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We started class off with a student presentation of the octahedral axiom problem from
the recent worksheet.

1. The other direction of Kunz’s theorem

Recall Kunz’s theorem

Theorem 1.1. If R is a Noetherian ring of characteristic p > 0, then R is regular if and
only if F∗R is a flat R-module.

Earlier we proved that “regular⇒ F∗R is flat”, and now we want to prove the converse.

Definition 1.2. Suppose R is a domain (or simply is reduced) of characteristic p > 0
and let R∞ = R1/p∞ =

⋃
e≥0R

1/pe . This is called the perfection of R. If R is not reduced,
we can still define

R∞ = lim
→
R = lim

→
F e
∗R

where the transition maps are Frobenius.

Remark 1.3. Note that even if R is not reduced, the Frobenius map on R∞ is injective
(since if something is killed by Frobenius, it is also killed by a transition map). Hence
R∞ is reduced even R is not. In particular, Frobenius always acts bijectively on R∞.

Example 1.4. Note that R∞ is rarely Noetherian even if R is (even though it is easy to
check that SpecR∞ −→ SpecR is an isomorphism). If R = R∞ then R is called perfect.

Indeed, let R = Fp[x] then R∞ = Fp[x, x
1/p, x1/p

2
, x1/p

3
, . . . ].

Lemma 1.5. [BS15, Lemma 3.16, Lemma 5.10] If R
g←− S

h−→ R′ is are surjections of

Noetherian rings of characteristic p > 0 with induced surjection R∞
g∞←−− S∞

h∞−−→ R′∞ of
perfect rings. Then ToriS∞(R∞, R′∞) = 0 for all i 6= 0 or in other words

R∞ ⊗L
S∞ R

′∞ 'qis R
∞ ⊗S∞ R

′∞.

In particular, specializing to the case R′ = R, the multiplication map R∞⊗L
S∞ R

∞ −→ R∞

is a quasi-isomorphism.

Proof. Let I = ker g = 〈f1, . . . , fn〉 so that R = S/I. It is easy to see that ker g∞ =

ker(S∞ −→ R∞) = 〈f 1/pe

1 , . . . , f
1/pe

n 〉e≥0.
We now proceed by induction on n. Indeed, if we let Ij = 〈f 1/pe

1 , . . . , f
1/pe

j 〉e≥0 ⊆ S∞

and R∞j = S∞/Ij, then assuming the induction hypothesis

R∞j ⊗L
S∞R

′ 'qis (R∞j ⊗L
R∞j−1

R∞j−1)⊗L
S∞R

′ = R∞j ⊗L
R∞j−1

(R∞j−1⊗L
S∞R

′) 'qis R
∞
j ⊗R∞j−1

(R∞j−1⊗S∞R
′)

where the final quasi isomorphism is just assuming our induction hypothesis twice. Hence
it suffices to prove the base case that I = 〈f〉 and I∞ = 〈f 1/pe〉S∞ .
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Consider the directed system

{S∞, ·f
p−1
pn } = S∞

·f
p−1

p2

−−−→ · · · ·f
p−1

pn−1

−−−−→ S∞
·f

p−1
pn

−−−→ S∞
·f

p−1

pn+1

−−−−→ · · ·
There is a map from this directed system to I∞

{S∞, ·f
p−1
pn } −→ I∞ = 〈f 1/pe〉.

sending s (from the nth spot) to f 1/pna. Note this really compatible with the maps of the

directed system since f 1/pn+1
f

p−1

pn+1 a = f 1/pna. This obviously yields a surjective map

µ : lim
−→
{S∞, ·f

p−1
pn } −→ I∞.

Claim 1.6. µ is an isomorphism.

Proof of claim. We need to show that µ is injective, note this is trivial if S is a domain.
For the general case suppose that s ∈ S∞ (living in the nth spot) is sent to zero. This

means that f 1/pns = 0 ∈ S∞. But then since S∞ is perfect and reduced, f 1/pn+1
s1/p = 0

as well, and so f 1/pn+1
s = 0 which proves that s is killed by a transition map (which

multiplies by even more). �

Likewise consider IR′ =
⋃
f 1/peR′∞, the ideal generated by the image of f 1/pe in R′∞

and thus the direct system

{R′∞, ·f
p−1
pn } = R′∞

·f
p−1

p2

−−−→ · · · ·f
p−1

pn−1

−−−−→ R′∞
·f

p−1
pn

−−−→ R′∞
·f

p−1

pn+1

−−−−→ · · ·
and hence a map as before

ν : lim
−→
{R′∞, ·f

p−1
pn } −→ I∞R′∞

Claim 1.7. µ is an isomorphism.

Proof. The proof is the same as the previous claim. �

Now,

I∞ ⊗L
S∞ R

′∞ ∼= lim
−→
{S∞, ·f

p−1
pn } ⊗L

S∞ R
′∞ ∼= lim

−→
{R′∞, ·f

p−1
pn } ∼= I∞R′∞

and so it follows that for i 6= 0, hi
(
I∞ ⊗L

S∞ R
′∞) = 0. In particular, we have the map of

distinguished triangles

I∞ ⊗L
S∞ R

′∞

∼
��

// S∞ ⊗L
S∞ R

′∞

∼
��

// R∞ ⊗L
S∞ R

′∞

��

+1
//

0 // I∞R′∞ // R′∞ // R∞ ⊗S∞ R
′∞ // 0

The result follows. �
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