

NOTES ON CHARACTERISTIC p COMMUTATIVE ALGEBRA
FEBRUARY 8TH, 2017

KARL SCHWEDE

0.1. **Fedder's Lemma on p^{-e} -linear maps.** Recall last time we showed that:

Lemma 0.1. *With notation as above,*

- (i) *Suppose that $\phi(F_*^e J) \subseteq I$ for all $\phi \in \text{Hom}_S(F_*^e S, S)$, then $J \subseteq I^{[p^e]}$.*
- (ii)

$$\left(F_*^e (I^{[p^e]} : J) \right) \cdot \text{Hom}_S(F_*^e S, S) = \{ \psi \in \text{Hom}_S(F_*^e S, S) \mid \psi(F_*^e J) \subseteq I \}.$$

Theorem 0.2 (Fedder's Lemma). *With notation as above*

$$\rho : \left(F_*^e (I^{[p^e]} : I) \right) \cdot \text{Hom}_S(F_*^e S, S) \rightarrow \text{Hom}_R(F_*^e R, R)$$

is surjective and $\ker \rho$ is isomorphic to $\left(F_^e I^{[p^e]} \right) \cdot \text{Hom}_S(F_*^e S, S)$. In particular*

$$\text{Hom}_R(F_*^e R, R) \cong \frac{\left(F_*^e (I^{[p^e]} : I) \right) \cdot \text{Hom}_S(F_*^e S, S)}{\left(F_*^e I^{[p^e]} \right) \cdot \text{Hom}_S(F_*^e S, S)}.$$

Proof. First we prove that ρ is surjective. Choose $\alpha \in \text{Hom}_R(F_*^e R, R)$. Consider the following diagram of S -modules

$$\begin{array}{ccc} F_*^e S & \xrightarrow{\bar{\alpha}} & S \\ \downarrow & & \downarrow \\ F_*^e R & \xrightarrow{\alpha} & R. \end{array}$$

The dotted arrow $\bar{\alpha}$ exists since $F_*^e S$ is a projective S -module (although it is not unique). The commutativity of the diagram implies that $\bar{\alpha}(F_*^e I) \subseteq I$ (as $F_*^e I$ and I are kernels of the vertical projection maps) and therefore we see that $\bar{\alpha} \in \left(F_*^e (I^{[p^e]} : I) \right) \cdot \text{Hom}_S(F_*^e S, S)$ by **??**. This proves the surjectivity of ρ .

Next we identify the kernel of ρ . Suppose that $\psi \in \text{Hom}_S(F_*^e S, S)$ satisfies $\psi(F_*^e I) \subseteq I$ and also that $\rho(\psi) = 0$. This second condition means that $\psi(F_*^e S) \subseteq I$. Applying **??** in the case that $J = S$ we see that $\psi \in \left(F_*^e I^{[p^e]} \right) \cdot \text{Hom}_S(F_*^e S, S)$. The reverse inclusion also follows immediately from Lemma 0.1. The final isomorphism then of course follows from the first isomorphism theorem. \square

The real beauty of Fedder's Lemma is that it allows us to compute numerous things with ease!

0.2. Computations with Fedder's Lemma. Fedder's lemma gives us a very explicit way to compute the locus where a ring is not F -split.

Theorem 0.3. *Suppose that S is an F -finite regular ring and $R = S/I$. Let $J_e \subseteq S$ denote the image of the evaluation-at-1 map*

$$\text{Image} \left(\left(F_*^e (I^{[p^e]} : I) \right) \cdot \text{Hom}_S(F_*^e S, S) \rightarrow S \right)$$

for some integer $e > 0$. Then the set theoretic locus $V(J_e) \subseteq V(I) \subseteq \text{Spec } S$ is the set of points of $V(I) \cong \text{Spec } R$ where $\text{Spec } R$ is not F -split.

Before proving this result, we notice that the result implies that $V(J_e)$ is independent of e . However, scheme theoretically, $V(J_e)$ is generally not independent of e .

Proof. Using Theorem 0.2, we see that the evaluation-at-1 map in the statement of the theorem is surjective at all points $\mathfrak{q} \in V(I) \subseteq \text{Spec } S$ where $\text{Hom}_R(F_*^e R, R) \rightarrow R$ is also surjective. Of course, outside of $V(I)$, $(I^{[p^e]} : I)$ agrees with S and the surjectivity is obvious. The result follows since $R_{\mathfrak{q}} \rightarrow F_*^e R_{\mathfrak{q}}$ splits if and only if $R_{\mathfrak{q}} \rightarrow F_* R_{\mathfrak{q}}$ splits \square .

Via the identification $\text{Hom}_S(F_*^e S, S) \cong F_*^e S$ (sending Φ to 1, where Φ is the projection onto the $F_*^e \mathbf{x}^{p^e-1}$ -basis element), we get a map $F_*^e S \rightarrow S$. It is not hard to see that this map is itself Φ . In particular:

Corollary 0.4. *The locus where $\text{Spec } R$ is not split is closed and it is equal to $V(\Phi^e(F_*^e (I^{[p^e]} : I)))$.*

Remark 0.5. The ideal $\Phi^e(F_*^e (I^{[p^e]} : I))$ depends on the choice of e , although the locus it defines does not!

Exercise 0.1. Show that $\Phi^e(F_*^e (I^{[p^e]} : I)) \supseteq \Phi^{e+1}(F_*^{e+1} (I^{[p^{e+1}]} : I))$.

Hint: Show that $\Phi^e(F_*^e (I^{[p^e]} : I)) \cdot R$ is the same as the image of the evaluation-at-1 map $\text{Hom}_R(F_*^e R) \rightarrow R$.

Question 0.6 (Open question). It is an open question whether the descending ideals from the previous exercise stabilize (are all equal for $e \gg 0$). This is known if R is a hypersurface or more generally Gorenstein or even more generally \mathbb{Q} -Gorenstein. The Gorenstein case is essentially a key step in a famous result of Hartshorne and Speiser [HS77].

Remark 0.7. Since Φ is additive, note that $\Phi(F_*^e \langle f_1, \dots, f_m \rangle) = \Phi(F_*^e \langle f_1 \rangle) + \Phi(F_*^e \langle f_2 \rangle) + \dots + \Phi(F_*^e \langle f_m \rangle)$. Hence from a computational perspective, it is sufficient to compute $\Phi(F_*^e \langle f \rangle)$.

Suppose now that k is perfect for simplicity, if one writes $F_*^e f$ in terms of the basis $F_*^e \mathbf{x}^\lambda$ as

$$F_*^e f = F_*^e \sum f_\lambda^{p^e} \mathbf{x}^\lambda = \sum f_\lambda F_*^e \mathbf{x}^\lambda$$

then we claim that $\Phi(F_*^e \langle f \rangle) = \langle \dots, f_\lambda, \dots \rangle$. The point is that $\Phi(F_*^e f)$ simply projects from the term $f_{(\mathbf{p}^e-1)} F_*^e \mathbf{x}^{(\mathbf{p}^e-1)}$, on the other hand $\mathbf{x}^\lambda f \in \langle f \rangle$ and $\Phi(F_*^e \mathbf{x}^{(\mathbf{p}^e-1)-\lambda} f)$ projects from $f_\lambda F_*^e \mathbf{x}^\lambda$. Doing the various projections proves that

$$\Phi(F_*^e \langle f \rangle) = \langle \dots, f_\lambda, \dots \rangle$$

as claimed.

As another corollary of Fedder's Lemma, we state a frequently easy to check criterion for whether or not a ring is F -split at some point. Recall by ??, to show that R is F -split, it is sufficient to show that there exists a single surjective $\phi : F_*^e R \rightarrow R$.

Theorem 0.8 (Fedder's F -purity criterion). *Suppose that S is an F -finite regular ring and $R = S/I$. Then R is F -split in a neighborhood of a prime ideal $\mathfrak{q} \in V(I) \subseteq \text{Spec } S$ if and only if*

$$(I^{[p^e]} : I) \not\subseteq \mathfrak{q}^{[p^e]}.$$

Proof. Suppose that R is F -split in a neighborhood of a prime ideal $\mathfrak{q} \in V(I)$. It follows that the evaluation-at-1 map $\text{Hom}_R(F_*^e R, R) \rightarrow R$ surjects in a neighborhood of \mathfrak{q} . Let $\phi_R \in \text{Hom}_R(F_*^e R, R)$ be such that $\phi(F_*^e a) \notin \mathfrak{q}/I$ for some $\bar{a} \in R$. It follows from Theorem 0.2 that there exists $\phi_S \in \left(F_*^e (I^{[p^e]} : I) \right) \cdot \text{Hom}_S(F_*^e S, S)$ such that

$$\phi_S(F_*^e a) \notin \mathfrak{q}$$

where $a \in S$ maps to $\bar{a} \in R$. On the other hand, suppose for a contradiction now that $(I^{[p^e]} : I) \subseteq \mathfrak{q}^{[p^e]}$ and so $\phi_S \in \left(F_*^e \mathfrak{q}^{[p^e]} \right) \cdot \text{Hom}_S(F_*^e S, S)$. But since $\mathfrak{q}^{[p^e]} = \mathfrak{q}^{[p^e]} : S$, we have that $\phi_S(F_*^e S) \subseteq \mathfrak{q}$ by Lemma 0.1. But this contradicts our choice of \bar{a} .

Conversely we suppose that $b \in (I^{[p^e]} : I) \setminus \mathfrak{q}^{[p^e]}$. Let $\Phi \in \text{Hom}_S(F_*^e S, S)$ be the generating homomorphism as in ?? and let $\phi_S(F_*^e \underline{}) = \Phi^e(F_*^e(b \cdot \underline{}))$. Since $b \notin \mathfrak{q}^{[p^e]}$, we know that $\phi_S(F_*^e S) \notin \mathfrak{q}$ by Lemma 0.1. Hence there exists $a \in \phi_S(F_*^e S)$, $a \notin \mathfrak{q}$. Thus, $\bar{a} \in R_{\mathfrak{q}}$ is a unit. On the other hand, by our choice of ϕ_S , it induces $\phi_R : F_*^e R \rightarrow R$ and so by localization, $\phi_{R_{\mathfrak{q}}} : F_*^e R_{\mathfrak{q}} \rightarrow R_{\mathfrak{q}}$ and \bar{a} is in the image. Thus $\phi_{R_{\mathfrak{q}}}$ surjects and so $R_{\mathfrak{q}}$ is F -split as desired. \square

Exercise 0.2. Suppose that R is a regular Noetherian ring of characteristic $p > 0$ and that \mathfrak{q} is a prime ideal. Prove that $\mathfrak{q}^{[p^e]}$ is \mathfrak{q} -primary.

Hint: Show that if $f \notin \mathfrak{q}$, then $0 \rightarrow R/\mathfrak{q}^{[p^e]} \xrightarrow{f} R/\mathfrak{q}^{[p^e]}$ injects.

Corollary 0.9. *Suppose that $R = S/\langle f \rangle_S$. Then R is F -split at the origin if and only if $f^{p-1} \notin \mathfrak{m}^{[p]} = \langle x_1^p, \dots, x_n^p \rangle$.*

Example 0.10. Consider the following examples of F -split rings. We assume S is as before and consider $R = S/\langle f \rangle$ where f is as specified in each case below.

- (a) $f = z$. The ring R is regular so we already know it is F -split, but we can alternately observe that $z^{p-1} \notin \langle x^p, y^p, z^p \rangle$.
- (b) If $f = xyz$, then R is F -split (at the origin) since $x^{p-1}y^{p-1}z^{p-1} \notin \langle x^p, y^p, z^p \rangle$.
- (c) If $f = xy - z^2$ then R is F -split (at the origin) since

$$(xy - z^2)^{p-1} = x^{p-1}y^{p-1} + \text{other terms} \notin \langle x^p, y^p, z^p \rangle.$$

- (d) If $p = 2$, then $R = S/\langle f \rangle$ is F -split (at the origin) if and only if $f \notin \langle x^2, y^2, z^2 \rangle$ (note $p-1 = 2-1 = 1$). So for example $f = x^7 + y^4 + z^3 + xyz$ yields an F -split ring.
- (e) Consider $f = x^3 + y^3 + z^3$ and suppose $1 \equiv p \pmod{3}$. Note that the degree of every monomial of f^{p-1} is equal to $3(p-1)$. Thus the only way that $f^{p-1} \notin \langle x^p, y^p, z^p \rangle$ is if $x^{p-1}y^{p-1}z^{p-1}$ has non-zero coefficient in f^{p-1} . Since each monomial x^3, y^3 and z^3 to be raised to the same power we must have $3|(p-1)$ which implies that

$1 \equiv p \pmod{3}$ as we already assumed. Now we need the multinomial coefficient of $x^{p-1}y^{p-1}z^{p-1}$ to not be divisible by p . But this coefficient is

$$\binom{p-1}{\frac{p-1}{3}, \frac{p-1}{3}, \frac{p-1}{3}} \equiv \frac{(p-1)!}{\left(\frac{p-1}{3}\right)! \left(\frac{p-1}{3}\right)! \left(\frac{p-1}{3}\right)!}.$$

which clearly is not divisible by p .

Now we consider several non- F -split rings.

- (a') $f = z^2$. The ring R is not reduced, so it can't be F -split, but also $z^{2(p-1)} \in \langle x^p, y^p, z^p \rangle$.
- (b') $f = x^2y - z^2$ with $p = 2$. Note that $f \in \langle x^2, y^2, z^2 \rangle$. R actually is F -split if $p \neq 2$.
- (c') $f = x^4 + y^4 + z^4$. This is not F -split since every monomial in the expansion of $(x^4 + y^4 + z^4)^{p-1}$ has degree equal to $4 \cdot (p-1)$. In particular, each such monomial is divisible by x^p, y^p or z^p by the pigeon-hole-principle.
- (d') $f = x^3 + y^3 + z^3$ and $1 \not\equiv p \pmod{3}$. In this case, there is no $x^{p-1}y^{p-1}z^{p-1}$ term in the expansion of $(x^3 + y^3 + z^3)^{p-1}$ by the argument in (e) above. Thus since each monomial in said expansion has degree $3(p-1)$, we see that $f^{p-1} \in \langle x^p, y^p, z^p \rangle$ which implies that R is not F -split.

REFERENCES

- [HS77] R. HARTSHORNE AND R. SPEISER: *Local cohomological dimension in characteristic p* , Ann. of Math. (2) **105** (1977), no. 1, 45–79. MR0441962 (56 #353)