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1. RINGS OF INTEREST AND FROBENIUS CONTINUED

Example 1.1. Consider R = F,[a,b]/{a® — b*) = F,[a?, 2°] C F,[z]. Let’s try to under-
stand the structure of R'/P as an R-module at least for some specific p.

We begin in the case that p = 2. RY? = F [z, 2%?]. Let’s try to write down a minimal
set of monomial generators of R'/? over R. So a first computation suggests that we need
1,z,2%2, 252 in particular we need at least four elements and it is easy to see that these
are enough. On the other hand, R/ cannot be a free module of rank 4 since if RY/? = R4
then if W = R\ {0},

WTIRYP = (WP)T'R)VP = F(z)"/"
since any fraction of k(z) can be written as f(z)/g(z) = f(z)g(z)?~'/g(x)? € (WP)"'R.
But F,(z)"/? has rank 2 as a F,(z)-module. Thus it can’t be free since if RY? needs
three generators, if free it must be R @ R @ R, so W~ 'RY? would be isomorphic to

Ok, how do we really check that RY? needs at least 4 generators in characteristic p
(maybe there is a more clever way to pick just two generators)? One option is to localize.
If M is a module which can be generated by d elements, then for any multiplicative set
W, W~=tM can also be generated by d elements (why?) So let’s let W be the elements of
R not contained in (22, #%). Set S = W~'R. Then it’s enough to show that S'/? is not a
free S-module. Note S is local with maximal ideal m = (22, 2%). So consider S'/?/mS'/?,
this is a F, = S/m-module of rank equal to the number of generators. We rewrite it as

SUVP JmSYP = SYP /(2% 23) g1/,

3/2 ,.5/2

and then obviously 1, z,z%/%, x°/* are nonzero in the quotient and they are linearly inde-

pendent over k since they are different degree, and so R'/? has at least 3 generators as an
R-module.

Exercise 1.1. If R = k[2?, 2°], verify that R'/? is not a free R-module for any prime p.
Our work above leads us to a lemma.

Lemma 1.2. Suppose R is a ring and W is a multiplicative set. In this case, W 1F¢R =
F¢(W='R) where the second F¢ can be viewed as either as an W~'R-module or as an
R-module. This can be viewed as either an isomorphism of rings or of F¢R-modules.

Note this is the same WRYP" = (W=LR)Y?* if these terminologies make sense (ie,
R is a domain).

Proof. There is an obvious map W='F¢R — F¢(W~'R) which sends 1/g.Fr — F¢(r/g"").
It is certainly surjective by the argument above since

F(z/g) = F(zg" " /¢") =1/g.Ffag"
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it is also easily verified to be linear in all relevant ways. Thus we simply need to check
that it is injective. Hence suppose that F¢(r/¢g?") = 0. This means that there exists
h € W such that hr = 0. We want to show that 1.F,r = 0 as well in W'F¢R. But to
show that it suffices to show that h?"r = 0 which obviously follows from hr = 0. U

Finally, we will frequently extend ideals via Frobenius, and so we need a notation for
that.

Notation 1.3. Given an ideal I = (f1,..., f,) C R, we write TP := (f*" ... f*). Note
that
I-RY? = (IPIR)Y? and I - F°R = FeI.

1.1. Frobenius and Spec. Remember, associated to any ring R there is Spec R, the set
of prime ideals. It is given the Zariski topology (the set of primes containing any fixed
ideal I is closed). To any ring homomorphism f : R — S, note we get a (continuous)
map Spec S — Spec R which sends Q € Spec S to f~1(Q) € Spec R.

Proposition 1.4. The Frobenius morphism F : R — R induces the identity map on
Spec R.

Proof. Choose Q € Spec R. Since @ is an ideal F(Q) C Q. Thus Q C F~1(Q). Con-
versely, if z € F~1(Q), then 27 € @ and so since Q is prime and hence radical, z € Q. [

The Frobenius is a morphism that acts as the identity on points of Spec but acts by
taking powers/roots on functions.

2. REGULAR RINGS

Commutative algebra can be viewed as “local” algebraic geometry. If you are study-
ing manifolds locally, you are going to be pretty bored, but in algebraic geometry, not
everything is a manifold, so we have to study a lot of “singularities”. To talk about
singularities, we need to have some variant of tangent spaces / some variant of dimension.

Definition 2.1. The Krull dimension of a ring R is defined to be the maximal length n
of a chain of prime ideals

rhchCPRC---CP CR

More generally, given any prime ideal @, the height m of @) is the maximal length of a
chain of prime ideals
hRCPCRC---CP,=Q.

Example 2.2. Here are some examples of dimension.

(a) The dimension of a field k is zero, as it has only one prime ideal (0). Notice that
Spec k is a single point.

(b) The dimension of a PID (such as k[x]) is one since nonzero prime ideals are incom-
parable. Notice that if k = k then Speck is a copy of k plus the zero ideal (the
generic point).

(c¢) The dimension of k[z,y] is 2 assuming k is a field. A maximal chain of prime ideals
is 0 C (z) C (z,9).

We recall some facts about dimension, most of which are easy to prove.

Lemma 2.3. Suppose R is a ring.
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(a) For any ideal I, dim R > dim R/I.
(b) For any multiplicative set W, dim R > dim W' R.
(c) If (R, m) is a Noetherian local ring, then dim R is finite and

dim R = least number of generators of an ideal I with VI =m.

(d) If R is a Noetherian local ring and x is not a zero divisor, then dimR — 1 >
dim(R/(z)).
(e) If R is a domain of finite type over a field and Q) € Spec A, then

dim A = heightQ + dim R/Q.

((this condition is close to something called being catenary, not all Tings satisfy

Definition 2.4. A local (implicitly Noetherian) ring (R, m, k) is called regular if m can
be generated by dim R number of elements.

Note the minimal number of generators of m = dimj,m/m? by Nakayama’s lemma.
Hence it seems reasonable to study m/m?.

Proposition 2.5. Suppose that k =k, R = k[x1,...,x,]/I is a domain and that A = Ry,
for some mazimal ideal m C R. Then m/m? is canonically identified with the dual of the
tangent space of V(I) C k™ at the point corresponding to m.

Proof. Before proving this, let’s fix our definition of the tangent space of V(1) at P = V' (m)
to be the k-vector space of derivations at P. Remember, the set of derivations at P is the
set of k-linear functions A — k which satisfy a Leibniz rule (note, A is basically germs of
functions at P). Note if f, g € m and T is a derivation, then T'(fg) = f(P)T(9)+g9(P)T(f)
and so T'(fg) = 0 since f(P) = g(P) = 0. It follows from the same argument that
T(m?A) = 0.

On the other hand, consider derivations acting on constants 7'(1) =7(1-1) = 17(1) +
17(1) = 27°(1). Hence T'(1) = 0. Thus a derivation is completely determined by its action
on m/m? In particular, derivations are k-linear maps m/m? — k satisfying a Leibniz
rule. But all k-linear maps m/m? — k satisfy a Leibniz rule, and so the set of derivations
is just the k-vector space dual of m/m?. UJ

In other words, the dimension of the tangent space is just dimy m/m?. Thus to call a
ring regular is exactly the same as requiring the tangent space to have the same dimension
as the ambient space (the Spec of the germ of functions).
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