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1. Regular rings continued

Definition 1.1. A Noetherian ring is called regular if all of its localizations at prime
ideals are regular local rings.

This is a bit confusing, since it is not clear yet whether a regular local ring satisfies this
property.

Theorem 1.2 (Serre, Auslander-Buchsbaum). If R is a regular local ring and Q ∈ SpecR
is a prime ideal, then RQ is a regular local ring.

The point is that a Noetherian local ring is regular if and only if it has finite global
dimension (the projective dimension of every module is finite and in fact ≤ dim).

Exercise 1.1. Use the fact that a Noetherian local ring is regular if and only if it has
finite global dimension to prove that if R is a regular local ring, then so is RQ for any
Q ∈ SpecR.

Here are some facts about regular rings which we will use without proof (including the
one just mentioned above). Recall first the following definitions.

Definition 1.3. An R-module M is called flat if the functor ⊗R M is (left) exact. A
module M is called projective if the functor HomR(M, ) is (right) exact.

Theorem 1.4. (a) A regular ring is normal1.
(b) If R is regular so is R[X] and RJxK.
(c) A regular local ring is a UFD.
(d) If (A,m) ⊆ (B, n) is a local2 extension of Noetherian local rings with A regular

and B Cohen-Macaulay (for example, regular) and if we have dimB = dimA +
dim(B/mB), then B is a flat A-module.

(e) A local ring (R,m) is regular if and only if the global dimension of R is finite (in
other words, the projective dimension of any module is finite, and in particular
≤ dimR. It is sufficient to find the global dimension of k = R/m.).

Proof. See for example [?, Theorem 19.2, Theorem 19.4, Theorem 19.5, Theorem 20.3,
Theorem 23.1]. �

Let’s give some examples which show that the conditions of (d) are sharp.

1This means that R is its own integral closure in its ring of fractions, recall x ∈ K(R) is integral over R
if it satisfies a monic equation xn + rn−1x

n−1 + · · ·+ r0 = 0 for ri ∈ R.
2This just means that m ⊆ n, note Z ⊆ Q is not local.
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Example 1.5 (Non-flat local extension with the wrong dimensions). Consider R =
k[x, y]〈x,y〉 ⊆ k[x, y/x]〈x,y/x〉 = S. It is easy to check that this is a local extension since
〈x, y/x〉S ∩ R contains both x and Y and so must equal 〈x, y〉R. Now, dimR = 2 (since
we just localize A2 at the origin) and likewise dimS = 2 since S is abstract isomor-
phic to R. Finally, let m = 〈x, y〉R and consider mS = 〈x, y〉S = 〈x〉S = xS. Thus
S/mS = S/xS = k[y/x] and so dimS/mS = 1. Thus note that

2 = dimS 6= dimR + dim(S/mS) = 2 + 1 = 3

and so Theorem 1.4(d) does not apply. Let’s next verify that S is not a flat R-module.
Consider the injection of R-modules,

k[y] = R/xR �
�

// R/xR = k[y].

Example 1.6 (Non-flat local extensions where the base is not regular). Consider R =
k[x2, xy, y2]〈x2,xy,y2〉 ⊆ k[x, y]〈x,y〉 = S and set m = 〈x2, xy, y2〉R and n = 〈x, y〉S. We view
S as an R-module.

First note that 2 = dimS = dimR + dim(S/mS) = 2 + 0. On the other hand R is not
smooth since dim(m/m2) = 3 > 2.

Now we show that S is not a free R-module (next lecture, we will see that flat and
locally free are equivalent for finitely generated modules, so this is relevant). Indeed,
consider S/mS = S/〈x2, xy, y2〉S, this is clearly a 3-dimensional k-vector space (with
basis {1, x, y}) and so S needs at least 3 generators to generate as an R-module. On the
other hand when we work at the generic point, consider k(x2, xy, y2) ⊆ k(x, y). Note that
k(x2, xy, y2) = k(x2, xy) since y2 = (xy)2/x2 and hence we only need consider k(x2, xy) ⊆
k(x, y). This is obviously a rank 2 field extension since we only need to adjoin x which
satisfies the quadratic polynomial X2 − x2. In particular, we see that S is not a free R
module since it requires 3 generators but has generic rank 2.

Our goal for the short term is to prove the following theorem of Kunz.

Theorem 1.7 (Kunz). If R is a Noetherian ring of characteristic p > 0, then R is regular
if and only if F∗R is a flat R-module.

2. Some notes on Kunz’ theorem and the easy direction

Remember, we are trying to show that R is regular if and only if F∗R is a flat R-
module. We will give two proofs of the easy direction (that regular implies flat). The
first is quite easy but not very illuminating (especially since it relies on facts we haven’t
proven). Second, we will give essentially Kunz’s original proof which I think yields quite
a bit more intuition.

Proof #1. We suppose that R is regular and will show that R1/p is a flat R-module. Note
that (R1/p)m = (Rm)1/p since inverting a pth power is the same as inverting the element.
Thus, since flatness can be checked locally, we may localize R (and R1/p) at a maximal
ideal and from here on out assume that (R,m) is local.

Next consider the extension R ⊆ R1/p. This is a local extension since m ⊆ m1/p and
both R and R1/p are regular rings. It follows from Theorem 1.4(d) that R1/p is a flat R
module and so we are done. �
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