’ll state some more facts about dualizing complexes (taken for example out of [Har66]
or [Sta16]). For time reasons, we’ll skip the proofs.

Lemma 0.6. Let (R,m, k) be a local Noetherian ring with normalized dualizing complex
ω

q
R and canonical module ωR = h− dimRω

q
R . Then

(a) The support of ωR is equal to the union of irreducible components of SpecR of
maximal dimension.

(b) ωR is S2.

Proof. See [Sta16, Tag 0AWE], there are some subtle points here: for example rings with
dualizing complexes are catenary. �

Corollary 0.7. Suppose that (R,m) is a local Noetherian domain. Then for any 0 ≤ i <
dimR, AnnRH

i
m(R) 6= 0. In particular, for each i < H i

m(R), there exists some 0 6= c ∈ R
such that c ·H i

m(R) = 0.
1



2 KARL SCHWEDE

Proof. If ω
q
R is a normalized dualizing complex for R, it is sufficient (in fact equivalent)

to find 0 6= c such that c · h−i(ω q
R) = 0 by local duality (and the fact that HomR( , E)

is faithful on the modules in question). Now, h−i(ω
q
R) is finitely generated so it suffices

to show that it is not supported everywhere. Now, if we localize at the unique minimal
prime Q, we end up with a dualizing complex on a field, which lives in exactly one degree.
This degree must be − dimR by the previous lemma, and so all the other h−i(ω

q
R) are

not supported everywhere as claimed. �

Note that AnnRH
dimR(R) = 0 and so the above is about as good as one can do. Note

a version of the above also holds for non-domains (you can pick c not in any minimal
prime defining a maximal component of SpecR).

1. F -regularity, a quick way to prove that rings are Cohen-Macaulay

Historically, F -splittings were used to prove lots of rings were Cohen-Macaulay. In
modern times, we have learned some really slick ways to prove that integral domains are
Cohen-Macaulay.

Definition 1.1. An F -finite ring is called strongly F -regular if for every c ∈ R not

contained in any minimal prime, there exists an e > 0 such that the map R −→ F e
∗R

F e
∗ ·c−−→

F e
∗R splits as a map of R-modules.

Remark 1.2. Strongly F -regular rings are now known to be the characteristic p > 0 analog
of rings with KLT singularities in characteristic zero.

Theorem 1.3. A strongly F -regular Noetherian local domain is Cohen-Macaulay.

Proof. Fix some i < dimR, we shall show that H i
m(R) = 0. By Corollary 0.7, we can

choose 0 6= c ∈ R such that c ·H i
m(R) = 0. Now choose an e > 0 so that R −→ F e

∗R
F e
∗ ·c−−→

F e
∗R splits as a map of R-modules. Applying H i

m( ) we see that

H i
m(R) −→ H i

m(F e
∗R)

F e
∗ ·c−−→ H i

m(F e
∗R)

is also injective. But H i
m(F e

∗R) = F e
∗H

i
m[pe](R) = F e

∗H
i
m(R) and so F e

∗ c kills it. Thus we
have an injective map that is also the zero map, and so the source is zero as claimed. �

Remark 1.4. The domain hypothesis is not necessary above, indeed strongly F -regular
local rings are normal as we will see shortly, which then implies that they are domains.

This is not so impressive unless you can show that various rings are strongly F -regular.
Here are some common ways to prove that rings are strongly F -regular.

Proposition 1.5. If (R,m) is a Noetherian local F -finite regular domain, then R is
strongly F -regular.

Proof. Fix 0 6= c ∈ R. Choose e � 0 so that c /∈ m[pe] and so F e
∗ c /∈ m · F e

∗R = F e
∗m

[pe].
Since a basis for (F e

∗R)/m becomes a minimal generating set and hence a basis for the
free module F e

∗R (here we use that R is regular), we see that F e
∗ c is part of a basis for

F e
∗R over R. Thus we can project from F e

∗ c to R which produces the map we wanted. �

Proposition 1.6. Suppose that R ⊆ S is an inclusion of Noetherian domains such that
S ∼= R⊕M as R-modules. Then if S is strongly F -regular, so is R.
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Proof. Choose 0 6= c ∈ R. Since S is strongly F -regular, there exists a φ : F e
∗S −→ S such

that φ(F e
∗ c) = 1. Let ρ : S −→ R be such that ρ(1S) = 1R (this exists since S ∼= R⊕M).

Then the composition F e
∗R ⊂ F e

∗S
φ−→ S

ρ−→ R sends F e
∗ c to 1 which proves that R is

strongly F -regular. �

Remark 1.7. The above is an open problem in characteristic zero for KLT singularities.
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