
MACAULAY2 WORKSHEET FOR CHARACTERISTIC p
COMMUTATIVE ALGEBRA

JANUARY 23RD, 2017

DUE FEBRUARY 6TH, 2017

You are encouraged to work in groups of up to 3, only one assignment is due for each
group, but everyone needs to work together. Your solution must be LaTeX’d on this
assignment.

There are lots of commands below. You are expected to play around with them to
figure out how they work on your own. You can always use help commandname or possibly
viewhelp commandname, or look at the documentation on Macaulay2’s website.

1. Running Macaulay2 for the first time

It is easiest to run Macaulay2 from within emacs, so we will explain how to do that. If
you are already running Macaulay2 in emacs regularly, you can probably skip this step.
Once you have Macaulay2 installed, to set it up from your account for the first time open
up a terminal and execute

M2

It should show you something like:

Macaulay2, version 1.8.2

with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 :

From here, execute the command

i1 : setup()

which should probably ask you some questsions, answer yes to all of them.
Now exit out of the command line Macaulay2 by running

exit

Once you are back in the regular terminal, run

emacs &

Once emacs starts, hit the F12 key, this should start Macaulay2 (I hope). You may want
to hide the existing emacs buffer by hitting ctrl+X followed by 1. Now you are running
emacs in a happy little window with what most people find is a nicer interface than the
command line (ie, there is reasonable Macaulay2 syntax highlighting, autocompletion of
commands works).

2. Making a ring and a map of rings

From within Macaulay2 execute the following commands.
1



2 DUE FEBRUARY 6TH, 2017

i1 : R = ZZ/5[x,y,z]

i2 : S = ZZ/5[a,b]

i3 : f = map(S, R, {a, a*b, b^2})

i4 : I = ker f

i5 : T = R/I

Commands i1 and i2 simply create two rings R and S. Command i3 creates a ring map
f : R −→ S (note the first entry is the source, the second is the target). Indeed, to specify
such a ring map one must say where the variables {x, y, z} go, this is done by the list
{a, a ∗ b, b2} which says that x 7→ a, y 7→ ab, z 7→ b2.

Next we compute the kernel of f and form the quotient ring T = R/I so that T ∼=
Image(f) by construction.

3. Frobenius

Exercise 1. Define the Frobenius maps FR : R −→ R and FT : T −→ T in your Macaulay2
session. I called my maps FR and FT respectively.

Hint: If you are having trouble convincing Macaulay2 which ring your variables live in,
you can always use the commands use R and use T respectively.

We want to view R as an R-module via Frobenius, to do that we need the PushForward
package, which we start by running.

i7 : loadPackage "PushForward"

Once the package is loaded, we can pushforward modules. For example, first I’m going to
create a rank-1 free R-module M and then push it forward by Frobenius (for R).

i13 : M = R^1

i14 : FM = pushFwd(M, FR)

Verify that Macaulay2 gives you something reasonable.

Exercise 2. Next, make N , a free T -module of rank 1 and push it forward by FT to
obtain a module I am calling FN. Verify that it is not locally free via the command pdim

which computes the projective dimension. What answer should it give you if it was free.
Aside: Note this only computes the projective dimension up to a certain limit, in this
case 4. If you want to compute a longer (partial) projective resolution, you can use the
command resolution(FN, LengthLimit=>10) and observe that it will compute a longer
partial resolution.

Warning #1: I suspect that Macaulay2 will not always give the right answer for pro-
jective dimension if R is not a graded ring and M is not a graded module. You have been
warned! Note in this case, if you set k = T/ideal(x,y,z) and compute

dim Ext^1(FN, k)

you’ll get something > −1 which pretty well proves that FN is not projective.

Warning #2: Note the command isFree only checks whether Macaulay2 is thinking of
a module as locally free at the moment, it does not check whether the module is actually
locally free.

We have just verified that T is not regular by checking that F∗T is not locally free.
That’s a ridiculous way to do this. The next section gives us another option.



MACAULAY2 WORKSHEET FOR CHARACTERISTIC p COMMUTATIVE ALGEBRAJANUARY 23RD, 20173

4. Functions

We are going to create a function which takes an ideal I = 〈f1, . . . , fn〉 and returns the
ideal I [p] = 〈fp

1 , . . . , f
p
n〉. First let’s learn the necessary commands, like how to extract a

list of generators from an ideal.

i38 : use T

i39 : J = ideal(x^4, x*y- z^5, y^6 - z^3)

i41 : L = first entries gens J

At this point L is a list a generators of J . Let’s make a list of these generators to higher
powers by running the command:

i43 : p = char T

i44 : Lp = apply(L, u -> u^p)

i45 : Jp = ideal(Lp)

The command apply applies a function to every element in the list. In our case, we made
an inline ad-hoc function u->u^p.

More generally, the command myFunction = u -> u = u+1; 2*u should create a
function that takes in a number, adds one to that, and then doubles the output. Indeed,
try myFunction(5).

Exercise 3. Create a function frobeniusPower which takes an ideal I and returns I [p].

Hint: If you are trying to grab the characteristic, note that char ring I should give
you the characteristic of the ring.

After you’ve made this function, run the following commands.

i54 : use T

i55 : m = ideal(x,y,z)

i56 : mp = frobeniusPower(m)

i57 : degree(T^1/mp)

i58 : (char T)^(dim T)

Note degree computes the length of a module. Hopefully those two numbers you con-
structed are different. On the other hand, if T was regular of dimension 2 at the
origin, by the completion argument we did earlier in class, T/m[p] should have length
pdimT = 52 = 25. Indeed, this sounds like a good non-Macaulay2 exercise.

Exercise 4. Prove that if (R,m, k) is a regular local ring of dimension d, characteristic
p > 0 and with a perfect residue field k, then

lengthR(F∗R)/m = lengthRF∗(R/m[p]) = lengthR(R/m[p]) = pd.

Make sure to explain why we can remove the F∗ in the second to last equality.

5. The other way to check regularity

There is one other obvious way to check regularity, via the Jacobian condition. I’ll step
you through this and then show you the easy way to get it.

i62 : use T

i63 : I = ideal T

i64 : jacobian I

i65 : minors(1, jacobian I)



4 DUE FEBRUARY 6TH, 2017

i66 : jac = sub(minors(1, jacobian I), T)

i67 : jac == ideal(1_T)

Note the Jacobian of an ideal is a matrix (as it probably should be). We then compute
the 1× 1 minors of that matrix. Finally we substitute that matrix back into T and check
whether we get the whole ring.

Another way to accomplish the same thing is via the command singularLocus.

Exercise 5. Play around with the singularLocus command and figure out how to use
it to construct the ideal jac we constructed above. Turn in a sequence of commands that
does it.

Finally, let’s make a more interesting singular ring. Run the following commands.

i72 : restart

i1 : R = ZZ/5[a,b]

i2 : S = ZZ/5[x,y,z,u,v,w]

i3 : f = map(R, S, {a^5, a^4*b, a^3*(b^2 - b), a^2*b^3, a*b^4, b^5})

i4 : I = ker f

i5 : T = S/I

Feel free to make your own more singular ring T , the way I am constructing it, we will
definitely get a domain though.

Exercise 6. Verify that the ring T (or your own more interesting ring) is singular. Com-
pute the singular locus and use Macaulay2 to help you write it in as simple a way as
possible. What is the dimension of T , what is the dimension of the singular locus of T?

Hint: The command minimalPrimes should give you the minimal primes in a primary
decomposition of an ideal.


	1. Running Macaulay2 for the first time
	2. Making a ring and a map of rings
	3. Frobenius
	4. Functions
	5. The other way to check regularity

