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1. Rings of interest and Frobenius continued

Example 1.1. Consider R = Fp[a, b]/〈a3 − b2〉 = Fp[x
2, x3] ⊆ Fp[x]. Let’s try to under-

stand the structure of R1/p as an R-module at least for some specific p.
We begin in the case that p = 2. R1/p = Fp[x, x

3/2]. Let’s try to write down a minimal
set of monomial generators of R1/p over R. So a first computation suggests that we need
1, x, x3/2, x5/2, in particular we need at least four elements and it is easy to see that these
are enough. On the other hand, R1/p cannot be a free module of rank 4 since if R1/p = R⊕d

then if W = R \ {0},
W−1R1/p = ((W p)−1R)1/p = Fp(x)1/p

since any fraction of k(x) can be written as f(x)/g(x) = f(x)g(x)p−1/g(x)p ∈ (W p)−1R.
But Fp(x)1/p has rank 2 as a Fp(x)-module. Thus it can’t be free since if R1/p needs
three generators, if free it must be R ⊕ R ⊕ R, so W−1R1/p would be isomorphic to
k(x)⊕ k(x)⊕ k(x).

Ok, how do we really check that R1/p needs at least 4 generators in characteristic p
(maybe there is a more clever way to pick just two generators)? One option is to localize.
If M is a module which can be generated by d elements, then for any multiplicative set
W , W−1M can also be generated by d elements (why?) So let’s let W be the elements of
R not contained in 〈x2, x3〉. Set S = W−1R. Then it’s enough to show that S1/p is not a
free S-module. Note S is local with maximal ideal m = 〈x2, x3〉. So consider S1/p/mS1/p,
this is a Fp = S/m-module of rank equal to the number of generators. We rewrite it as

S1/p/mS1/p = S1/p/〈x2, x3〉S1/p

and then obviously 1, x, x3/2, x5/2 are nonzero in the quotient and they are linearly inde-
pendent over k since they are different degree, and so R1/p has at least 3 generators as an
R-module.

Exercise 1.1. If R = k[x2, x3], verify that R1/p is not a free R-module for any prime p.

Our work above leads us to a lemma.

Lemma 1.2. Suppose R is a ring and W is a multiplicative set. In this case, W−1F e
∗R
∼=

F e
∗ (W−1R) where the second F e

∗ can be viewed as either as an W−1R-module or as an
R-module. This can be viewed as either an isomorphism of rings or of F e

∗R-modules.
Note this is the same W−1R1/pe ∼= (W−1R)1/p

e
if these terminologies make sense (ie,

R is a domain).

Proof. There is an obvious map W−1F e
∗R −→ F e

∗ (W−1R) which sends 1/g.F e
∗ r 7→ F e

∗ (r/gp
e
).

It is certainly surjective by the argument above since

F∗(x/g) = F∗(xg
pe−1/gp

e

) = 1/g.F e
∗xg

pe−1
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it is also easily verified to be linear in all relevant ways. Thus we simply need to check
that it is injective. Hence suppose that F e

∗ (r/gp
e
) = 0. This means that there exists

h ∈ W such that hr = 0. We want to show that 1.F∗r = 0 as well in W−1F e
∗R. But to

show that it suffices to show that hper = 0 which obviously follows from hr = 0. �

Finally, we will frequently extend ideals via Frobenius, and so we need a notation for
that.

Notation 1.3. Given an ideal I = 〈f1, . . . , fn〉 ⊆ R, we write I [p
e] := 〈fpe

1 , . . . , f pe

n 〉. Note
that

I ·R1/pe = (I [p
e]R)1/p

e

and I · F e
∗R = F e

∗ I
[pe].

1.1. Frobenius and Spec. Remember, associated to any ring R there is SpecR, the set
of prime ideals. It is given the Zariski topology (the set of primes containing any fixed
ideal I is closed). To any ring homomorphism f : R −→ S, note we get a (continuous)
map SpecS −→ SpecR which sends Q ∈ SpecS to f−1(Q) ∈ SpecR.

Proposition 1.4. The Frobenius morphism F : R −→ R induces the identity map on
SpecR.

Proof. Choose Q ∈ SpecR. Since Q is an ideal F (Q) ⊆ Q. Thus Q ⊆ F−1(Q). Con-
versely, if x ∈ F−1(Q), then xp ∈ Q and so since Q is prime and hence radical, x ∈ Q. �

The Frobenius is a morphism that acts as the identity on points of Spec but acts by
taking powers/roots on functions.

2. Regular rings

Commutative algebra can be viewed as “local” algebraic geometry. If you are study-
ing manifolds locally, you are going to be pretty bored, but in algebraic geometry, not
everything is a manifold, so we have to study a lot of “singularities”. To talk about
singularities, we need to have some variant of tangent spaces / some variant of dimension.

Definition 2.1. The Krull dimension of a ring R is defined to be the maximal length n
of a chain of prime ideals

P0 ⊆ P1 ⊆ P2 ⊆ · · · ⊆ Pn ( R.

More generally, given any prime ideal Q, the height m of Q is the maximal length of a
chain of prime ideals

P0 ⊆ P1 ⊆ P2 ⊆ · · · ⊆ Pm = Q.

Example 2.2. Here are some examples of dimension.

(a) The dimension of a field k is zero, as it has only one prime ideal 〈0〉. Notice that
Spec k is a single point.

(b) The dimension of a PID (such as k[x]) is one since nonzero prime ideals are incom-
parable. Notice that if k = k then Spec k is a copy of k plus the zero ideal (the
generic point).

(c) The dimension of k[x, y] is 2 assuming k is a field. A maximal chain of prime ideals
is 0 ⊆ 〈x〉 ⊆ 〈x, y〉.

We recall some facts about dimension, most of which are easy to prove.

Lemma 2.3. Suppose R is a ring.
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(a) For any ideal I, dimR ≥ dimR/I.
(b) For any multiplicative set W , dimR ≥ dimW−1R.
(c) If (R,m) is a Noetherian local ring, then dimR is finite and

dimR = least number of generators of an ideal I with
√
I = m.

(d) If R is a Noetherian local ring and x is not a zero divisor, then dimR − 1 ≥
dim(R/〈x〉).

(e) If R is a domain of finite type over a field and Q ∈ SpecA, then

dimA = heightQ + dimR/Q.

((this condition is close to something called being catenary, not all rings satisfy
it?!?!?))

Definition 2.4. A local (implicitly Noetherian) ring (R,m, k) is called regular if m can
be generated by dimR number of elements.

Note the minimal number of generators of m = dimk m/m2 by Nakayama’s lemma.
Hence it seems reasonable to study m/m2.

Proposition 2.5. Suppose that k = k, R = k[x1, . . . , xn]/I is a domain and that A = Rm

for some maximal ideal m ⊆ R. Then m/m2 is canonically identified with the dual of the
tangent space of V (I) ⊆ kn at the point corresponding to m.

Proof. Before proving this, let’s fix our definition of the tangent space of V (I) at P = V (m)
to be the k-vector space of derivations at P . Remember, the set of derivations at P is the
set of k-linear functions A −→ k which satisfy a Leibniz rule (note, A is basically germs of
functions at P ). Note if f, g ∈ m and T is a derivation, then T (fg) = f(P )T (g)+g(P )T (f)
and so T (fg) = 0 since f(P ) = g(P ) = 0. It follows from the same argument that
T (m2A) = 0.

On the other hand, consider derivations acting on constants T (1) = T (1 · 1) = 1T (1) +
1T (1) = 2T (1). Hence T (1) = 0. Thus a derivation is completely determined by its action
on m/m2. In particular, derivations are k-linear maps m/m2 −→ k satisfying a Leibniz
rule. But all k-linear maps m/m2 −→ k satisfy a Leibniz rule, and so the set of derivations
is just the k-vector space dual of m/m2. �

In other words, the dimension of the tangent space is just dimk m/m2. Thus to call a
ring regular is exactly the same as requiring the tangent space to have the same dimension
as the ambient space (the Spec of the germ of functions).
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