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0.1. Serre’s conditions and Hartog’s Phenomenon continued.

Definition 0.1. A finitely generated module M over a Noetherian ring R is said to satisfy
S, if for every prime q € Spec R, depth M, > min{n, dim Rq}H

In particular, an S,-module is Cohen-Macaulay in codimension n and has depth > n
elsewhere.

A crucially important condition is Sy, because it implies a Hartog’s-like phenomenon.
Before we do that, let’s make a simple observation.

Lemma 0.2. If (R,m) is a local ring, M is a module of depth > 2, and U = Spec \m,

then

M=T(U,M).
Proof. We have an exact sequence H2(M) — M — T'(U,M) — HL(M) and the two
local cohomologies are zero by the depth condition. 0

The point is that if a module is has depth > 2, then it is completely determined by its
behavior outside the origin. A more general statement holds when the module is S,.

Theorem 0.3. Suppose (R, m) is a Noetherian local ring of dimension > 2 and that M is
an Se-module. If I C R is an ideal such that dim V (I) < dim R—2 and U = Spec R\V (1),
then M =T(U, M).

Proof. We need to show that M — T'(U, M) is bijective and so let K be the kernel of
C be the cokernel. Let ) be a minimal prime in the support of K & C. In particular,
Mg — I'(U, M)q = I'(U N Spec Ry, M) is not bijective and (K & C')q is supported only
at the maximal ideal. Since I'(U, M )g = M (essentially by definition) if () has height 1,
we may assume that @) has height at least 2. Thus depth Mg > 2 and so by [Lemma 0.2 m
Mg — I'(U N Spec Rq, M) is bijective, a contradiction.

Remark 0.4. Sy;-modules are often viewed as the modules that are determined by their
behavior in codimension 1.

1. LOCAL DUALITY AND GORENSTEIN RINGS
In this section we state local duality. First we need a brief review of injective hulls.

Definition 1.1. Suppose that R is a ring and M is an R-module. An overmodule £ O M
is said to be an essential extension of M if for every submodule D C E, if DN M =0
then D = 0.

An injective hull E(M) of M is an essential extension of M that is also injective as an
R-module.

n some published work, dim R, is replaced by dim M in this definition.
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Fact 1.2. o Injective hulls exist for any module M.
o Injective hulls are unique up to non-unique isomorphism (fixing M).
o The formation of injective hulls commutes with localization, W1 Egr(M) = Ey-1g(W1M).

Notation 1.3. For the rest of the semester, if (R, m, k) is a local ring, then £ = Ep/y =
E} will denote the injective hull of £ = R/m.

Example 1.4. In the case that (R, m, k) is a regular local Noetherian ring (or more
generally a Gorensteinf] local Noetherian ring), Fj = HY™#(R). This will follow from
local duality below, but that’s not the right way to prove it.

Let’s quickly state Matlis duality which roughly says that Homing into the injective
hull of the residue field of a local ring does not kill (much) information.

Theorem 1.5 (Matlis Duality). Suppose that (R,m) is a Noetherian local ring. Then:

(1) The functor T(__) = Hompg(__, E) is faithful on the category of finitely generated
R-modules and also on the category of Artinian R-modules.
2) For Artinian modules N, T(T(N)) = N.

(2)

(3) For Noetherian modules M, T(T'(M)) = M =M &g R.

(4) T(_) takes modules of finite length to modules of the same finite length.

If in a
5) T(_) induces an antiequivalencd) of categories

ddition R is complete then

Noetherian o Artinian
R-modules R-modules (-
We now define dualizing complexes.

Definition 1.6. Suppose that R is a Noetherian ring. An object w* € D4 _(R) is called
a dualizing complex for R if the following two conditions are satisfied.

(a) w* has finite injective dimension (is quasi-isomorphic to a bounded complex of
injectives) and,

(b) The functor D(_) = RHomg(_,w") has the property that the canonical map
C* — D(D(C")) is an isomorphism for all C* € Dy, (R).

(b’) Or equivalently to (b), R =2 RHompg(w",w").

Exercise 1.1. Prove that (b’) implies (b) above.

Fact 1.7. Dualizing complexes are unique up to two operations.
o Shift (if w* is a dualizing complex, so is w* [n]).
o Tensoring with rank-1 projective modules (if P is a projective module of rank—lﬂ
then if w* is a dualizing complex, so is w* [n]).

Lemma 1.8. If w* is a dualizing complex for a Noetherian ring R and W is a multi-
plicatively closed set, then W—'w* is a dualizing complex for WR.

Proof. Inverting multiplicatively closed sets preserves injectives in Noetherian rings and
so condition (a) is fine in the definition of the dualizing complex. The same operation
also preserves the isomorphism of (b’). U

2to be defined soon
3i.e. , a contravariant equivalence
“Meaning that Pg = Rq for all Q € Spec R.



NOTES ON CHARACTERISTIC p COMMUTATIVE ALGEBRA FEBRUARY 24TH, 2017 3

Definition 1.9. A ring R is called Gorenstein if R has finite injective dimension as an
R-module. Note for a Gorenstein ring, R is its own dualizing complex.

Lemma 1.10. A Noetherian ring R is Gorenstein if and only if R has a dualizing complex
wy, = M(n| such that M is projective of rank 1.

Example 1.11. Suppose that R is a regular local ring, then R is Gorenstein. To see this
let d = dim R and observe that

Ext™ (M,R) =0

for all R-modules M (because R has finite global dimension d). But since this holds for
all R-modules M, it implies that R itself has finite injective dimension.
More generally, if R is a regular ring it is also Gorenstein.

Remark 1.12. Not every ring has a dualizing complex, but nearly all the rings we care
about do. In particular, any ring that is a quotient of a regular ring (or more generally a
Gorenstein ring) has a dualizing complex. In particular, if R = S/I where S is regular,
then

wp = RHomg (R, 5)

is a dualizing complex. We'll prove this next time.
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