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1. RINGS OF INTEREST AND FROBENIUS

Setting 1.1. We will be working with rings (commutative with unity). These rings are
usually Noetherian. Recall that a Noetherian ring is called local if it has a single unique
maximal ideal.

We start with some examples of the types of rings we are interested in.

Example 1.2. (a) Clzy,...,x,], we can view this as polynomial functions on C".
(b) k[z1,...,2,] (k = k), we can view this as polynomial functions on k.
(¢) klx,y]/(x® —4?), (k = k). These are polynomial functions on k? but we declare
two functions to be the same if they agree where 2% = 32
(d) k[x1,...,z,)/I (k =k, I = +/I). These are polynomial functions on k" but we
declare two functions to be equal if they agree on V(I).

Let’s now work in characteristic p > 0. The special thing about rings in characteristic
p > 0 is that they have a Frobenius morphism, F': R — R which sends r — rP.

Lemma 1.3. F': R — R is a ring homomorphism.

Proof. Since R is commutative, F(rr’) = (rr')? = rPr" = F(r)F(r"). The additive
part is slightly trickier, F(r +1') = (r + ')? = r? + ({)rP"1/ + ... + (pfl)rr’p*I + r'?.
Since R has characteristic p, all of the mixed terms (the foiled terms) vanish. Hence
F(r+r")=rP+1?=F(r)+ F(r). O

The Frobenius turns out to be a very useful tool in characteristic p > 0 algebra (and
algebraic geometry) as we will see throughout the semester. For now, let’s explore what
this Frobenius map means.

Lemma 1.4. Frobenius is injective if and only if R is reduced (has no nilpotents).

Proof. Suppose first that Frobenius is injective and that 2" = 0 € R, we will show that
x = 0. Since 2" = 0, we know that 2¥° = 0 for some integer e > 0 (so that p® > n). But
F¢=FoFo---0F sends z — 27" = 0, and hence z = 0 as desired.

Conversely, if R is reduced, F' is obviously injective because F'(z) = xP = 0 implies that
xz=0. 0

Remark 1.5. In our examples above, the Frobenius morphism is almost never surjective.

1.1. Other ways to think about the Frobenius.

RP C R: Let R be a reduced ring (for example, a domain) and let R? denote the
subring of pth powers of R. Then the map R — RP which sends » — 7P is a ring
isomorphism. Hence the Frobenius map F': R — R factors through R <— R, and

in fact can be identified with that inclusion.
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R C R'Y?: Again let R be a domain (or a reduced ring). Let R'/? denote the ring of
pth roots of all elements of R (inside an algebraic closure of the fraction field of
R). Again R'P is abstractly isomorphic to R via the map R'/? — R which sends
z + 2P. In particular the Frobenius on R'/? has image R (inside R'/P). Hence F
can also be viewed as the inclusion R C R'/?.

If I C R is an ideal, then we can also write I'/? to be the pth roots of elements
of I, note this is the image of I under the identification R <> R'? which sends
s /P,

F.R: Whenever we have a ring homomorphism f : R — S, we can view S as an
R-module via f (r.s = f(r)s). Hence we can view R as an R-module via Frobenius.
It can be confusing to write R for this module. There are a several options.

(a) RYP works (at least when R is reduced).

(b) Otherwise, some people use F, R (this borrows from sheaf theoretic language).
More generally Fie is a functor (the restriction of scalars functor), and so we can
apply it to any R module. Indeed, if M is an R-module then F,M is the R-module
which is the same as R as an Abelian group but such that if r € R, and m € F, M,
then r.m = rPm. Because it can be confusing to remember which module m is in,
sometimes we write F,m instead of m, then r.F,m = F,r’m.

We will switch between these descriptions freely.

Example 1.6 (Polynomial ring in one variable). Consider R = F,[z]. Then R is a free
RP-module of rank p with basis 1, z, ..., 2P~ !. Equivalently, RY/? is a free R-module with
basis 1,27, ..., ®=Y/P Finally, F,R is a free R-module with basis 1,z,...,2?~*. To
avoid confusion, we frequently denote this basis by F,1, F.x, ..., F,2?~! even though F,,
as a functor, doesn’t act on elements exactly.

Example 1.7 (Polynomial ring in n variables). Consider R = FF,[xy,...,z,]. Then R is
a free RP-module of rank p” with basis {29 ---2% | 0 < a; < p — 1}. Likewise R/ is

n

a free R-module with basis {27 - 25" | 0 < a; < p — 1}, similarly with F,R as an
R-module.

If we iterate Frobenius F¢ : R — R, then we can also view R as an R-module via
e-iterated Frobenius.

Exercise 1.1. Write down a basis for F{F,[z,...,z,] over Fylzy, ..., x,].
Interestingly enough, the situation is more complicated for non-polynomial rings.

Example 1.8. Consider R = F,[a,b]/{a® — V*) = F,[2?, 2°] C F,[z]. Let’s try to under-
stand the structure of R'/? as an R-module at least for some specific p.

We begin in the case that p = 2. RYP = F,[z,2%?]. Let’s try to write down a
minimal set of monomial generators of R'/? over R. So we definitely need 1, z, 2%/2, 2°/2,
in particular we need at least four elements and it is easy to see that these four are enough.
On the other hand, R'? cannot be a free module of rank 4 since if RY/? = R®? then if
W = R\ {0},

WIRYP = (WP) "' R)Y? = F,(2)'/"
since any fraction of k(z) can be written as f(z)/g(z) = f(x)g(x)?~'/g(x)? € (WP)"'R.
But F,(z)"/? has rank 2 as a F,(z)-module. Thus it can’t be free since if RY? needs
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three generators, if free it must be R @ R & R, so W~ 'RY? would be isomorphic to

Ok, how do we really check that R'P needs at least 4 generators in characteristic p?
One option is to localize. If M is a module which can be generated by d elements, then
for any multiplicative set W, W~'M can also be generated by d elements (why?) So
let’s let W be the elements of R not contained in (x?,23). Set S = W~!R. Then it’s
enough to show that S'/? is not a free S-module. Note S is local with maximal ideal
m = (22, 23). So consider S/P/mSV/P  this is a F, = S/m-module of rank equal to the
number of generators. We rewrite it as

SYP fmSYP = SYP /(22 23) 1)y

and then obviously 1, z, 232 2%/? are nonzero in the quotient, and so R'/? has at least 4
generators as an R-module.
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