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0.1. Fedder’s Lemma on p−e-linear maps. Recall last time we showed that:

Lemma 0.1. With notation as above,

(i) Suppose that φ(F e
∗J) ⊆ I for all φ ∈ HomS(F e

∗S, S), then J ⊆ I [p
e].

(ii) (
F e
∗
(
I [p

e] : J
))
· HomS(F e

∗S, S) = {ψ ∈ HomS(F e
∗S, S) | ψ(F e

∗J) ⊆ I}.

Theorem 0.2 (Fedder’s Lemma). With notation as above

ρ :
(
F e
∗
(
I [p

e] : I
))
· HomS(F e

∗S, S) −→ HomR(F e
∗R,R)

is surjective and ker ρ is isomorphic to
(
F e
∗ I

[pe]
)
· HomS(F e

∗S, S). In particular

HomR(F e
∗R,R) ∼=

(
F e
∗
(
I [p

e] : I
))
· HomS(F e

∗S, S)(
F e
∗ I

[pe]
)
· HomS(F e

∗S, S)
.

Proof. First we prove that ρ is surjective. Choose α ∈ HomR(F e
∗R,R). Consider the

following diagram of S-modules

F e
∗S

����

α
// S

����

F e
∗R α

// R.

The dotted arrow α exists since F e
∗S is a projective S-module (although it is not unique).

The commutativity of the diagram implies that α(F e
∗ I) ⊆ I (as F e

∗ I and I are kernels of

the vertical projection maps) and therefore we see that α ∈
(
F e
∗
(
I [p

e] : I
))
·HomS(F e

∗S, S)

by ??. This proves the surjectivity of ρ.
Next we identify the kernel of ρ. Suppose that ψ ∈ HomS(F e

∗S, S) satisfies ψ(F e
∗ I) ⊆ I

and also that ρ(ψ) = 0. This second condition means that ψ(F e
∗S) ⊆ I. Applying ?? in

the case that J = S we see that ψ ∈
(
F e
∗ I

[pe]
)
·HomS(F e

∗S, S). The reverse inclusion also

follows immediately from Lemma 0.1. The final isomorphism then of course follows from
the first isomorphism theorem. �

The real beauty of Fedder’s Lemma is that it allows us to compute numerous things
with ease!
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0.2. Computations with Fedder’s Lemma. Fedder’s lemma gives us a very explicit
way to compute the locus where a ring is not F -split.

Theorem 0.3. Suppose that S is an F -finite regular ring and R = S/I. Let Je ⊆ S
denote the image of the evaluation-at-1 map

Image

((
F e
∗
(
I [p

e] : I
))
· HomS(F e

∗S, S) −→ S

)
for some integer e > 0. Then the set theoretic locus V (Je) ⊆ V (I) ⊆ SpecS is the set of
points of V (I) ∼= SpecR where SpecR is not F -split.

Before proving this result, we notice that the result implies that V (Je) is independent
of e. However, scheme theoretically, V (Je) is generally not independent of e.

Proof. Using Theorem 0.2, we see that the evaluation-at-1 map in the statement of the
theorem is surjective at all points q ∈ V (I) ⊆ SpecS where HomR(F e

∗R,R) −→ R is also
surjective. Of course, outside of V (I), (I [p

e] : I) agrees with S and the surjectivity is
obvious. The result follows since Rq −→ F e

∗Rq splits if and only if Rq −→ F∗Rq splits
??. �

Via the identification HomS(F e
∗S, S) ∼= F e

∗S (sending Φ to 1, where Φ is the projection
onto the F e

∗x
pe−1-basis element), we get a map F e

∗S −→ S. It is not hard to see that this
map is itself Φ. In particular:

Corollary 0.4. The locus where SpecR is not split is closed and it is equal to V
(
Φe(F e

∗ (I
[pe] :

I))
)
.

Remark 0.5. The ideal Φe(F e
∗ (I

[pe] : I)) depends on the choice of e, although the locus it
defines does not!

Exercise 0.1. Show that Φe(F e
∗ (I

[pe] : I)) ⊇ Φe+1(F e+1
∗ (I [p

e+1] : I)).

Hint: Show that Φe(F e
∗ (I

[pe] : I)) · R is the same as the image of the evaluation-at-1
map HomR(F e

∗R) −→ R.

Question 0.6 (Open question). It is an open question whether the descending ideals from
the previous exercise stabilize (are all equal for e� 0). This is known ifR is a hypersurface
or more generally Gorenstein or even more generally Q-Gorenstein. The Gorenstein case
is essentially a key step in a famous result of Hartshorne and Speiser [HS77].

Remark 0.7. Since Φ is additive, note that Φ(F e
∗ 〈f1, . . . , 〉fm〉) = Φ(F e

∗ 〈f1〉)+Φ(F e
∗ 〈f2〉)+

· · · + Φ(F e
∗ 〈fm〉). Hence from a computational perspective, it is sufficient to compute

Φ(F e
∗ 〈f〉).

Suppose now that k is perfect for simplicity, if one writes F e
∗ f in terms of the basis

F e
∗x

λ as

F e
∗ f = F e

∗

∑
fp

e

λ xλ =
∑

fλF
e
∗x

λ

then we claim that Φ(F e
∗ 〈f〉) = 〈. . . , fλ, . . .〉. The point is that Φ(F e

∗ f) simply projects
from the term f(pe−1)F

e
∗x

(pe−1), on the other hand xλf ∈ 〈f〉 and Φ(F e
∗x

(pe−1)−λf)
projects from fλF

e
∗x

λ. Doing the various projections proves that

Φ(F e
∗ 〈f〉) = 〈. . . , fλ, . . .〉

as claimed.
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As another corollary of Fedder’s Lemma, we state a frequently easy to check criterion
for whether or not a ring is F -split at some point. Recall by ??, to show that R is F -split,
it is sufficient to show that there exists a single surjective φ : F e

∗R −→ R.

Theorem 0.8 (Fedder’s F -purity criterion). Suppose that S is an F -finite regular ring
and R = S/I. Then R is F -split in a neighborhood of a prime ideal q ∈ V (I) ⊆ SpecS if
and only if

(I [p
e] : I) * q[p

e].

Proof. Suppose that R is F -split in a neighborhood of a prime ideal q ∈ V (I). It fol-
lows that the evaluation-at-1 map HomR(F e

∗R,R) −→ R surjects in a neighborhood of q.
Let φR ∈ HomR(F e

∗R,R) be such that φ(F e
∗a) /∈ q/I for some a ∈ R. It follows from

Theorem 0.2 that there exists φS ∈
(
F e
∗
(
I [p

e] : I
))
· HomS(F e

∗S, S) such that

φS(F e
∗a) /∈ q

where a ∈ S maps to a ∈ R. On the other hand, suppose for a contradiction now that

(I [p
e] : I) ⊆ q[p

e] and so φS ∈
(
F e
∗ q

[pe]
)
·HomS(F e

∗S, S). But since q[p
e] = q[p

e] : S, we have

that φS(F e
∗S) ⊆ q by Lemma 0.1. But this contradicts our choice of a.

Conversely we suppose that b ∈ (I [p
e] : I) \ q[pe]. Let Φ ∈ HomS(F e

∗S, S) be the
generating homomorphism as in ?? and let φS(F e

∗ ) = Φe(F e
∗ (b · )). Since b /∈ q[p

e], we
know that φS(F e

∗S) /∈ q by Lemma 0.1. Hence there exists a ∈ φS(F e
∗S), a /∈ q. Thus,

a ∈ Rq is a unit. On the other hand, by our choice of φS, it induces φR : F e
∗R −→ R and

so by localization, φRq : F e
∗Rq −→ Rq and a is in the image. Thus φRq surjects and so Rq

is F -split as desired. �

Exercise 0.2. Suppose that R is a regular Noetherian ring of characteristic p > 0 and
that q is a prime ideal. Prove that q[p

e] is q-primary.

Hint: Show that if f /∈ q, then 0 −→ R/q[p
e] ·f−→ R/q[p

e] injects.

Corollary 0.9. Suppose that R = S/〈f〉S. Then R is F -split at the origin if and only if
fp−1 /∈ m[p] = 〈xp1, . . . , xpn〉.

Example 0.10. Consider the following examples of F -split rings. We assume S is as
before and consider R = S/〈f〉 where f is as specified in each case below.

(a) f = z. The ring R is regular so we already know it is F -split, but we can alternately
observe that zp−1 /∈ 〈xp, yp, zp〉.

(b) If f = xyz, then R is F -split (at the origin) since xp−1yp−1zp−1 /∈ 〈xp, yp, zp〉.
(c) If f = xy − z2 then R is F -split (at the origin) since

(xy − z2)p−1 = xp−1yp−1 + other terms /∈ 〈xp, yp, zp〉.

(d) If p = 2, then R = S/〈f〉 is F -split (at the origin) if and only if f /∈ 〈x2, y2, z2〉
(note p− 1 = 2− 1 = 1). So for example f = x7 + y4 + z3 + xyz yields an F -split
ring.

(e) Consider f = x3+y3+z3 and suppose 1 ≡ p (mod 3). Note that the degree of every
monomial of fp−1 is equal to 3(p− 1). Thus the only way that fp−1 /∈ 〈xp, yp, zp〉
is if xp−1yp−1zp−1 has non-zero coefficient in fp−1. Since each monomial x3, y3

and z3 to be raised to the same power we must have 3|(p− 1) which implies that
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1 ≡ p (mod 3) as we already assumed. Now we need the multinomial coefficent of
xp−1yp−1zp−1 to not be divisible by p. But this coefficient is(

p− 1
p−1
3
, p−1

3
, p−1

3

)
≡ (p− 1)!(

p−1
3

)
!
(
p−1
3

)
!
(
p−1
3

)
!
.

which clearly is not divisible by p.

Now we consider several non-F -split rings.

(a′) f = z2. The ring R is not reduced, so it can’t be F -split, but also z2(p−1) ∈
〈xp, yp, zp〉.

(b′) f = x2y − z2 with p = 2. Note that f ∈ 〈x2, y2, z2〉. R actually is F -split if p 6= 2.
(c′) f = x4 + y4 + z4. This is not F -split since every monomial in the expansion of

(x4 + y4 + z4)p−1 has degree equal to 4 · (p− 1). In particular, each such monomial
is divisible by xp, yp or zp by the pigeon-hole-principal.

(d′) f = x3 + y3 + z3 and 1 6≡ p (mod 3). In this case, there is no xp−1yp−1zp−1 term in
the expansion of (x3 + y3 + z3)p−1 by the argument in (e) above. Thus since each
monomial in said expansion has degree 3(p − 1), we see that fp−1 ∈ 〈xp, yp, zp〉
which implies that R is not F -split.
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