

EXERCISES FOR CHARACTERISTIC p COMMUTATIVE ALGEBRA
FEBRUARY 27RD, 2017

DUE, FRIDAY MARCH 10TH, 2017

(1) For R a Noetherian ring, $I \subseteq R$ an ideal and $U = \text{Spec } R \setminus V(I)$ we defined for any R -module M

$$\Gamma(U, M) = \ker \left(\bigoplus_j M_{f_j} \rightarrow \bigoplus_{a < b} M_{f_a f_b} \right)$$

where $I = \langle f_1, \dots, f_m \rangle$. Prove that $\Gamma(U, M)$ is independent of the choice of generators of I .

(2) Suppose that R is a Noetherian ring. Recall that an object $\omega^\bullet \in D_{f.g.}^b(R)$ is called a *dualizing complex for R* if the following two conditions are satisfied.

- ω^\bullet has finite injective dimension (is quasi-isomorphic to a bounded complex of injectives) and,
- The functor $\mathbf{D}(_) = \mathbf{R} \text{Hom}_R(_, \omega^\bullet)$ has the property that the canonical map $C^\bullet \rightarrow \mathbf{D}(\mathbf{D}(C^\bullet))$ is an isomorphism for all $C^\bullet \in D_{f.g.}^b(R)$.

(b') Or equivalently to (b), $R \cong \mathbf{R} \text{Hom}_R(\omega^\bullet, \omega^\bullet)$.

Prove that (b') implies (b) above.

Hint: If you are stuck you may use the following formula (or prove it if you are feeling ambitious). For $A^\bullet, B^\bullet, C^\bullet \in D_{f.g.}^b(R)$ with C^\bullet quasi-isomorphic to a finite complex of injectives, we have

$$A^\bullet \otimes_R^L \mathbf{R} \text{Hom}_R(B^\bullet, C^\bullet) \simeq_{\text{qis}} \mathbf{R} \text{Hom}_R(\mathbf{R} \text{Hom}_R(A^\bullet, B^\bullet), C^\bullet)$$

(3) Suppose that (R, \mathfrak{m}) is an F -finite Noetherian local ring of characteristic $p > 0$ with a dualizing complex. Then $\mathbf{R} \text{Hom}_R(F_*^e R, \omega_R^\bullet) =: \omega_{F_*^e R}^\bullet$ is a dualizing complex for $F_*^e R$. Furthermore, $F_*^e \omega_R^\bullet \simeq_{\text{qis}} \omega_{F_*^e R}^\bullet$.

Hint: The fact that it is a dualizing complex was worked out in class. Dualizing complexes are unique up to shifting and twisting by rank-one projectives. Use the fact that it is local to handle the rank-1 projective case. Then use the that the localization of a dualizing complex is a dualizing complex to handle the shift (localize at a minimal prime).

(4) Show that the formation of R^N (the normalization of R) commutes with localization, in particular if $W \subseteq R$ is a multiplicative set then $(W^{-1}R)^N = W^{-1}(R^N)$.

(5) Suppose that $R = k[x]$ (char $k \neq 2$) and consider the three points $x = -1, x = 0, x = 1$. Glue these three points together and find a presentation of the resulting non-normal ring. Give a geometric justification about why the Spec of it cannot be embedded as a closed subscheme of $\mathbb{A}^2 = \text{Spec } k[u, v]$.

(6) Fix R an F -finite ring of characteristic $p > 0$, $\mathfrak{a} \subseteq R$ an ideal and $t \geq 0$ a real number. We say that a pair (R, \mathfrak{a}^t) is (*sharply*) F -split if there exists an $e > 0$ and an element

$$\phi \in (F_*^e \mathfrak{a}^{\lceil t(p^e - 1) \rceil}) \cdot \text{Hom}_R(F_*^e R, R)$$

such that $\phi(F_*^e R) = R$. Prove the following facts about sharply F -split pairs.

- i. Show that if (R, \mathfrak{a}^t) is sharply F -split then for all sufficiently divisible $e > 0$, there exists a ϕ as above.
- ii. Find an example that is sharply F -split but such that a ϕ as above does not exist for every $e > 0$.
- iii. Suppose that (R, \mathfrak{a}^t) is sharply F -split. Show that there exists $t' \geq t$ with $t' = \frac{b}{p^e - 1}$ such that $(R, \mathfrak{a}^{t'})$ is also sharply F -split.
- iv. Show that (R, \mathfrak{a}^t) is sharply F -split if and only if for every maximal $\mathfrak{m} \in \text{Spec } R$, $(R_{\mathfrak{m}}, \mathfrak{a}_{\mathfrak{m}}^t)$ is sharply F -split.
- v. If (R, \mathfrak{m}) is local, then show that (R, \mathfrak{a}^t) is sharply F -split if and only if for some $e > 0$ there exists an element $z \in \mathfrak{a}^{\lceil t(p^e - 1) \rceil}$ such that the map

$$\begin{aligned} R &\longrightarrow F_*^e R \\ 1 &\longmapsto F_*^e z \end{aligned}$$

splits as a map of R -modules.

- (7) A map of rings $R \rightarrow S$ is called *pure* if for every R -module M , the map $M \rightarrow M \otimes_R S$ is injective. Suppose that S is a finite R -module, show that $R \rightarrow S$ is pure if and only if $R \rightarrow S$ splits as a map of R -modules.

Hint: First reduce to the case that R is complete and local and let E be the injective hull of the residue field. Consider the injective map $E \rightarrow E \otimes_R S$ and apply Matlis duality and $\text{Hom} - \otimes$ adjointness.

Remark. A ring is called F -*pure* if the Frobenius map $R \rightarrow F_* R$ is pure. Because of this, and because most rings we study are F -finite, the terms F -pure or F -split are usually synonymous.

- (8) Given an ideal $\mathfrak{a} \subseteq R$ in an F -finite ring, we define the F -*split (or F -pure) threshold* $\text{fpt}(R, \mathfrak{a})$ of (R, \mathfrak{a}) to be

$$\text{fpt}(R, \mathfrak{a}) := \{t \geq 0 \mid (R, \mathfrak{a}^t) \text{ is sharply } F\text{-split}\}.$$

Compute the F -pure threshold of the following pairs, in all of them $k = \overline{\mathbb{F}_p}$.

- i. $k[x, y]$, $\mathfrak{a} = \langle x^u y^v \rangle$.
- ii. $k[x, y, z]$, $\mathfrak{a} = \langle x^2 y - z^2 \rangle$ (the answer depends on the characteristic).
- iii. $k[x, y]$, $\mathfrak{a} = \langle y^2 - x^3 \rangle$ (the answer also depends on the characteristic).