

NOTES ON CHARACTERISTIC p COMMUTATIVE ALGEBRA
FEBRUARY 3RD, 2017

KARL SCHWEDE

Recall from last time that we proved:

Lemma 0.1. [BS15, Lemma 3.16, Lemma 5.10] *If $R \xleftarrow{g} S \xrightarrow{h} R'$ are surjections of Noetherian rings of characteristic $p > 0$ with induced surjection $R^\infty \xleftarrow{g^\infty} S^\infty \xrightarrow{h^\infty} R'^\infty$ of perfect rings. Then $\mathrm{Tor}_{S^\infty}^i(R^\infty, R'^\infty) = 0$ for all $i \neq 0$ or in other words*

$$R^\infty \otimes_{S^\infty}^{\mathbf{L}} R'^\infty \simeq_{\mathrm{qis}} R^\infty \otimes_{S^\infty} R'^\infty.$$

In particular, specializing to the case $R' = R$, the multiplication map $R^\infty \otimes_{S^\infty}^{\mathbf{L}} R^\infty \rightarrow R^\infty$ is a quasi-isomorphism.

Remark 0.2. In [BS15], they obtained a more general statement. They started with perfect rings (that were not necessarily the perfections of Noetherian rings).

Proposition 0.3. [BS15, Proposition 5.31] *Let R^∞ be the perfection of a complete local ring R . Then R^∞ has finite global dimension.*

Proof. Write $R = S/I$ for $S = k[[x_1, \dots, x_n]]$ and note we still have a surjection $S^\infty \rightarrow R^\infty$.

Let M be an arbitrary R^∞ -module. Then

$$M = M \otimes_{R^\infty}^{\mathbf{L}} R^\infty = M \otimes_{R^\infty}^{\mathbf{L}} (R^\infty \otimes_{S^\infty}^{\mathbf{L}} R^\infty) = M \otimes_{S^\infty}^{\mathbf{L}} R^\infty$$

by Lemma 0.1. We are trying to show that $\mathbf{R}\mathrm{Hom}_R(M, N)$ has (uniformly) bounded cohomology but

$$\begin{aligned} & \mathbf{R}\mathrm{Hom}_{R^\infty}(M, N) \\ &= \mathbf{R}\mathrm{Hom}_{R^\infty}(M \otimes_{S^\infty}^{\mathbf{L}} R^\infty, N) \\ &= \mathbf{R}\mathrm{Hom}_{S^\infty}(M, \mathbf{R}\mathrm{Hom}_{R^\infty}(R^\infty, N)) \\ &= \mathbf{R}\mathrm{Hom}_{S^\infty}(M, N). \end{aligned}$$

and so it suffices to prove the result of S^∞ . Let $d = \dim S$ and note that $S^\infty = \lim_{\rightarrow} S^{1/p^e}$. Now, we can view M as an S^{1/p^e} -module by restriction, and write $F_e = M \otimes_{S^{1/p^e}} S^\infty$ for its base change back to S^∞ . Obviously we have maps

$$\dots \rightarrow M \otimes_{S^{1/p^e}} S^\infty \rightarrow M \otimes_{S^{1/p^{e+1}}} S^\infty \rightarrow \dots \rightarrow M$$

The direct limit $\lim_{\rightarrow} F_e$ is in fact equal to M since any element of S^∞ is in some S^{1/p^e} for $e \gg 0$. On the other hand, M has projective dimension $\leq d$ as an S^{1/p^e} -module and so F_e has projective dimension $\leq d$ as an S^∞ -module.

Now consider

$$\bigoplus F_e \rightarrow \bigoplus F_e$$

where $(\dots, 0, a_e, 0, 0 \dots) \mapsto (\dots, 0, a_e, -a_e, 0, \dots)$ and the remainder of the map is defined by linearity. The cokernel of this map is exactly $\lim_{\rightarrow} F_e = M$ and the map is clearly injective. Hence the projective dimension of M is $\leq d+1$ which completes the result. \square

Corollary 0.4. *Suppose that R is a complete Noetherian local domain of characteristic $p > 0$ and that R^∞ is a flat R -module, then R is regular.*

Proof. By Proposition 0.3, every R^∞ -module has finite global-dimension. On the other hand, $R \rightarrow R^\infty$ is also *faithfully* flat by hypothesis.

We now prove that R has finite global dimension. Let n denote the global-dimension of R^∞ . Suppose that M, N are R -modules with M finite such that $\text{Ext}_R^i(M, N) \neq 0$ for some $i > n$ (recall you can verify global dimension just for finitely generated modules). Then $\text{Ext}_R^i(M, N) \otimes_R R^\infty \neq 0$ by the faithfulness of R^∞/R . But $\text{Ext}_R^i(M, N) \otimes_R R^\infty = \text{Ext}_{R^\infty}^i(M \otimes_R R^\infty, N \otimes_R R^\infty)$ by the flatness of R^∞/R and the fact that M is finitely presented. The fact that this is nonzero contradicts n being the global-dimension of R^∞ and proves the claim.

Now that R has finite global dimension, we conclude that R is regular as claimed. \square

1. FROBENIUS SPLITTINGS

We saw that Frobenius is flat if and only if the ring is regular. It is then natural to ask, how can we weaken the condition that F_*R is flat. We are primarily interested in the case that F_*R is a finite and hence locally free R -module, thus consider the following.

Proposition 1.1. *Suppose $R^{1/p} \cong R \oplus M$ as R -module, then there exists a Frobenius splitting of $R \rightarrow F_*R$. In particular regular local rings are Frobenius split.*

Proof. There exists a surjective R -linear map $\phi : F_*R \rightarrow R$ (project onto the factor). Say $\phi(F_*a) = 1$. Consider the new R -linear map

$$\psi(F_*\underline{}) = \phi(F_*(a \cdot \underline{})),$$

it splits Frobenius since it sends F_*1 to 1. \square

REFERENCES

[BS15] B. BHATT AND P. SCHOLZE: *Projectivity of the Witt vector affine Grassmannian*, arXiv:1507.06490.