

NOTES ON CHARACTERISTIC p COMMUTATIVE ALGEBRA
FEBRUARY 1ST, 2017

KARL SCHWEDE

We started class off with a student presentation of the octahedral axiom problem from the recent worksheet.

1. THE OTHER DIRECTION OF KUNZ'S THEOREM

Recall Kunz's theorem

Theorem 1.1. *If R is a Noetherian ring of characteristic $p > 0$, then R is regular if and only if F_*R is a flat R -module.*

Earlier we proved that “regular $\Rightarrow F_*R$ is flat”, and now we want to prove the converse.

Definition 1.2. Suppose R is a domain (or simply is reduced) of characteristic $p > 0$ and let $R^\infty = R^{1/p^\infty} = \bigcup_{e \geq 0} R^{1/p^e}$. This is called the *perfection* of R . If R is not reduced, we can still define

$$R^\infty = \lim_{\rightarrow} R = \lim_{\rightarrow} F_*^e R$$

where the transition maps are Frobenius.

Remark 1.3. Note that even if R is not reduced, the Frobenius map on R^∞ is injective (since if something is killed by Frobenius, it is also killed by a transition map). Hence R^∞ is reduced even R is not. In particular, Frobenius always acts bijectively on R^∞ .

Example 1.4. Note that R^∞ is rarely Noetherian even if R is (even though it is easy to check that $\text{Spec } R^\infty \rightarrow \text{Spec } R$ is an isomorphism). If $R = R^\infty$ then R is called *perfect*. Indeed, let $R = \mathbb{F}_p[x]$ then $R^\infty = \mathbb{F}_p[x, x^{1/p}, x^{1/p^2}, x^{1/p^3}, \dots]$.

Lemma 1.5. [BS15, Lemma 3.16, Lemma 5.10] *If $R \xleftarrow{g} S \xrightarrow{h} R'$ are surjections of Noetherian rings of characteristic $p > 0$ with induced surjection $R^\infty \xleftarrow{g^\infty} S^\infty \xrightarrow{h^\infty} R'^\infty$ of perfect rings. Then $\text{Tor}_{S^\infty}^i(R^\infty, R'^\infty) = 0$ for all $i \neq 0$ or in other words*

$$R^\infty \otimes_{S^\infty}^{\mathbf{L}} R'^\infty \simeq_{\text{qis}} R^\infty \otimes_{S^\infty} R'^\infty.$$

In particular, specializing to the case $R' = R$, the multiplication map $R^\infty \otimes_{S^\infty}^{\mathbf{L}} R^\infty \rightarrow R^\infty$ is a quasi-isomorphism.

Proof. Let $I = \ker g = \langle f_1, \dots, f_n \rangle$ so that $R = S/I$. It is easy to see that $\ker g^\infty = \ker(S^\infty \rightarrow R^\infty) = \langle f_1^{1/p^e}, \dots, f_n^{1/p^e} \rangle_{e \geq 0}$.

We now proceed by induction on n . Indeed, if we let $I_j = \langle f_1^{1/p^e}, \dots, f_j^{1/p^e} \rangle_{e \geq 0} \subseteq S^\infty$ and $R_j^\infty = S^\infty/I_j$, then assuming the induction hypothesis

$$R_j^\infty \otimes_{S^\infty}^{\mathbf{L}} R' \simeq_{\text{qis}} (R_j^\infty \otimes_{R_{j-1}^\infty}^{\mathbf{L}} R_{j-1}^\infty) \otimes_{S^\infty}^{\mathbf{L}} R' = R_j^\infty \otimes_{R_{j-1}^\infty}^{\mathbf{L}} (R_{j-1}^\infty \otimes_{S^\infty}^{\mathbf{L}} R') \simeq_{\text{qis}} R_j^\infty \otimes_{R_{j-1}^\infty} (R_{j-1}^\infty \otimes_{S^\infty} R')$$

where the final quasi isomorphism is just assuming our induction hypothesis twice. Hence it suffices to prove the base case that $I = \langle f \rangle$ and $I^\infty = \langle f^{1/p^e} \rangle_{S^\infty}$.

Consider the directed system

$$\{S^\infty, \cdot f^{\frac{p-1}{p^n}}\} = S^\infty \xrightarrow{\cdot f^{\frac{p-1}{p^2}}} \cdots \xrightarrow{\cdot f^{\frac{p-1}{p^{n-1}}}} S^\infty \xrightarrow{\cdot f^{\frac{p-1}{p^n}}} S^\infty \xrightarrow{\cdot f^{\frac{p-1}{p^{n+1}}}} \cdots$$

There is a map from this directed system to I^∞

$$\{S^\infty, \cdot f^{\frac{p-1}{p^n}}\} \rightarrow I^\infty = \langle f^{1/p^e} \rangle.$$

sending s (from the n th spot) to $f^{1/p^n}a$. Note this is compatible with the maps of the directed system since $f^{1/p^{n+1}}f^{\frac{p-1}{p^{n+1}}}a = f^{1/p^n}a$. This obviously yields a surjective map

$$\mu : \lim_{\longrightarrow} \{S^\infty, \cdot f^{\frac{p-1}{p^n}}\} \rightarrow I^\infty.$$

Claim 1.6. μ is an isomorphism.

Proof of claim. We need to show that μ is injective, note this is trivial if S is a domain. For the general case suppose that $s \in S^\infty$ (living in the n th spot) is sent to zero. This means that $f^{1/p^n}s = 0 \in S^\infty$. But then since S^∞ is perfect and reduced, $f^{1/p^{n+1}}s^{1/p} = 0$ as well, and so $f^{1/p^{n+1}}s = 0$ which proves that s is killed by a transition map (which multiplies by even more). \square

Likewise consider $IR' = \bigcup f^{1/p^e}R'^\infty$, the ideal generated by the image of f^{1/p^e} in R'^∞ and thus the direct system

$$\{R'^\infty, \cdot f^{\frac{p-1}{p^n}}\} = R'^\infty \xrightarrow{\cdot f^{\frac{p-1}{p^2}}} \cdots \xrightarrow{\cdot f^{\frac{p-1}{p^{n-1}}}} R'^\infty \xrightarrow{\cdot f^{\frac{p-1}{p^n}}} R'^\infty \xrightarrow{\cdot f^{\frac{p-1}{p^{n+1}}}} \cdots$$

and hence a map as before

$$\nu : \lim_{\longrightarrow} \{R'^\infty, \cdot f^{\frac{p-1}{p^n}}\} \rightarrow I^\infty R'^\infty$$

Claim 1.7. μ is an isomorphism.

Proof. The proof is the same as the previous claim. \square

Now,

$$I^\infty \otimes_{S^\infty}^{\mathbf{L}} R'^\infty \cong \lim_{\longrightarrow} \{S^\infty, \cdot f^{\frac{p-1}{p^n}}\} \otimes_{S^\infty}^{\mathbf{L}} R'^\infty \cong \lim_{\longrightarrow} \{R'^\infty, \cdot f^{\frac{p-1}{p^n}}\} \cong I^\infty R'^\infty$$

and so it follows that for $i \neq 0$, $h^i(I^\infty \otimes_{S^\infty}^{\mathbf{L}} R'^\infty) = 0$. In particular, we have the map of distinguished triangles

$$\begin{array}{ccccccc} I^\infty \otimes_{S^\infty}^{\mathbf{L}} R'^\infty & \longrightarrow & S^\infty \otimes_{S^\infty}^{\mathbf{L}} R'^\infty & \longrightarrow & R^\infty \otimes_{S^\infty}^{\mathbf{L}} R'^\infty & \xrightarrow{+1} & \\ \sim \downarrow & & \sim \downarrow & & \downarrow & & \\ 0 & \longrightarrow & I^\infty R'^\infty & \longrightarrow & R'^\infty & \longrightarrow & R^\infty \otimes_{S^\infty} R'^\infty \longrightarrow 0 \end{array}$$

The result follows. \square

REFERENCES

[BS15] B. BHATT AND P. SCHOLZE: *Projectivity of the Witt vector affine Grassmannian*, arXiv:1507.06490.