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KARL SCHWEDE

0.1. Fedder’s Lemma on p~°-linear maps. Recall last time we showed that:

Lemma 0.1. With notation as above,
(i) Suppose that ¢(FeJ) C I for all ¢ € Homg(F¢S,S), then J C TP,
(i)

(F: (17 ; J)) - Homg(F*S, 8) = {1 € Homg(FS, S) | $(F°.J) C I}.
Theorem 0.2 (Fedder’s Lemma). With notation as above
p: (Ff(l[pel : I)> -Homg(F(S,S) — Hompg(F{R, R)

18 surjective and ker p is isomorphic to (Ffﬂpe]) -Homg(FES,S). In particular

(Fe(1¥): 1)) - Homg(F2S, 5)
Hompg(F{R, R) = .

(Fgﬂne}) - Homg(F<S, S)

Proof. First we prove that p is surjective. Choose a@ € Hompg(F¢R, R). Consider the
following diagram of S-modules

PSS
F{R—— R.

The dotted arrow @ exists since FFS is a projective S-module (although it is not unique).
The commutativity of the diagram implies that @(FI) C I (as FfI and I are kernels of
the vertical projection maps) and therefore we see that @ € (Ff (I[pe] : I)) ‘Homg(FES, S)
by ??. This proves the surjectivity of p.

Next we identify the kernel of p. Suppose that ¢ € Homg(F¢S, S) satisfies ¢(FI) C I
and also that p(v) = 0. This second condition means that (F¢S) C I. Applying 77 in
the case that J = S we see that ¢ € (Ffl[pe}) -Homg(F£S,S). The reverse inclusion also

follows immediately from [Lemma 0.1} The final isomorphism then of course follows from

the first isomorphism theorem. O

The real beauty of Fedder’s Lemma is that it allows us to compute numerous things

with ease!
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0.2. Computations with Fedder’s Lemma. Fedder’s lemma gives us a very explicit
way to compute the locus where a ring is not F-split.

Theorem 0.3. Suppose that S is an F-finite reqular ring and R = S/I. Let J, C S
denote the image of the evaluation-at-1 map

Tmage ((F (17 1)) - Homg(F<S, S) — S)

for some integer e > 0. Then the set theoretic locus V (J.) C V(I) C Spec S is the set of
points of V(I) = Spec R where Spec R is not F-split.

Before proving this result, we notice that the result implies that V' (J,) is independent
of e. However, scheme theoretically, V'(J.) is generally not independent of e.

Proof. Using [Theorem 0.2 we see that the evaluation-at-1 map in the statement of the
theorem is surjective at all points q € V(1) C Spec S where Homg(FfR, R) — R is also
surjective. Of course, outside of V(I), (I" : I) agrees with S and the surjectivity is
obvious. The result follows since R, — F{R, splits if and only if By — F.R, splits
77, O

Via the identification Homg(F¢S,S) = F¢S (sending ® to 1, where @ is the projection
onto the F¢xP°~1-basis element), we get a map F¢S — S. It is not hard to see that this
map is itself . In particular:

Corollary 0.4. The locus where Spec R is not split is closed and it is equal to V(q)e(Ff(I[pe} :
1))).
Remark 0.5. The ideal ®¢(F¢(IP"] : I)) depends on the choice of e, although the locus it
defines does not!
Exercise 0.1. Show that ®¢(F¢(I¥: 1)) D getl(Fett (17 . 1)),

Hint: Show that ®¢(F¢(IP" : I)) - R is the same as the image of the evaluation-at-1
map Hompg(FfR) — R.

Question 0.6 (Open question). It is an open question whether the descending ideals from
the previous exercise stabilize (are all equal for e > 0). This is known if R is a hypersurface
or more generally Gorenstein or even more generally Q-Gorenstein. The Gorenstein case
is essentially a key step in a famous result of Hartshorne and Speiser [HS77].

Remark 0.7. Since ® is additive, note that ®(Fe(f1,...,) fm) = P(FE(f1)) +P(F(f2)) +
co+ O(F(fn)). Hence from a computational perspective, it is sufficient to compute

O(EE(S)).
Suépg))se now that k is perfect for simplicity, if one writes F¢f in terms of the basis
Fex? as
Fif =F) fxr=>" hFxX
then we claim that ®(F¢(f)) = (..., fx,...). The point is that ®(F¢f) simply projects
from the term fipe_1)FexP""Y on the other hand x*f € (f) and ®(FexP~V=Af)
projects from fyFx*. Doing the various projections proves that

Q(EL(S)) = (i fa)

as claimed.
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As another corollary of Fedder’s Lemma, we state a frequently easy to check criterion
for whether or not a ring is F-split at some point. Recall by ??, to show that R is F-split,
it is sufficient to show that there exists a single surjective ¢ : FFR — R.

Theorem 0.8 (Fedder’s F-purity criterion). Suppose that S is an F-finite reqular ring
and R = S/I. Then R is F-split in a neighborhood of a prime ideal q € V(I) C Spec S if
and only if

([[pe] 1) ¢ gl

Proof. Suppose that R is F-split in a neighborhood of a prime ideal ¢ € V(I). It fol-
lows that the evaluation-at-1 map Hompg(FFR, R) — R surjects in a neighborhood of g.
Let ¢r € Hompg(FER, R) be such that ¢(Ffa) ¢ q/I for some @ € R. It follows from

Theorem 0.2f that there exists ¢g € (Ff (IW : ])) -Homg(F£S, S) such that
¢s(Fia) ¢ q

where ¢ € S maps to @ € R. On the other hand, suppose for a contradiction now that

(1P I) C gl and so ¢g € qu[f’e]> -Homg(F¢S, S). But since g7l = glPl : S, we have
that ¢g(F£S) C q by [Lemma 0.1} But this contradicts our choice of a.

Conversely we suppose that b € (IP7 : 1)\ g, Let & € Homg(F¢S,S) be the
generating homomorphism as in ?? and let ¢g(F¢_) = ®¢(F(b-_)). Since b ¢ g1, we
know that ¢g(FES) ¢ q by Hence there exists a € ¢s(F2S), a ¢ q. Thus,
a € Ry is a unit. On the other hand, by our choice of ¢g, it induces ¢p : FfR — R and

so by localization, ¢g, : FfR; — Ry and @ is in the image. Thus ¢, surjects and so R,
is F-split as desired. O

Exercise 0.2. Suppose that R is a regular Noetherian ring of characteristic p > 0 and
that q is a prime ideal. Prove that g is g-primary.

Hint: Show that if f ¢ q, then 0 — R/qglP"] ERN R/q"! injects.

Corollary 0.9. Suppose that R = S/(f)s. Then R is F-split at the origin if and only if
g mil = (o, a).

Example 0.10. Consider the following examples of F-split rings. We assume S is as
before and consider R = S/(f) where f is as specified in each case below.

(a) f = z. Thering R is regular so we already know it is F-split, but we can alternately
observe that 271 ¢ (xP 4P, 2P).

(b) If f = zyz, then R is F-split (at the origin) since x?~1yP~12P~1 & (aP yP 2P).

(c) If f = xy — 2% then R is F-split (at the origin) since

(zy — 22?71 = 2?7 1yP~! + other terms ¢ (P, y?, 2P).

(d) If p = 2, then R = S/(f) is F-split (at the origin) if and only if f & (22,32, 2?)
(note p—1=2—1=1). So for example f = 27 + y* + 23 + zyz yields an F-split
ring.

(e) Consider f = x3+y>+23 and suppose 1 = p (mod 3). Note that the degree of every
monomial of fP~1 is equal to 3(p — 1). Thus the only way that fP~! ¢ (xP ¢, 2P)
is if zP~1yP~12P~1 has non-zero coefficient in fP~!. Since each monomial 3,3
and z* to be raised to the same power we must have 3|(p — 1) which implies that
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1 =p(mod 3) as we already assumed. Now we need the multinomial coefficent of
P~ 1yP~12P~1 £o not be divisible by p. But this coefficient is

( p—1 ) _ (p—1)!

) = ()
which clearly is not divisible by p.

Now we consider several non-F'-split rings.

(a') f = z2. The ring R is not reduced, so it can’t be F-split, but also 2P~V ¢
(aP yP, 2P).

(W) f = 2%y — 2% with p = 2. Note that f € (22 y?, 2?). R actually is F-split if p # 2.

() f =a* +y*+ 2% This is not F-split since every monomial in the expansion of
(z* +y* + 21)P~! has degree equal to 4 - (p — 1). In particular, each such monomial
is divisible by 2P, 4” or 2P by the pigeon-hole-principal.

(d') f=2*+y3+2% and 1 # p(mod 3). In this case, there is no zP~'y?~12P~! term in
the expansion of (2 + y* + 2?)P~! by the argument in (e) above. Thus since each
monomial in said expansion has degree 3(p — 1), we see that fP~1 € (2P yP, 2P)
which implies that R is not F-split.
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