

NOTES ON CHARACTERISTIC p COMMUTATIVE ALGEBRA
FEBRUARY 22ND, 2017

KARL SCHWEDE

0.1. **F -splitting's implications for local cohomology continued.** Last time we proved the following.

Corollary 0.1. *Suppose that Frobenius acts injective only $H_I^i(R)$ for some $I \subseteq R$ and $i > 0$. Further suppose that $J \cdot H_I^i(R) = 0$, then also $\sqrt{J} \cdot H_I^i(R) = 0$. In particular, in an F -injective local ring (R, \mathfrak{m}, k) , if $H_{\mathfrak{m}}^i(R)$ has finite length then $H_{\mathfrak{m}}^i(R)$ is a k -vector space.*

There are ways to weaken the Cohen-Macaulay condition which appear in the commutative algebra literature. We give only the definitions that are convenient for our purposes.

Definition 0.2. A Noetherian d -dimensional local ring (R, \mathfrak{m}, k) is called *quasi-Buchsbaum* if each $H_{\mathfrak{m}}^i(R)$ is a finite dimension k -vector space for each $i < \dim R$. It is called *quasi-Buchsbaum* if when we consider an exact triangle

$$K^{\bullet} \rightarrow \mathbf{R}\Gamma_{\mathfrak{m}}(R) \rightarrow H_{\mathfrak{m}}^d(R)[-d] \xrightarrow{+1}$$

then $K^{\bullet} \in D^b(k)$.¹ In particular, since every short exact sequence of K vector spaces is split, K^{\bullet} is quasi-isomorphic to the direct sum of its cohomologies (appropriately shifted).

It was known that for F -pure rings, being quasi-Buchsbaum implies the Buchsbaum condition [GO83], but it had been an open question popularized by S. Takagi whether this implication also holds for F -injective rings. This was shown recently to be the case by L. Ma [Ma15]. We give a proof of this now due to B. Bhatt, L. Ma and the author which can be found in [BMS16]. We first need a lemma.

Proposition 0.3. *Let $A \rightarrow B$ be a surjection of Noetherian rings with induced surjection $A^{\infty} \rightarrow B^{\infty}$. Let $K^{\bullet} \in D^b(A^{\infty})$ be a complex such that each $h^i(K^{\bullet})$ is a B^{∞} -module. Then $K^{\bullet} \simeq K^{\bullet} \otimes_{A^{\infty}}^{\mathbf{L}} B^{\infty}$ via the canonical map, and thus K^{\bullet} comes from $D^b(B^{\infty})$ via the forgetful functor $D^b(B^{\infty}) \rightarrow D^b(A^{\infty})$.*

Proof. We must check that the canonical map $K^{\bullet} \rightarrow K^{\bullet} \otimes_{A^{\infty}}^{\mathbf{L}} B$ is an isomorphism for K^{\bullet} as above. We first prove the result for $K = M[0]$ being a B -module M placed in degree 0. But then $K^{\bullet} \otimes_{A^{\infty}}^{\mathbf{L}} B^{\infty} \simeq M[0] \otimes_{B^{\infty}}^{\mathbf{L}} (B^{\infty} \otimes_{A^{\infty}}^{\mathbf{L}} B^{\infty})$, so the claim follows from ??.

For the general case, we induct on the maximum length $l = j - i$ such that $h^j(K^{\bullet}) \neq 0$ and $h^i(K^{\bullet}) \neq 0$. We have already handled the base case since a complex that has cohomologies only in degree zero is quasi-isomorphic to a module viewed as a complex in that degree. Next suppose that the result is true in the case of $\leq l$ and consider a complex K^{\bullet} where $h^j(K^{\bullet}) \neq 0$ and $h^i(K^{\bullet}) \neq 0$ where $l + 1 = j - i$.

¹Note $H_{\mathfrak{m}}^d(R)$ is the top cohomology of $\mathbf{R}\Gamma_{\mathfrak{m}}(R)$ and so there always exists such a map.

Consider the exact triangle

$$h^i(K^\bullet)[-i] \rightarrow K^\bullet \rightarrow C^\bullet \xrightarrow{+1}$$

C^\bullet is just the truncation of K^\bullet at the i th spot and so the inductive hypothesis implies that $C^\bullet \simeq_{\text{qis}} C^\bullet \otimes_{A^\infty}^L B^\infty$. Thus we have

$$\begin{array}{ccccccc} h^i(K^\bullet)[-i] & \longrightarrow & K^\bullet & \longrightarrow & C^\bullet & \xrightarrow{+1} & \\ \sim \downarrow & & \downarrow & & \sim \downarrow & & \\ h^i(K^\bullet)[-i] \otimes_{A^\infty}^L B^\infty & \longrightarrow & K^\bullet \otimes_{A^\infty}^L B^\infty & \longrightarrow & C^\bullet \otimes_{A^\infty}^L B^\infty & \xrightarrow{+1} & \end{array}$$

The the vertical maps on the ends are quasi-isomorphisms and thus so is the map in the middle which proves the proposition. \square

Theorem 0.4. *Let (R, \mathfrak{m}, k) be a local d -dimensional F -injective ring of characteristic $p > 0$ such that $H_{\mathfrak{m}}^i(R)$ has finite length for $i < d$. Fix $K^\bullet \in D(R)$ as the $< d$ -truncation of $\mathbf{R}\Gamma_{\mathfrak{m}}(R)$. Then $K^\bullet \in D^b(k)$ and hence R is Buchsbaum.*

Proof. We prove this only in the case when k is perfect (for simplicity) where we see that $R^\infty/\mathfrak{m}^\infty = k$. For the general case (with a proof along the same lines), see [BMS16].

Note K^\bullet still has a Frobenius map $F : K^\bullet \rightarrow K^\bullet$ which is injective on its cohomologies (which are the $H_{\mathfrak{m}}^i(R)$). But since the cohomologies have finite length, and so are finite dimensional k -vector spaces by Corollary 0.1, the Frobenius map is bijective on the cohomologies of K^\bullet .

Define K_∞^\bullet to be the $< d$ -truncation of $\mathbf{R}\Gamma_{\mathfrak{m}}(R^\infty)$ and note that

$$h^i(K_\infty^\bullet) = \varinjlim_e F_*^e h^i(K^\bullet) = h^i(K^\bullet)$$

where the second to last equality follows from the fact that Frobenius acts bijectively on the cohomology of $h^i(K^\bullet)$. It follows that the canonical map $K^\bullet \rightarrow K_\infty^\bullet$ is a quasi-isomorphism. But now $K^\bullet \simeq_{\text{qis}} K_\infty^\bullet \simeq_{\text{qis}} K_\infty^\bullet \otimes_{R^\infty} k$, which shows that K^\bullet is quasi-isomorphic to a complex of k -vector spaces, as claimed. \square

0.2. Serre's conditions and Hartog's Phenomenon. Suppose that S has dimension n and depth m . If \mathfrak{q} is an ideal of height say $n - 1$, it is possible that $\text{depth}_{S_{\mathfrak{q}}} S_{\mathfrak{q}} = m$ and it is also possible that $\text{depth}_{S_{\mathfrak{q}}} S_{\mathfrak{q}}$ has depth $m - 1$. For example, consider R from ?? and set $S = R[w]$. It is not difficult to see that S has depth 2 at the origin (since if you mod out by w you get back R , which has depth 1). However, if one localizes at the prime ideal $\langle x, y, u, v \rangle$, you obtain a ring of depth 1 (you essentially get R with enlarged base field k to $k(w)$). On the other hand, localizing at $\langle x, y, u, w \rangle$ inverts v and so kills x and y and thus produces $k(v)[u, w]_{u, w}$, a ring of depth 2.

Because of this unpredictable behavior of depth under localization, we have the following definition.

Definition 0.5. A finitely generated module M over a Noetherian ring R is said to satisfy \mathbf{S}_n if for every prime $\mathfrak{q} \in \text{Spec } R$, $\text{depth } M_{\mathfrak{q}} \geq \min\{n, \dim R_{\mathfrak{q}}\}$.²

In particular, an \mathbf{S}_n -module is Cohen-Macaulay in codimension n and has depth $\geq n$ elsewhere.

²In some published work, $\dim R_{\mathfrak{q}}$ is replaced by $\dim M_{\mathfrak{q}}$ in this definition.

REFERENCES

- [BMS16] B. BHATT, L. MA, AND K. SCHWEDE: *The dualizing complex of F -injective and Du Bois singularities*, arXiv:1512.05374.
- [GO83] S. GOTO AND T. OGAWA: *A note on rings with finite local cohomology*, Tokyo J. Math. **6** (1983), no. 2, 403–411. 732093
- [Ma15] L. MA: *F -injectivity and Buchsbaum singularities*, Math. Ann. **362** (2015), no. 1-2, 25–42. 3343868