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1. Rings of interest and Frobenius

Setting 1.1. We will be working with rings (commutative with unity). These rings are
usually Noetherian. Recall that a Noetherian ring is called local if it has a single unique
maximal ideal.

We start with some examples of the types of rings we are interested in.

Example 1.2. (a) C[x1, . . . , xn], we can view this as polynomial functions on Cn.
(b) k[x1, . . . , xn] (k = k), we can view this as polynomial functions on kn.
(c) k[x, y]/〈x3 − y2〉, (k = k). These are polynomial functions on k2 but we declare

two functions to be the same if they agree where x3 = y2.
(d) k[x1, . . . , xn]/I (k = k, I =

√
I). These are polynomial functions on kn but we

declare two functions to be equal if they agree on V (I).

Let’s now work in characteristic p > 0. The special thing about rings in characteristic
p > 0 is that they have a Frobenius morphism, F : R −→ R which sends r 7→ rp.

Lemma 1.3. F : R −→ R is a ring homomorphism.

Proof. Since R is commutative, F (rr′) = (rr′)p = rpr′p = F (r)F (r′). The additive
part is slightly trickier, F (r + r′) = (r + r′)p = rp +

(
p
1

)
rp−1r′ + . . . +

(
p

p−1

)
rr′p−1 + r′p.

Since R has characteristic p, all of the mixed terms (the foiled terms) vanish. Hence
F (r + r′) = rp + r′p = F (r) + F (r′). �

The Frobenius turns out to be a very useful tool in characteristic p > 0 algebra (and
algebraic geometry) as we will see throughout the semester. For now, let’s explore what
this Frobenius map means.

Lemma 1.4. Frobenius is injective if and only if R is reduced (has no nilpotents).

Proof. Suppose first that Frobenius is injective and that xn = 0 ∈ R, we will show that
x = 0. Since xn = 0, we know that xpe = 0 for some integer e > 0 (so that pe ≥ n). But
F e = F ◦ F ◦ · · · ◦ F sends x 7→ xpe = 0, and hence x = 0 as desired.

Conversely, if R is reduced, F is obviously injective because F (x) = xp = 0 implies that
x = 0. �

Remark 1.5. In our examples above, the Frobenius morphism is almost never surjective.

1.1. Other ways to think about the Frobenius.

Rp ⊆ R: Let R be a reduced ring (for example, a domain) and let Rp denote the
subring of pth powers of R. Then the map R −→ Rp which sends r −→ rp is a ring
isomorphism. Hence the Frobenius map F : R −→ R factors through Rp ↪→ R, and
in fact can be identified with that inclusion.
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R ⊆ R1/p: Again let R be a domain (or a reduced ring). Let R1/p denote the ring of
pth roots of all elements of R (inside an algebraic closure of the fraction field of
R). Again R1/p is abstractly isomorphic to R via the map R1/p −→ R which sends
x 7→ xp. In particular the Frobenius on R1/p has image R (inside R1/p). Hence F
can also be viewed as the inclusion R ⊆ R1/p.

If I ⊆ R is an ideal, then we can also write I1/p to be the pth roots of elements
of I, note this is the image of I under the identification R ↔ R1/p which sends
r 7→ r1/p.

F∗R: Whenever we have a ring homomorphism f : R −→ S, we can view S as an
R-module via f (r.s = f(r)s). Hence we can view R as an R-module via Frobenius.
It can be confusing to write R for this module. There are a several options.
(a) R1/p works (at least when R is reduced).
(b) Otherwise, some people use F∗R (this borrows from sheaf theoretic language).

More generally F∗• is a functor (the restriction of scalars functor), and so we can
apply it to any R module. Indeed, if M is an R-module then F∗M is the R-module
which is the same as R as an Abelian group but such that if r ∈ R, and m ∈ F∗M ,
then r.m = rpm. Because it can be confusing to remember which module m is in,
sometimes we write F∗m instead of m, then r.F∗m = F∗r

pm.

We will switch between these descriptions freely.

Example 1.6 (Polynomial ring in one variable). Consider R = Fp[x]. Then R is a free
Rp-module of rank p with basis 1, x, . . . , xp−1. Equivalently, R1/p is a free R-module with
basis 1, x1/p, . . . , x(p−1)/p. Finally, F∗R is a free R-module with basis 1, x, . . . , xp−1. To
avoid confusion, we frequently denote this basis by F∗1, F∗x, . . . , F∗x

p−1 even though F∗,
as a functor, doesn’t act on elements exactly.

Example 1.7 (Polynomial ring in n variables). Consider R = Fp[x1, . . . , xn]. Then R is
a free Rp-module of rank pn with basis {xa1

1 · · ·xan
n | 0 ≤ ai ≤ p − 1}. Likewise R1/p is

a free R-module with basis {x
a1
p−1

1 · · · x
an
p−1
n | 0 ≤ ai ≤ p − 1}, similarly with F∗R as an

R-module.

If we iterate Frobenius F e : R −→ R, then we can also view R as an R-module via
e-iterated Frobenius.

Exercise 1.1. Write down a basis for F e
∗Fp[x1, . . . , xn] over Fp[x1, . . . , xn].

Interestingly enough, the situation is more complicated for non-polynomial rings.

Example 1.8. Consider R = Fp[a, b]/〈a3 − b2〉 = Fp[x
2, x3] ⊆ Fp[x]. Let’s try to under-

stand the structure of R1/p as an R-module at least for some specific p.
We begin in the case that p = 2. R1/p = Fp[x, x

3/2]. Let’s try to write down a
minimal set of monomial generators of R1/p over R. So we definitely need 1, x, x3/2, x5/2,
in particular we need at least four elements and it is easy to see that these four are enough.
On the other hand, R1/p cannot be a free module of rank 4 since if R1/p = R⊕d then if
W = R \ {0},

W−1R1/p = ((W p)−1R)1/p = Fp(x)1/p

since any fraction of k(x) can be written as f(x)/g(x) = f(x)g(x)p−1/g(x)p ∈ (W p)−1R.
But Fp(x)1/p has rank 2 as a Fp(x)-module. Thus it can’t be free since if R1/p needs
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three generators, if free it must be R ⊕ R ⊕ R, so W−1R1/p would be isomorphic to
k(x)⊕ k(x)⊕ k(x).

Ok, how do we really check that R1/p needs at least 4 generators in characteristic p?
One option is to localize. If M is a module which can be generated by d elements, then
for any multiplicative set W , W−1M can also be generated by d elements (why?) So
let’s let W be the elements of R not contained in 〈x2, x3〉. Set S = W−1R. Then it’s
enough to show that S1/p is not a free S-module. Note S is local with maximal ideal
m = 〈x2, x3〉. So consider S1/p/mS1/p, this is a Fp = S/m-module of rank equal to the
number of generators. We rewrite it as

S1/p/mS1/p = S1/p/〈x2, x3〉S1/p

and then obviously 1, x, x3/2, x5/2 are nonzero in the quotient, and so R1/p has at least 4
generators as an R-module.
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