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CHAPTER 1

Frobenius and Kunz’s theorem

These are notes for Math 7830, taught by Karl Schwede in Spring 2017.

Acknowledgements: The author would like to thank all the students in the class
for stimulating discussions (and pointing out slicker proofs on the fly). He also thanks
Pinches Dirnfeld for correcting some typos in an earlier draft of these notes.

1. Rings of interest and Frobenius

Setting 1.1. We will be working with rings (commutative with unity). These rings
are usually Noetherian. Recall that a Noetherian ring is called local if it has a single
unique maximal ideal.

We start with some examples of the types of rings we are interested in.

Example 1.2. (a) Clzy,...,x,], we can view this as polynomial functions on
Cn.
(b) k[zy,...,2,] (k=k), we can view this as polynomial functions on k".

(¢) klz,y]/(x® — y?), (k = k). These are polynomial functions on k? but we
declare two functions to be the same if they agree where 23 = 7.

(d) k[z1,...,2,]/I (k =k, I = /I). These are polynomial functions on k™ but
we declare two functions to be equal if they agree on V(I).

Let’s now work in characteristic p > 0. The special thing about rings in char-
acteristic p > 0 is that they have a Frobenius morphism, F' : R — R which sends
=P

Lemma 1.3. F': R — R is a ring homomorphism.

PROOF. Since R is commutative, F(rr') = (rr')? = rPr = F(r)F(r’). The
additive part is slightly trickier, F(r + 1) = (r + )P = r? + (O)rP~/ + ... +
(pf 1)7“7"’1”_1 + r'?. Since R has characteristic p, all of the mixed terms (the foiled
terms) vanish. Hence F(r +71') = rP + P = F(r) + F(r'). O

The Frobenius turns out to be a very useful tool in characteristic p > 0 algebra
(and algebraic geometry) as we will see throughout the semester. For now, let’s
explore what this Frobenius map means.

Lemma 1.4. Frobenius is injective if and only if R is reduced (has no nilpotents).
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4 1. FROBENIUS AND KUNZ’'S THEOREM

PROOF. Suppose first that Frobenius is injective and that 2" = 0 € R, we will
show that z = 0. Since ™ = 0, we know that x?° = 0 for some integer ¢ > 0 (so that
p°>n). But F*=FoFo---o0F sends x — 2" = 0, and hence z = 0 as desired.

Conversely, if R is reduced, F' is obviously injective because F'(x) = P = 0 implies
that ©z = 0. 0]

Remark 1.5. In our examples above, the Frobenius morphism is almost never sur-
jective.

1.1. Other ways to think about the Frobenius.

RP C R: Let R be a reduced ring (for example, a domain) and let RP denote
the subring of pth powers of R. Then the map R — RP which sends r — rP
is a ring isomorphism. Hence the Frobenius map F': R — R factors through
RP — R, and in fact can be identified with that inclusion.

R C RY?: Again let R be a domain (or a reduced ring). Let R'? denote the
ring of pth roots of all elements of R (inside an algebraic closure of the fraction
field of R). Again R is abstractly isomorphic to R via the map R'/? — R
which sends z + 2?. In particular the Frobenius on R'/? has image R (inside
RYP). Hence F can also be viewed as the inclusion R C R'/?.

If I C R is an ideal, then we can also write I'/? to be the pth roots of
elements of I, note this is the image of I under the identification R <> R'/?
which sends r s /7.

F,R: Whenever we have a ring homomorphism f : R — S, we can view S as
an R-module via f (r.s = f(r)s). Hence we can view R as an R-module
via Frobenius. It can be confusing to write R for this module. There are a
several options.

(a) RYP works (at least when R is reduced).
(b) Otherwise, some people use F,R (this borrows from sheaf theoretic lan-
guage).
More generally F,e is a functor (the restriction of scalars functor), and so
we can apply it to any R module. Indeed, if M is an R-module then F,M
is the R-module which is the same as R as an Abelian group but such that
if r € R, and m € F,M, then r.m = rPm. Because it can be confusing to
remember which module m is in, sometimes we write F,m instead of m, then
r.F.m = F.rPm.

We will switch between these descriptions freely.

Example 1.6 (Polynomial ring in one variable). Consider R = F,[z]. Then R is

a free RP-module of rank p with basis 1,z,...,27~!. Equivalently, RY/? is a free
R-module with basis 1,27, ..., 2®=D/?_ Finally, F,R is a free R-module with basis
1,z,...,2P~ 1. To avoid confusion, we frequently denote this basis by F,1, F,x, ..., F,aP~!

even though F, as a functor, doesn’t act on elements exactly.

Example 1.7 (Polynomial ring in n variables). Consider R = F,[xy,...,2,]. Then
R is a free RP-module of rank p” with basis {z7*--- 2% | 0 < a; < p — 1}. Likewise
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g an_
RYP is a free R-module with basis {z7™" -- 25" | 0 < a; < p — 1}, similarly with
F.R as an R-module.

If we iterate Frobenius F¢ : R — R, then we can also view R as an R-module via
e-iterated Frobenius.

Exercise 1.1. Write down a basis for F{F,[z,...,z,] over Fylxy, ..., x,].
Interestingly enough, the situation is more complicated for non-polynomial rings.

Example 1.8. Consider R = Fpla,b]/(a® — b?) = F,[2? 2% C F,lz]. Let’s try to
understand the structure of R/ as an R-module at least for some specific p.

We begin in the case that p = 2. RYP = F,[z,2%?]. Let’s try to write down a
minimal set of monomial generators of RY/? over R. So a first computation suggests
that we need 1, z, 23/2, %2, in particular we need at least four elements and it is easy

to see that these are enough. On the other hand, R'? cannot be a free module of
rank 4 since if R'/? = R®? then if W = R\ {0},

WLRYE = (W) I R)MY = () /7

since any fraction of k(z) can be written as f(x)/g(z) = f(z)g(x)?~'/g(z)? € (WP)"'R.
But F,(z)"/? has rank 2 as a F,(z)-module. Thus it can’t be free since if RY/? needs
three generators, if free it must be R @ R @ R, so W~'RY? would be isomorphic to

Ok, how do we really check that R'/? needs at least 4 generators in characteristic
p (maybe there is a more clever way to pick just two generators)? One option is
to localize. If M is a module which can be generated by d elements, then for any
multiplicative set W, W~1M can also be generated by d elements (why?) So let’s
let W be the elements of R not contained in (x? 23). Set S = W™'R. Then it’s
enough to show that S'/? is not a free S-module. Note S is local with maximal ideal
m = (22, 23). So consider SY/?/mSYP_ this is a F, = S/m-module of rank equal to
the number of generators. We rewrite it as

SYP fmSYP = SYP /(22 23) 1),

and then obviously 1,z, 2%2, 252 are nonzero in the quotient and they are linearly
independent over k since they are different degree, and so R'/? has at least 3 generators
as an R-module.

Exercise 1.2. If R = k[2?, 2], verify that R'P is not a free R-module for any prime
p.
Our work above leads us to a lemma.

Lemma 1.9. Suppose R is a ring and W 1is a multiplicative set. In this case,
WFR = F¢(W™'R) where the second F¢ can be viewed as either as an W™ R-
module or as an R-module. This can be viewed as either an isomorphism of rings or
of F¢R-modules.

Note this is the same W™ RYP" = (W=LR)Y?* if these terminologies make sense
(ie, R is a domain).
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PROOF. There is an obvious map W' F¢R — F¢(W~!R) which sends 1/g.Ffr
Fe(r/gP"). Tt is certainly surjective by the argument above since

F(z/g) = F(zg" " /¢") =1/g.Ffag"

it is also easily verified to be linear in all relevant ways. Thus we simply need to check
that it is injective. Hence suppose that F¢(r/g’") = 0. This means that there exists
h € W such that hr = 0. We want to show that 1.F,r = 0 as well in W' F¢R. But to
show that it suffices to show that h?°r = 0 which obviously follows from hr = 0. [

Finally, we will frequently extend ideals via Frobenius, and so we need a notation
for that.

Notation 1.10. Given an ideal I = (fi,..., f,) C R, we write IP7 .= (f" . ),
Note that
I-RYP" = (IPIR)YP and I - F°R = F°IP),

1.2. Frobenius and Spec. Remember, associated to any ring R there is Spec R,
the set of prime ideals. It is given the Zariski topology (the set of primes containing
any fixed ideal I is closed). To any ring homomorphism f : R — S, note we get a
(continuous) map Spec S — Spec R which sends Q € Spec S to f~1(Q) € Spec R.

Proposition 1.11. The Frobenius morphism F' : R — R induces the identity map
on Spec R.

PROOF. Choose @ € Spec R. Since @ is an ideal F(Q) C Q. Thus Q C F~1(Q).
Conversely, if z € F~1(Q), then 27 € @Q and so since Q is prime and hence radical,
x € Q. O

The Frobenius is a morphism that acts as the identity on points of Spec but acts
by taking powers/roots on functions.

2. Regular rings

Commutative algebra can be viewed as “local” algebraic geometry. If you are
studying manifolds locally, you are going to be pretty bored, but in algebraic geome-
try, not everything is a manifold, so we have to study a lot of “singularities”. To talk
about singularities, we need to have some variant of tangent spaces / some variant of
dimension.

Definition 2.1. The Krull dimension of a ring R is defined to be the maximal length
n of a chain of prime ideals

PCPCPC---CPCR

More generally, given any prime ideal ), the height m of @) is the maximal length of
a chain of prime ideals

PhRCPCPRC---CP,=Q.

Example 2.2. Here are some examples of dimension.
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(a) The dimension of a field k is zero, as it has only one prime ideal (0). Notice
that Speck is a single point.

(b) The dimension of a PID (such as k[z]) is one since nonzero prime ideals are
incomparable. Notice that if k = k then Speck is a copy of k plus the zero
ideal (the generic point).

(c¢) The dimension of k[x,y] is 2 assuming k is a field. A maximal chain of prime
ideals is 0 C (z) C (z,y).

We recall some facts about dimension, most of which are easy to prove.

Lemma 2.3. Suppose R is a ring.

(a) For any ideal I, dim R > dim R/I.
(b) For any multiplicative set W, dim R > dim W!R.
(¢) If (R,m) is a Noetherian local ring, then dim R is finite and

dim R = least number of generators of an ideal I with VI =m.

(d) If R is a Noetherian local ring and x is not a zero divisor, then dim R — 1 >
dim(R/(z)).
(e) If R is a domain of finite type over a field and Q) € Spec A, then

dim A = heightQ + dim R/Q.

(this condition is close to something called being catenary, not all rings satisfy

Definition 2.4. A local (implicitly Noetherian) ring (R, m, k) is called regular if m
can be generated by dim R number of elements.

Note the minimal number of generators of m = dim;, m/m? by Nakayama’s lemma.
Hence it seems reasonable to study m/m?.

Proposition 2.5. Suppose that k = k, R = k[xy,...,z,]/1 is a domain and that
A = Ry for some maximal ideal m C R. Then m/m? is canonically identified with
the dual of the tangent space of V(I) C k™ at the point corresponding to m.

PROOF. Before proving this, let’s fix our definition of the tangent space of V(1)
at P = V(m) to be the k-vector space of derivations at P. Remember, the set of
derivations at P is the set of k-linear functions A — k which satisfy a Leibniz rule
(note, A is basically germs of functions at P). Note if f, g € m and T is a derivation,
then T'(fg) = f(P)T(g) + g(P)T'(f) and so T(fg) = 0 since f(P) = g(P) = 0. It
follows from the same argument that 7'(m*A4) = 0.

On the other hand, consider derivations acting on constants 7'(1) = T'(1-1) =
1T(1)+17(1) = 27(1). Hence T(1) = 0. Thus a derivation is completely determined
by its action on m/m? In particular, derivations are k-linear maps m/m? — k
satisfying a Leibniz rule. But all k-linear maps m/m? — k satisfy a Leibniz rule, and
so the set of derivations is just the k-vector space dual of m/m?. O
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In other words, the dimension of the tangent space is just dim;m/m2. Thus to
call a ring regular is exactly the same as requiring the tangent space to have the same
dimension as the ambient space (the Spec of the germ of functions).

Fortunately, for most rings there is a convenient way to check whether a local ring
is regular (rather than messing about with derivations).

Proposition 2.6 (Essentially taken from [Har77]). Suppose k =k and R = k[xy, ..., x,)/] =
S/I is a domain with I = (f1,..., f;). If P C R is a maximal ideal then Rp is reqular
if and only if the Jacobian matriz ||(0f;/0x;)(P)|| has rank n —r where r = dim R.

PROOF. Let m = (g1 = 21 — aq,...,g, = T, — a,) be the ideal corresponding to
P in the polynomial ring S. Consider the map p: S — k™ defined by

o) = (E) ).

Note p(g;) form a basis for k" and that p(m?) = 0. Hence we get p : m/m? — k™. This

is an isomorphism (by direct computation, we are still in the polynomial ring setting).

Now, p(I) has k-vector space dimension equal to the rank of the Jacobian matrix at

that point. Thus the rank of the Jacobian matrix is the same as dimy (1 + m?)/m?.
The dimension of the tangent space of V(1) at P however is

dim(m/I)/(m/1)* = dimy(m/(m? + I)).
It follows that
n = dimy(m/(m?+1))+dimy (I +m?) /m? = (tangent space dimension)-+(Jacobian rank).
The result follows immediately. 0J

Remark 2.7 (Warning!). This only works over algebraically closed fields since we
can write their maximal ideals in a very special way.

The above gets us a way to identify the locus where a ring (of finite type over an
algebraically closed field) is regular.

Algorithm 2.8. Given k& = k and a domain R = k[zi,...,2,]/I of dimension r,
compute the following algorithm to find a canonical ideal defining the locus where R
is not regular (where it localizations are not regular).

(a) Let M =||0f;/0x;|| denote the Jacobian matrix where I = (fi,..., fi).

(b) Let J the ideal defined by the determinants of all (n — r) x (n — r)-minors of
J.

(¢) J + I is the desired ideal.

By the Nullstellensatz, a maximal ideal contains J 4+ [ if and only if it is in V' (I) and
if M(P), the evaluation of M at P, has rank < n —r.

Example 2.9. Consider k[z,y, 2]/(z?y — 2%), a ring of dimension 2. The Jacobian
matrix has only three entries, 2zy, 22, 2z, and we want to form the ideal made up by
the 1 x 1 determinants. J + I = (2xy, 22,2z, 2%y — 2?). We have two cases.
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If chark = 2, J+ I = (2%, 2%). If chark # 2, then J + I = (zy, 2%, 2). Notice that
in both cases, the radical of the ideal v/J + I = (x, z), so the singular locus is the
same, even though the Jacobian ideals are somewhat different.

However, it can even happen that an equation can define a ring which is singular
in some characteristics but nonsingular in others.

Example 2.10. Consider k = F,(¢) and R = k[z]|/(2? — t). Obvious R is regular
since it is a field = k(t'/7). The Jacobian matrix has a single entry, 2 a? —t = 0 and
hence the rank of the Jacobian matrix is 0. On the other hand n = 1 since there is
one variable and r = 0 since a field has dimension zero. In particular,

0 = (Jacobian rank) #1—0 = 1.

Definition 2.11. A Noetherian ring is called regular if all of its localizations at prime
ideals are regular local rings.

This is a bit confusing, since it is not clear yet whether a regular local ring satisfies
this property.

Theorem 2.12 (Serre, Auslander-Buchsbaum). If R is a regular local ring and Q) €
Spec R is a prime ideal, then Rq is a reqular local ring.

The point is that a Noetherian local ring is regular if and only if it has finite global
dimension (the projective dimension of every module is finite and in fact < dim).

Exercise 2.1. Use the fact that a Noetherian local ring is regular if and only if it
has finite global dimension to prove that if R is a regular local ring, then so is R¢ for
any @) € Spec R.

Here are some facts about regular rings which we will use without proof (including
the one just mentioned above). Recall first the following definitions.

Definition 2.13. An R-module M is called flat if the functor __ ®@g M is (left) exact.
A module M is called projective if the functor Homg (M, _ ) is (right) exact.

Theorem 2.14. (a) A regular ring is normall

(b) If R is regular so is R[X] and R[z].

(c) A regular local ring is a UFD.

(d) If (A,m) C (B,n) is a locaf| extension of Noetherian local rings with A reg-
ular and B Cohen-Macaulay (for example, reqular) and if we have dim B =
dim A 4 dim(B/mB), then B is a flat A-module.

(e) A local ring (R,m) is reqular if and only if the global dimension of R is
finite (in other words, the projective dimension of any module is finite, and in
particular < dim R. It is sufficient to find the global dimension of k = R/m.).

PROOF. See for example [Mat89, Theorem 19.2, Theorem 19.4, Theorem 19.5,
Theorem 20.3, Theorem 23.1]. O

IThis means that R is its own integral closure in its ring of fractions, recall z € K (R) is integral
over R if it satisfies a monic equation 2™ 4+ r,_12" ' +--- + 19 = 0 for r; € R.
2This just means that m C n, note Z C Q is not local.
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Let’s give some examples which show that the conditions of (d) are sharp.

Example 2.15 (Non-flat local extension with the wrong dimensions). Consider R =
Elz, Y]z € k[, y/x] (2,42 = S. It is easy to check that this is a local extension since
(r,y/x)s N R contains both z and Y and so must equal (x,y)r. Now, dim R = 2
(since we just localize A? at the origin) and likewise dim S = 2 since S is abstract
isomorphic to R. Finally, let m = (z,y)r and consider mS = (x,y)s = (x)s = xS.
Thus S/mS = S/xzS = k[y/x] and so dim S/mS = 1. Thus note that

2=dim S # dim R + dim(S/mS) =2+1=3

and so [Theorem 2.14{(d) does not apply. Let’s next verify that S is not a flat R-
module. Consider the injection of R-modules,

kly| = R/tR—— R/xR = k[y].

Example 2.16 (Non-flat local extensions where the base is not regular). Consider
R = k[2?, 2y, v (22,092 C k2, Y] ey = S and set m = (2%, 2y, y*) g and n = (2, y)s.
We view S as an R-module.

First note that 2 = dim S = dim R + dim(S/mS) = 24 0. On the other hand R
is not smooth since dim(m/m?) = 3 > 2.

Now we show that S is not a free R-module (next lecture, we will see that flat and
locally free are equivalent for finitely generated modules, so this is relevant). Indeed,
consider S/mS = S/(x?, xy,y*)s, this is clearly a 3-dimensional k-vector space (with
basis {1,7,7}) and so S needs at least 3 generators to generate as an R-module. On
the other hand when we work at the generic point, consider k(z?, zy,y*) C k(z,y).
Note that k(22 zy,y*) = k(22 zy) since y* = (xy)?/z* and hence we only need
consider k(x?, xy) C k(x,y). This is obviously a rank 2 field extension since we only
need to adjoin x which satisfies the quadratic polynomial X? — 22. In particular, we
see that S is not a free R module since it requires 3 generators but has generic rank
2.

Our goal for the short term is to prove the following theorem of Kunz.

Theorem 2.17 (Kunz). If R is a Noetherian ring of characteristic p > 0, then R is
reqular if and only if FLR is a flat R-module.

3. Some notes on Kunz’ theorem and the easy direction

Remember, we are trying to show that R is regular if and only if F,R is a flat
R-module. We will give two proofs of the easy direction (that regular implies flat).
The first is quite easy but not very illuminating (especially since it relies on facts we
haven’t proven). Second, we will give essentially Kunz’s original proof which I think
yields quite a bit more intuition.

PROOF #1. We suppose that R is regular and will show that R'? is a flat R-
module. Note that (R'/?), = (Ry)'/? since inverting a pth power is the same as
inverting the element. Thus, since flatness can be checked locally, we may localize R
(and R'P) at a maximal ideal and from here on out assume that (R, m) is local.
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Next consider the extension R C RYP. This is a local extension since m C m!/?

and both R and R'/? are regular rings. It follows from [Theorem 2.14{d) that R'/? is
a flat R module and so we are done. 0

Let’s consider in a bit more detail the difference between flat, projective and free
modules. It is easy to see that free modules are both flat and projective (think about
how Hom and ® work).

Lemma 3.1. If M is a projective module over a local ring (R, m), then M is free.

PRrROOF. We only prove the case when M is finitely generated, the general case is
hard and due to Kaplansky.

Let n = dimpg/m M/mM. Then, by Nakayama’s lemma, we have a surjection
k : R®" — M. Since M is projective, we have a map o : M — R®" so that
koo : M — R® — M is the identity (and in particular o is injective). It follows
that

M/mM Z (R/m)®" 5 M/mM
is also the identity. Thus @ must also be an isomorphism (since it is an injective
map between vector spaces of the same dimension). Hence by Nakayama’s lemma,
o : M — R®"is also surjective. But thus o is both injective and surjective and hence
an isomorphism, which proves that M is free. [l

Next let’s verify that flatness is local (this was asserted without proof earlier).

Lemma 3.2. If M is an R-module, and My, is a flat Ryn-module, for every mazximal
ideal m C R, then M is flat.

PROOF. Suppose that 0 — A — B is an injection of R-modules. Consider
K =ker(A® M — B ® M), we will show that K = 0. Consider the exact sequence

0K —>AM — B M,
since localization is exact, for every maximal ideal m C R, we have that
0 KRy >AQM® Ry — BM ® Ry,
is exact. But this is the same as saying that
0— Ky — An ® My — By @ My
is exact. Since M, is flat by hypothesis, this implies that K, = 0, and this holds for

every maximal ideal. Thus K = 0. 0

Next let’s show that finite flat modules are projective.

Lemma 3.3. If R is Noetherian and M is a finite R-module that is flat, then M 1is
projective.

PROOF. Since localization commutes with Hom from finitely presented modules,
and exactness may be checked locally, we may assume that (R, m) is a local ring. In
this case, we will show that M is free. Choose a minimal generating set for M and the
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corresponding surjection R — M — 0 with kernel K (which is finitely generated).
We tensor with R/m to obtain

Tory (M, R/m) — K ® R/m — (R/m)* & M ® R/m — 0

Since we picked a minimal generating set for M, « is bijective. Since M is flat,
Tor;(M,R/m) = 0 and hence K ® R/m = K/mK = 0 and so K = mK. By
Nakayama’s lemma this implies that K is zero. ([l

Note we didn’t really need that R was Noetherian above, we just needed M to be
finitely presented.

We now give another proof of the “easy” direction of Kunz’s theorem, that regular
implies Frobenius is flat. We have already checked this for polynomial rings over
perfect fields, and now we want to essentially reduce to that case.

To do that, we need completion. Suppose that R is a ring and [ is an ideal. Then

~

R:=limR/I"
—

is called the completion of R with respect to the [-adic topology (the powers of
I form a neighborhood basis of 0). Most often, (R,m) is a local ring and we are
completing with respect to the maximal ideal m. In this case, R/m is the residue
field, R/m? records first order tangent information, R/m? records second order tangent
information, etc. Thus R somehow knows all the tangent information around R.

Definition 3.4. A local ring is called complete if it is complete (for example, equal
to its own completion) with respect to the maximal ideal.

Example 3.5. It is easy to verify that if R = k[xy,...,z,] is a polynomial ring and
m = (xy,...,%,) is the ideal defining the origin. Then R = k[z1,...,x,], formal
power series in the x;. Note this ring is still Noetherian.

Example 3.6. Consider R = k[z,y]/(y* — 2® + x) and complete with respect to
m = (z,y). Now, any polynomial in x,y can be rewritten, say up through some fixed
degree n, as a power series only in y (for example, replace all the zs with z® — 2, and
repeat, until the x degree is too high). It follows that the completion is isomorphic
to k[y] (a picture will explain why this is reasonable).

In particular, even though the completion of R is a powerseries ring in one variable,
the localization R, is not.

Completion should be thought of as one analog of a local analytic neighborhood
(localization still remembers too much about the global geometry for some applica-
tions). In particular, the follow theorem makes this precise.

Theorem 3.7. (Cohen Structure Theorem, [Mat89, Section 29]) Suppose that (R, m, k)
is a complete local Noetherian ring containing a field F'. Then R = k[xy,...,z,] /1.
Furthermore, if R is reqular then R = k[xy, ..., z,].

We are not going to prove this, but we will take it on faith. Note that hard part is
to show that R actually contains a copy of k (this copy is not unique in characteristic
p > 0). Also note that the x;s are a set of generators of the maximal ideal m.
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We need one other lemma.

Lemma 3.8. [Mat89, Theorem 8.8] If (R, m) is a local ring with completion E, then
R is a faithfully flat R-module.

What the Cohen-Structure theorem lets us reduce the problem of flatness of F,R
over R to flatness of F,R over R, and for regular rings, we have just reduced to the
power series case (which is essentially the same as the case of polynomial rings).

Theorem 3.9 (Kunz). If R is Noetherian and reqular then F.R is a flat R-module.

PROOF. Since flatness can be checked locally, as we showed above, we may assume
that R is local. We know that R = k[xy,...,x,]. There is an induced map

R — lim(F.R)/m"(F.R) = lim(F, R)/(F.(m")'R) = F, lim(R/ (")) = F.R

where the final equality is due to the fact that (m™)”! defines the same topology of m"
(the powers are cofinal with each other). Note that this map is the Frobenius map.
We have the following diagram:

" FER

R
R—— F.R
F
The top horizontal arrow is flat by direct computation that we now do. Write R =

k[z1,...,z,]. Then notice that F,R = RYP = k:l/p[[a:}/p,...,xi/p]] and so we can
factor R C RY/? as

E[z1, ..., x0] € K[z)?, ... 2] C EVP[ay, .. 5l7]

The first extension is flat because it is free (using the same basis you are writing
down in the homework). The second extension is flat because it is just a residue field
extension (technically, tensor up with ®k'/? and then complete again, remember
completion of Noetherian rings yields flat extensions). The vertical arrows are flat
since completion is always flat (note the right vertical arrow is just F, of the left
arrow). It follows that F, *ﬁ is flat over R. We need to show that the bottom horizontal
arrow is flat, this is a basic commutative algebra fact but lets prove it.

Suppose that M’ < M injects but M' ®g F.R — M ®p F,R does not and so let
K be the nonzero kernel so that we have an exact sequence 0 — K — M'®@g F.R —
M ®pg F.R of F,R-modules. We tensor this with _ ®p g F*ﬁ to obtain

00— K®@prF,R—— M ®r F.RQpr F.R—— M ®p F.R®pr F.R

I- - -

0— K®@prFLR——— M ®g F.R M®pF.R

Since completion is faithfully flat, K ®p, g F.R # 0 hence M’ ®g F.R — M ®g F.R
is not injective. But the contradicts the flatness of F, R over R. O
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4. A crash course in using derived categories

Before doing the other direction of the proof, it will be very helpful if we learn a
little bit about the derived category.

In a nutshell, taking Hom and Ext is very useful, but dealing with individual
cohomology groups can be a hassle.

Solution: Deal with the complexes instead!

Definition 4.1. A complez of R-modules (or &x-modules if you prefer) is a collection

of {C"},cz of R-modules plus maps d" : C"* — C™*! such that d'*' o d' = 0.
Lo 0 B By BT o Y ot T

A complex is bounded below if C* = 0 for i < 0, it is bounded above if C* = 0 for

i >0, and it is bounded if C* = 0 for |i| > 0.

Remark 4.2. In a chain complez, the differentials take C; to C;_1, we will deal
exclusively with complexes however.

There are some problems. The category of complexes isn’t quite right, so we
fix it. We only consider morphisms of complexes up to homotopy equivalence (two
maps of complexes are homotopic if their difference is null homotopic), and we declare
two complexes to be isomorphic if there is a map between them which gives us an
isomorphism on cohomology (formally add an inverse map to our category).

Examples 4.3. Here are some examples you hopefully all are familiar with.

(a) Given a module M, we view it as a complex by considering it in degree zero
(all the differentials of the complex are zero) and all the other terms in the
complex.

(b) Given any complex C*, (like a modules viewed as a complex as above), we
can form another complex by shifting the first complex C[n]*. This is the
complex where (C[n])" = C**" and where the differentials are shifted likewise
and multiplied by (—1)". Note this shifts the complex n spots to the left.

(c) Given a module M, and a projective resolution

.= P"" s P2 3Pt Pl s M0

it is easy to see that there is a map P* — M and this is a map of complexes
in the sense that M is a complex via .

(N

This map is a quasi-isomorphism (an isomorphism in the derived category).
(d) Given a module M and an injective resolution

0—-M—1°—>T1T"—>1°>— . ..
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we get a map of complexes M — [*

0 M 0 0
0 I° I! I?

which is also a quasi-isomorphism (again viewing M as a complex via .

(e) Given two modules M and N, we form R Hompg(M, N). This is the complex
whose cohomologies are the Ext’(M, N). It is computed by either taking a
projective resolution of M or an injective resolution of N. Note that while
you get different complexes in either of those cases, it turns out the resulting
objects in the derived category are isomorphic (in the derived category).

(f) Given two modules M and N, we form M ®% N, the cohomologies of this
complex are the Tor’ (M, N). It is obtained by taking a projective resolution
of M or N.

(g) Note that not every quasi-isomorphism between complexes is invertible. In-
deed, consider

0—2Z—257 0
L]
0 0 7]22 — 00— ...

This obviously induces a quasi-isomorphism since the top row is a projective
resolution of the bottom, but the map of complexes is not invertible. In the
derived category, we formally adjoin an inverse morphism.

(h) Not every pair of complexes with isomorphic cohomologies are quasi-isomorphic,
indeed consider the complexes

=0 Cry SC—0— ..

and
...—)O—)(C[x,y]@MC[x,y]—>O—>....

It is easy to see that they have isomorphic cohomologies. Some discussion of
the fact that these complexes are not quasi-isomorphic can be found in the
responses to this question on math.stackexchange, |hf].

Remark 4.4. There are different ways to enumerate things, but complexes have
maps that go left to right. Thus a projective resolution of a module M has entries
only in negative degrees. Thus when I write Tor’ (M, N) above, the i that can have
interesting cohomology are the 7 < 0.

Definition 4.5. The derived category of R-modules denoted D(R) is the category
of complexes with morphisms defined up to homotopy and with quasi-isomorphisms
formally inverted.
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If we look at the full subcategory of complexes bounded above, and then construct
the derived category as above, the result is denoted by D~ (R). From bounded below
complexes, we construct D1 (R). Finally, if the complexes are bounded on both sides
the result is denoted by D’(R).

5. Triangulated categories

Derived categories are not an Abelian category, short exact sequences don’t exist,
but we have something almost as good, exact triangles. In particular, the derived
category is a triangulated category.

Remark 5.1. The notation from the following axioms is taken from [Wei94] (you
can find different notation on for instance Wikipedia).

Definition 5.2 (Triangulated categories). A triangulated category is an additivﬂ
category with a fixed automorphism 7" equipped with a distinguished set of triangles
and satisfying a set of axioms (below). A triangle is an ordered triple of objects
(A, B,C) and morphism a: A — B, : B — C,~v:C — T(A),

A% BL 0L T4

A morphism of triangles (A, B,C,a, B,v) — (A, B, C",d/, f',~') is a commutative
diagram

Al o)

R

A B~ —T(A)
Oé/ 6/ ,Yl

We now list the required axioms to make a triangulated category.

(a) The triangle A — A Lo T(A) is one of the distinguished triangles.

(b) A triangle isomorphic to one of the distinguished triangles is distinguished.

(¢) Any morphism A — B can be embedded into one of the distinguished trian-
gles A— B — C — T(A).

(d) Given any distinguished triangle A % B 5ol T(A), then both

B

B o2 1

—— T(B)
and
Ao P NNy SN

are also distinguished.

3Hom sets are Abelian groups and composition is bilinear.
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(e) Given distinguished triangles with maps between them as pictured below, so
that the left square commutes,

A—sp-L o)

I )

A B T(A)

a B’ ¥

then the dotted arrow also exists and we obtain a morphism of triangles.
(f) We finally come to the feared octahedral aziom. Given objects A, B,C, A, B', C"
and three distinguished triangles:

A B-Tyc % 1A
B—s(C—5 A —5T(B)

A vou C Y B 1) T(A)
then there exists a fourth triangle

f

14 B 9 A

so that we have
d=odof,xr=goyyov=fojuod=10g.

These can be turned into a nice octagon (with these equalities being com-
muting faces) that I am too lazy to LaTeX.

Remark 5.3. It is much easier to remember the octahedral axiom (without the
compatibilities at least) with the following diagram.

Any of the derived categories we have discussed are triangulated categories with
T(e) = o[1]. The main point is if we have a morphism of complexes, A* < B*, then
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we can always take the cone C(«a)* = A[l]" & B* with differential

*d’:l,aﬁrdi

C«i — Ai+l D Bz B Ai+2 D Bi+1

Exercise 5.1. Verify that this really is a complex.

Exercise 5.2. Suppose that 0 — A4° 5 B* B D' 5 0is an exact sequence of
complexes. Show that D is quasi-isomorphic to C'(«a)" .

Then we have A° % B+ 5 C(a)*vA[l]" a distinguished triangle where g and
~ are given by maps to and projecting from the direct summands that make up
C(a)" . Note that morphisms in the derived category are more complicated than maps
between complexes (since we might have formally inverted some quasi-isomorphisms)
but this still is enough for our purposes since the cone of a quasi-isomorphism is exact.

Fact 5.4. Given a triangle A* — B* — C* — A[l]" in the derived category of
R-modules, taking cohomology yields a long exact sequence

o= ATHCOT) = RY(AT) = AY(BT) = RY(CT) — RTTHAY) — ...
Exercise 5.3. Verify that fact.

Exercise 5.4. Suppose that

A5 B Lo STy
is a distinguished triangle in D(R). Show that B* ~s A* @& B* compatibly so that
a and [ are identified with the canonical inclusion and projections.

In particular, show that there exist maps p: B° — A® and s: C* — B" so that
p o « is the identity on A* and that o s is the identity on C* .

6. Common functors on our derived categories

Suppose we are forming the derived category D(R) of the category of R-modules
for some ring R. We have lots of functors we like to apply to R-modules, notably
Hom and ® but also things like I'; (the submodule of things killed by a power of I).
Associated to any of these functors we get derived functors, as follows.

Derived functors are functors between triangulated categories which preserve the
triangulation structure (ie, send triangles to triangles and commute with the T'(e)/[e]
operation) and which satisfy a certain universal property which we won’t need too
much (see for example [Wei94| Section 10.5] for details). The point for us is that
derived functors exist for the functors we care about.

Lemma 6.1. [Wei94, Corollary 10.5.7] Suppose F' : .#od(R) — #od(S) is an
additive functor which takes R-modules to S-modules. Then the right derived functors
RF : DY (R) — D(S) are morphisms between triangulated categories and can be
computed by RF(C*) = F(I*) where I" is a complex of injectives quasi-isomorphic
to C* . In particular, WRF(C*) =R'F(C").

Likewise, the left derived functors LE : D™ (R) — D(S) can be computed by
RF(C") = F(P") where P* is a complex of projectives quasi-isomorphic to C* .
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If you are really Hom’ing or tensoring two complexes together, you typically need
to actually compute this by forming the associated double complex and then taking
the total complex, see for example page 8 of [Wei94]. For example if M* and N* are
complexes made up of projectives (or at least one of them is), then the total complex
of the double complex represents the object M* @& N*.

Notably, we have

o RHompg(A*, B*) can be computed by taking a complex of projectives quasi-
isomorphic to A* € D~ (R) or a complex of injectives quasi-isomorphic to
B* € D*(R). Note if A, B are modules, then h'R Hom(A, B) = Ext'(A, B)

o A*®%EB* can be computed by taking a complex of projectives quasi-isomorphic
to either A* or B* in D~(R). Note if A, B are modules, then h={(A®% B) =
Torf(A, B).

o For any ideal I C R, recall that I';(M) = {m € M | I"m = 0 for some n >
0}. Then RI'j(A") is computed by finding a complex of injectives quasi-
isomorphic to A* € DT(R). Note that if A is a module, then h'RI';(A) =
Hi(A) is just local cohomology.

The rest of the chapter is devoted to how these functors play with each other.

Theorem 6.2 (Composition of derived functors, left-exact case). Given left exact
functors G : M od(R) — A od(S) and F : A od(S) — A od(T) (or suitable Abelian
categories with enough injectives), and suppose that G sends injective objects to F'-
acyclic objects, then RF o RG = R(F o Q) as functors from DT (R) — DH(T).

For a more general statement, see [Wei94l, Theorem 10.8.2]. Things that imply
the above, make a lot of the formulas we already know relating Hom and ® and other
functors hold in the derived category as well.

We list some of them here without proof, see for example [Wei94, Section 10.8]
or [Har66) 1T, Section 5.

Proposition 6.3. The following hold:

(a) Let f : R — S be a map of rings with functors f* : .#od(R) — A od(S)
defined by f*(M) = M ®g S and f, : A#od(S) — #od(R) defined by
f+N is N wviewed as an R-module via restriction of scalars. Then for A* €
D= (R),B* € D~ (S) we have

Lf*(A")®YB" =~ A" ok £.B".

This is a special case (the affine case) of the derived projection formula you
might have seen in your algebraic geometry class.

(b) For A*,B* € D~ (R) and C* € D(R), we have
R Hompz(A® ,RHomp(B",C")) =2 RHomg(A" @5 B*,C")

in DT(R). This is just derived Hom, ® adjointness.
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(¢c) For A* € D (R) and B° € D™(R) and C* € D’(R) of bounded Tor-
dimension (for example, bounded projective dimension), ie the projective res-
olution of anything in a reqular ring, then

R Homp(A",B") ®% C* 2 RHomg(A", B @%C).

(d) Consider two ideals I,J C R in a Noetherian ring. Then T'jol; =T ; =
U 7 as is easily checked. Next suppose that M is an injective module, we
want to show that T j(M) is I'r-acyclic. This is normally done by showing
that T ;(M) is flasque and I won’t reproduce it here. Thus we have that

RIyoRI'y =RI7y
In the case case that I O J we see that
RF[ O RFJ = RF[

7. The other direction of Kunz’s theorem
Recall Kunz’s theorem

Theorem 7.1. If R is a Noetherian ring of characteristic p > 0, then R is regular if
and only if F.R is a flat R-module.

Earlier we proved that “regular = F,R is flat”, and now we want to prove the
converse.

Definition 7.2. Suppose R is a domain (or simply is reduced) of characteristic p > 0
and let R® = RY/P™ = Ueso RYP". This is called the perfection of R. If R is not
reduced, we can still define

R* =lim R = lim F{R
— —
where the transition maps are Frobenius.

Remark 7.3. Note that even if R is not reduced, the Frobenius map on R> is
injective (since if something is killed by Frobenius, it is also killed by a transition
map). Hence R™ is reduced even R is not. In particular, Frobenius always acts
bijectively on R>.

Example 7.4. Note that R* is rarely Noetherian even if R is (even though it is easy
to check that Spec R* — Spec R is an isomorphism). If R = R* then R is called
perfect. Indeed, let R = F,[x] then R® = F, [z, z'/?, P et e

Lemma 7.5. [BS15, Lemma 3.16, Lemma 5.10] If R < S s R s are surjections of
Noetherian rings of characteristic p > 0 with induced surjection R® ¢— S M R

of perfect rings. Then Tor'se (R®, R'™®) =0 for all i # 0 or in other words

Roo ®§oo R/oo ng‘s Roo ®SOO R/oo'
In particular, specializing to the case R' = R, the multiplication map R® @%. R® —
R*> is a quasi-isomorphism.
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PROOF. Let I = kerg = (f1,..., fn) so that R = S/I. It is easy to see that
ker g = ker(S® — R®) = (fi/" . fa" )0

We now proceed by induction on n. Indeed, if we let I; = (f;/", ..., fjl/pe>620 C
S° and R5° = S/}, then assuming the induction hypothesis

R ® e R ~gis (Rf@‘éﬁlfzji DOER = Rf@ﬁﬁl(}%;‘i 105w R) i R Qpee (RS @5 R)

where the final quasi isomorphism is just assuming our induction hypothesis twice.
Hence it suffices to prove the base case that I = (f) and I®° = (f1/7") 5.
Consider the directed system

p=1 p=1

p—1
p2 .fpn—l pn+1
PR \

{5, ) =5 , goo I goo S

There is a map from this directed system to I
{8%, S5} = 1% = (f),
sending s (from the nth spot) to f1/?"a. Note this really compatible with the maps of

'3 L71 s . . . . .
the directed system since fY/?""' fpi1q = f1/7"q. This obviously vields a surjective
map

o lim{.S*, -fpp_"l} — I,
—
Claim 7.6. u is an isomorphism.

PRrROOF OF cLAIM. We need to show that p is injective, note this is trivial if S
is a domain. For the general case suppose that s € S (living in the nth spot) is
sent to zero. This means that f1/?"s = 0 € S*. But then since S* is perfect and
reduced, f1/7""s1/P = () as well, and so f/?""'s = 0 which proves that s is killed by
a transition map (which multiplies by even more). O

Likewise consider IR’ = J f'/?° R"®, the ideal generated by the image of f/7* in
R'*° and thus the direct system

{R=,.f7} =R~ L I R L g
and hence a map as before
—1
v lim{R™,-f5 } — I®R'™
_>
Claim 7.7. p is an isomorphism.
PROOF. The proof is the same as the previous claim. [l

Now,

I @5 R™ = 1im{5™, f7 } ®k. R™ =1lim{R™, f7 } = [*R>
— —
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and so it follows that for i # 0, A’ (I L, R’OO) = 0. In particular, we have the map
of distinguished triangles

J>® ®goo R/oo Soo ®gw R/oo R ®goo R/oo +1

| | |

The result follows. U

Remark 7.8. In [BS15], they obtained a more general statement. They started with
perfect rings (that were not necessarily the perfections of Noetherian rings).

Proposition 7.9. [BS15| Proposition 5.31] Let R> be the perfection of a complete
local ring R. Then R*> has finite global dimension.

ProOOF. Write R = S/I for S = k[x1,...,x,] and note we still have a surjection
S — R,
Let M be an arbitrary R*°-module. Then

M =M% R® =M k. (R oL R®) = M @%. R

by [Lemma 7.5 We are trying to show that R Homg (M, N) has (uniformly) bounded
cohomology but

RHomRoo( )
= RHomRoo(M ®%w R, N)
= RHOH].SOO (M RHomRoo (R N))
= RHomgw~ (M, N).
and so it suffices to prove the result of 9. Let d = dim S and note that S =

lim_, SP°. Now, we can view M as an SYP*-module by restriction, and write
Fo = M ®gi/pe S for its base change back to S*°. Obviously we have maps

. —>Z\4(®Sl/pe SOO %M@Sl/pe-&-l SOO — ... %M

The direct limit lim_ F, is in fact equal to M since any element of S* is in some S*/?°
for e > 0. On the other hand, M has projective dimension < d as an S*/?°-module
and so F, has projective dimension < d as an S*°-module.

Now consider
Pr.—Ppr.

where (...,0,a.,0,0...) = (...,0,a.,—ae,0,...) and the remainder of the map is
defined by linearity. The cokernel of this map is exactly lim_ F. = M and the map
is clearly injective. Hence the projective dimension of M is < d + 1 which completes
the result. U

Corollary 7.10. Suppose that R is a complete Noetherian local domain of charac-
teristic p > 0 and that R*™ is a flat R-module, then R is reqular.
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PRrROOF. By [Proposition 7.9 every R*°-module has finite global-dimension. On
the other hand, R — R is also faithfully flat by hypothesis.

We now prove that R has finite global dimension. Let n denote the global-
dimension of R®. Suppose that M, N are R-modules with M finite such that Ext’, (M, N) #
0 for some i > n (recall you can verify global dimension just for finitely gener-
ated modules). Then Exth (M, N) ®z R® # 0 by the faithfulness of R*/R. But
Ext’ (M, N)®g R® = Exthe. (M @5 R®, N @ R>) by the flatness of R°/R and the
fact that M is finitely presented. The fact that this is nonzero contradicts n being
the global-dimension of R* and proves the claim.

Now that R has finite global dimension, we conclude that R is regular as claimed.

O

Corollary 7.11. Suppose R is a Noetherian ring such that F.R is a flat R-module.
Then R is reqular.

PROOF. Since flatness localizes and regularity is measured locally, we may assume
that R is a local ring. Let R denote the completion, we first want to show that F.Ris
flat over R. Apply the completion functor to R — F.R (note, this is not necessarily
the same as tensoring with R since F.R may not be a finite R- module) Note that
F.R = lim, (F.R)/m" = lim, (F} R/(ml)") = F,R. We need that R — F.R is still
flat but we only know that R — (F,R) @y R is flat (smce R is flat over R). On
the other hand the complete tensor produc‘l F.R)® RR is FLR. It follows that the

composition R — (FLR) ®gr R —> F,R is flat and thus R is regular. But then R is
regular as well (since dimp/, m/m? doesn’t change in completion). UJ

4just the completion of the tensor product






CHAPTER 2
Frobenius splittings

We saw that Frobenius is flat if and only if the ring is regular. It is then natural
to ask, how can we weaken the condition that F, R is flat. We are primarily interested
in the case that F,R is a finite and hence locally free R-module, thus consider the
following.

Proposition 0.1. Suppose R is a reqular F-finite Noetherian ring of characteristic
p > 0. Then there exists an R-linear map F,R — R sending F,1 — 1, a Frobenius
splitting.

PRroor. First suppose that R is a regular local ring. Then F,R being locally
free implies that F,R is actually free as an R-module. In particular, there exists
a surjective R-linear map ¢ : F,R — R (project onto one of the factors). Say
¢(F.a) = 1. Consider the new R-linear map

W(F_) = o(Fula-_)).

It satisfies ¢(F,1) = 1 and so we have handled the case when R is local.

Now suppose that R is not local, consider the map o : Homg(F, R, R) — R which
sends ¢ — @(F,1). It is easy to see that this is a map of R-modules hence it is
surjective if and only if it is locally surjective. On the other hand if o is surjective,
the existence of the desired map is produced. Hence it suffices to show that

HOIHR<F*R, R)m — Rm
is surjective (where m is some maximal ideal of R). On the other hand
Hompg(F.R, R)n = Homp, ((FiR)m, Rn) = Hompg,, (F. Ry, Ray)

and it is not difficult to see that our localized map above agrees (via this isomorphism)
with the evaluation at F.1 map Hompg, (FiRy, Ryn) — Ry. This completes the proof.
O

Thus it is clear that having a is a potential weakening of being regular (in fact,
it is quite close to the notion of being semi-log canonical from birational algebraic
geometry). This leads us to our next section.

1. Frobenius split rings

Definition 1.1. A ring R containing a field of characteristic p > 0 is called (locally)
Frobenius split if there exists an R-linear map ¢ : F,R — R such that ¢(F,1) = 1.
The map ¢ is called a Frobenius splitting.

25
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Frobenius splittings behave best when F,R is a finitely generated (thus finitely
presented in the Noetherian) R-module. Because of this, we make the following
definition.

Definition 1.2. A ring R of characteristic p > 0 is said to be F-finite if F,R is a
finite R-module.

We will see later that F-finite rings avoid most of the pathologies that other
arbitrary rings can satisfy.

Lemma 1.3. The following are equivalent.

(a) R is F-split.

(b) The map R — F¢R is split for some e > 0.

(¢) The map R — FER is split for all e > 0.

(d) There exists a surjective R-linear map FER — R for all e > 0.
(e) There ezists a surjective R-linear map FER — R for some e > 0.

PROOF. = @ follows simply from taking e = 1. We now show @ = .
First if R — F¢R splits, then so does R — F,R — FfR, and hence so does
R — F,R. Thus any e > 1 implies that e = 1 case so let ¢ : F,R — R be the map
which sends F,1 to 1. Then ¢ o (F.¢) : F?R — R sends F?1 to 1 as well. Likewise
po(F.p)o---o(F'1¢): F*R — R sends F"1 +— 1 as desired.

Next, obviously = @ since if 1 is contained in the image, then so are all
multiplies of 1 (the entire ring). Furthermore [(d)] = [(¢)] and so it suffices to show
that = [(a)] Let ¢ : F'R — R be a surjective map with ¢(Ffa) = 1. Then
forming ¥(F¢_) = ¢(F¢(a - _)) shows that there exists a splitting ¢ : FfR — R.

Forming the composition F,.R — F¢R Y, R constructs a splitting of Frobenius. [J
Lemma 1.4. A Frobenius split ring is reduced.

PROOF. Suppose R is not reduced but it is Frobenius split. Then there exists
some 0 # r € R with r? = 0. Let ¢ : F,R — R be a Frobenius splitting then we have
the composition:

F o]

R F.R R

r—— FrP——r.
But the middle term is zero, a contradiction. O

Exercise 1.1. Suppose R is an F-finite Noetherian ring. Show that R is F-split if
and only if Ry, is F-split for every maximal ideal m C R.

At this point, we don’t even know that any interesting examples of F-split rings
that are not regular. There’s a good way to construct lots of them however.

Theorem 1.5. Suppose that R C S is an extension of rings such that there exists a
surjective R-linear map T : S — R. Then if S is F-split, so is R.
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PROOF. Via the argument we used in [Lemma 1.3 we may assume that the map
T:S— Rsends 1g +— 1. Let ¢og : F.5 — S be a Frobenius splitting. We have the
following composition:

F.R— FS % 5L R
It is R-linear and it is easy to check that it sends F,1z — 1g. Thus R is F-split. [

Example 1.6. Consider R = k[z?, zy, y?] C k[z,y] = S where k is an F-finite field
of characteristic p > 0. Obviously S is F-split since it is regular. On the other hand

S = k[x,y] :k@(lﬂ-x@k~y)€9(l€~x2@k-:cy@k-y2)@....
R is just the subring of even degree terms, and hence it is clear that R C S splits.

Definition 1.7. Suppose that R C S is an extension of rings. If there exists a
splitting S — R (or equivalently any surjective map S — R) then we say that the
extension R C S splits and that R is a summand of S.

Just as we did in the example:

Corollary 1.8. If R is an F-finite Noetherian ring of characteristic p > 0 that is a
summand of a reqular ring, then R is F-split.

It turns out that summands of regular rings are really quite common!

2. Fedder’s criterion and computations

The main goal is to prove Fedder’s Lemma, [Theorem 2.9 a remarkably useful tool
for explicitly working with p~¢-linear maps (equivalently R-linear maps FfR — R).
For instance, using Fedder’s Lemma it is easy to determine whether a given F-finite
ring is F-split. The organization of this section is as follows. First we prove Fedder’s
lemma and some corollaries, we then do numerous computations with Fedder’s lemma.
Finally, we discuss Fedder’s criterion outside the F-finite case and define F-purity in
general.

2.1. Fedder’s Lemma on p~°-linear maps. We begin with the following:

Notation 2.1. Throughout the rest of the section, k is an F-finite field and S =
klxi,...,x,], or a localization thereof, or S = k[x1,...,x,].

Some of the facts below we have proven previously, but we recall them for ease of
reference.

Example 2.2. Consider the polynomial ring S = k[z1, ..., xz,] for k an F-finite field.
Then S is also F-finite and of course FS is a free S-module with basis {F.a;x*}
where the Fa; are a basis for F°k over k and x* denotes the monomials of the form
x?l...x’\" such that 0 < A < p°® — 1.

n

Lemma 2.3. Suppose that k is an F-finite finite field, then Homy(F¢k, k) = F.k as
F.k-modules.
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PROOF. Suppose that m = [Ffk : k]. Obviously Homy(F¢k, k) has rank m as
a k-module since it is the dual of a rank m vector space. On the other hand, if an
F?k-module has rank m as a k-module, it clearly has rank 1 as an F?k-module, and
so the result follows. 0

Lemma 2.4. Suppose that k is an F-finite field, S = k[x1, ..., x,], (or its localization
at the origin, or S = k[xy,...,x,]). Then Homg(FES,S) is isomorphic to F¢S as
an F¢S-module with generator equal to the following map:

@S(F:X)\):{]- Zf)\lzzAn:p_]-}

0 otherwise

defined on the a basis {a;x*} where the a; form a basis for F¢k over k, a; = 1 and
A= (A1,..., \n) satisfies 0 < \; < p° — 1.

Proor. We first do the case where k is perfect. To see that it is cyclic, it is
sufficient to show that each of the projections pex : F€S — S onto the F*x*-summand

is an F,S-multiple of ®g with x* defined as in [Example 2.2l But simply observe that
pr (F_) = PR((FexP™ 177 - F2 ).

On the other hand Homg(F¢S,.S) is certainly torsion free and the lemma is proven
when £k is perfect and S is a polynomial ring.

Now assume that k is not perfect, choose a basis {F,a;}™, of F.k over k with
a; = 1. Note that {a;x* | \; =0,...,p° —1,i =1,...,m} form a basis for FS over
S. Choose maps p; : F.k — k which project onto the a;. For each m > ¢ > 1, choose
b; € k such that p (Fb;_) = p;(_). On the other hand each F.k — k induces

vi o (FSk)[xq, ...,z — klzy, ... 2]

by acting as the identity on the x;. On the other hand, using the same argument we
made in the perfect case, we can find maps

p)\:F:k[xlu"'axn] — (F*ek)[xlvuxn]

projecting onto x* as above. Composing p, with v; gives us all the projections onto
our basis. On the other hand, it is easy to see that those maps can all be obtained
by properly pre-multiplying by appropriate b;xP°~1~*. This proves the lemma in the
case of a polynomial ring. The other cases are the same. 0

With S as above, we next suppose that I = (fi,..., f,,) € S is an ideal and set
R = S/I. We want to relate the maps Homg(F¢R, R) to the maps Homg(F£S,S).
We begin with an easy observation in slightly greater generality.

Fix another ideal J C S, choose ¢ € Homg(F¢S,S) and pick v € 1P . J C S.
Consider the map 9 : F£S — S defined by ¥(F¢z) = ¢(F¢(u - z)), frequently in the
future we will write ¢ = (Ffu)- ¢ in this situation. We claim that ¢ ((F¢J)) C I (this
has nothing to do with S being regular). To see this claim, choose z € J and notice
that uz € I can be written uz = ay f* + - - - + ap f2 . Then

G(FE2) = ¢(FE(uz)) = (F(anfl + -+ +amfB)) =Y S(Fla;) fi € 1
=1
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as claimed. In fact, linearity implies that any ¢ € (Ff ([[pe] : J)) - Homg(F£S,S)
satisfies ¢(F¢J) C 1.

Remark 2.5. The notation (Ff ([[Pe] : J)) -Homg(F¢S,S) has been known to cause

some confusion. The point is that Homg(F¢S,.S) is an S-module (with S acting on
either the source or target of a homomorphism) and simultaneously it is an F¢S-
module, where an element F¢z acts on « : F¢S — S by forming the composition

Fes A pes & g

Our previous observation about 1 is very useful in the case that J = I, consider
the following diagram for any ¢ satisfying ¢(F¢I) C I:

Fel—— 1

|

FfSw—>S

| ]

FER o y R
YR

In particular, each ¢ determines an element of Homg(F¢R, R). We have just shown
that:

Lemma 2.6. There ezists an F¢S-module homomorphism
p: <Ff (17 ; 1)) - Homg(F°S, S) — Homp(FR, R).

We will study this map extensively (and in fact prove it is surjective and identify
its kernel). First we make the following observations which help show what was
described above.

Lemma 2.7. With notation as abowve,
(i) Suppose that ¢(FeJ) C I for all ¢ € Homg(F¢S,S), then J C 1P,
(i)

<Ff(ﬂ”e] : J)) -Homg(F¢S, S) = {1 € Homg(F¢S, S) | ¥(FT) C I}

Proor. With our notations for this section, F¢S is a free S-module. Write F¢S =
S® with basis elements {F¢g;}¢, C F¢S. Let 7y,...,m4 denote the corresponding
projections. Observe that under the isomorphism F¢S = S®¢ we have FeIlPl =
I Fe¢S = [% Now, suppose that ¢(F¢J) C I for all ¢ € Homg(F¢S,S). In
particular, m;(F¢J) C I for each my,...,mg. Thus F¢J is identified with a subset of
I9? which proves that J C IP’l. This proves the first statement.

The argument before the lemma yields the containment C. Fix ¢ € Homg(F¢S, S)
such that ¢ (F¢J) C I. Choose a FfS-module generator & € Homg(FES,S) by
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Lemma 2.4 Write ¢ = (Ffu) - ® and observe that ®(F¢(uJ)) C I. Since ¢ generates
Homg(F¢S, S), we see that u.J C I'P! from part (i). Thus u € Il : J and hence

b= (Feu)d e (F:(IW : J)) - Homg(F<S, S)
as claimed. O

Remark 2.8. The previous lemma absolutely does not hold for non-regular rings.

Theorem 2.9 (Fedder’s Lemma). With notation as above

o: (F: (17 1)) - Homs(F<S, ) — Homg(FR, R)
18 surjective and ker p is isomorphic to (Ff][pe]) -Homg(FES,S). In particular

<F,f (17 I)) - Homg(F*S, S)

Homp(F{R, R) =
(Fgﬂve}) - Homg(F<S, S)

PROOF. First we prove that p is surjective. Choose o € Hompg(F¢R, R). Consider
the following diagram of S-modules

F*eS B > S
FfR = R.

The dotted arrow @ exists since F¢S is a projective S-module (although it is not
unique). The commutativity of the diagram implies that @(F¢I) C I (as F¢I and [

are kernels of the vertical projection maps) and therefore we see that @ € (Ff (I e
I)) -Homg(F¢S,S) by ?7?. This proves the surjectivity of p.

Next we identify the kernel of p. Suppose that » € Homg(F¢S,S) satisfies
W(FSI) C I and also that p(¢)) = 0. This second condition means that ¢(F¢S) C 1.

Applying ?? in the case that J = S we see that ¢ € Ff][pe]> -Homg(F¢S,S). The
reverse inclusion also follows immediately from [Lemma 2.7, The final isomorphism
then of course follows from the first isomorphism theorem. 0J

The real beauty of Fedder’s Lemma is that it allows us to compute numerous
things with ease!

2.2. Computations with Fedder’s Lemma. Fedder’s lemma gives us a very
explicit way to compute the locus where a ring is not F-split.

Theorem 2.10. Suppose that S is an F-finite reqular ring and R = S/I. Let J, C S
denote the image of the evaluation-at-1 map

Tmage ((F (151 1)) - Homg(F£S, ) — S)
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for some integer e > 0. Then the set theoretic locus V(J.) C V(I) C SpecS is the
set of points of V(I) = Spec R where Spec R is not F-split.

Before proving this result, we notice that the result implies that V(J,) is inde-
pendent of e. However, scheme theoretically, V' (J.) is generally not independent of
e.

ProOF. Using[Theorem 2.9] we see that the evaluation-at-1 map in the statement
of the theorem is surjective at all points q € V() C Spec S where Hompg(FfR, R) —
R is also surjective. Of course, outside of V(I), (I : I) agrees with S and the
surjectivity is obvious. The result follows since R, — F{R, splits if and only if

R, — F.R, splits [Cemma 1.3 0

Via the identification Homg(F¢S,S) = F¢S (sending ® to 1, where & is the
projection onto the F*xP°~1-basis element), we get a map F¢S — S. It is not hard
to see that this map is itself ®. In particular:

Corollary 2.11. The locus where Spec R is not split is closed and it is equal to
V(®(Fe(IPT: 1))).

Remark 2.12. The ideal ®¢(F¢(I] : I)) depends on the choice of e, although the
locus it defines does not!

Exercise 2.1. Show that ®¢(F¢(IP7: I)) D det(Fett (1P : ).

Hint: Show that ®¢(F¢(IP] : I))-R is the same as the image of the evaluation-at-1
map Homg(FfR) — R.

Question 2.13 (Open question). It is an open question whether the descending ideals
from the previous exercise stabilize (are all equal for e > 0). This is known if R is a
hypersurface or more generally Gorenstein or even more generally Q-Gorenstein. The
Gorenstein case is essentially a key step in a famous result of Hartshorne and Speiser
[HST77].

Remark 2.14. Since ® is additive, note that ®(F(f1,...,)fm)) = P(F(f1)) +
Q(FE(fa)) 4+ -+ P(F(fm)). Hence from a computational perspective, it is sufficient
to compute ®(Fe(f)).

Suppose now that k is perfect for simplicity, if one writes F¢f in terms of the
basis Fex* as

Fof =Foy fixt =) pFx
then we claim that ®(F¢(f)) = (..., fx,...). The point is that ®(F¢ f) simply projects
from the term fipe_1)Fx®°~Y, on the other hand x*f € (f) and ®(FexP DA f)
projects from fyF¢x*. Doing the various projections proves that

QEL(S) =i fx)

as claimed.
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As another corollary of Fedder’s Lemma, we state a frequently easy to check
criterion for whether or not a ring is F-split at some point. Recall by [Lemma 1.3]
to show that R is F-split, it is sufficient to show that there exists a single surjective
¢: F'R — R.

Theorem 2.15 (Fedder’s F-purity criterion). Suppose that S is an F-finite reqular
ring and R = S/I. Then R is F-split in a neighborhood of a prime ideal q € V(1) C
Spec S if and only if

(][Pe] 1) ¢ gl

PROOF. Suppose that R is F-split in a neighborhood of a prime ideal q € V' (I). It

follows that the evaluation-at-1 map Homg(FfR, R) — R surjects in a neighborhood
of q. Let ¢r € Homg(F¢R, R) be such that ¢(Ffa) ¢ q/I for some @ € R. It follows

from [Theorem 2.9| that there exists ¢g € (Ff (I[pe] : I)> -Homg(F¢S, S) such that

¢s(Fya) ¢ q

where a € S maps to @ € R. On the other hand, suppose for a contradiction now that

(IP1: 1) C PPl and so ¢5 € ( FeqPl) - Homg(FeS, S). But since gl = P : S, we
have that ¢g(F¢S) C q by [Lemma 2.7, But this contradicts our choice of @.
Conversely we suppose that b € (1P : I)\ giPl. Let ® € Homg(F¢S, S) be the
generating homomorphism as in |[Lemma 2.4 and let ¢g(F¢_ ) = ®¢(F(b-_)). Since
b ¢ qPl, we know that ¢s(F°S) ¢ q by [Lemma 2.7 Hence there exists a € ¢5(F¢S),
a ¢ q. Thus, @ € R, is a unit. On the other hand, by our choice of ¢g, it induces
¢r : F{R — R and so by localization, ¢r, : FYR; — Ry and @ is in the image. Thus
®R, surjects and so R, is F-split as desired. 0

Exercise 2.2. Suppose that R is a regular Noetherian ring of characteristic p > 0
and that q is a prime ideal. Prove that ¢! is g-primary.

Hint: Show that if f ¢ q, then 0 — R/qglP’] S, R/q] injects.

Corollary 2.16. Suppose that R = S/(f)s. Then R is F-split at the origin if and
only if fP~t ¢ mlPl = (2 ... aP).

Example 2.17. Consider the following examples of F-split rings. We assume S'is as
before and consider R = S/(f) where f is as specified in each case below.

(a) f = z. The ring R is regular so we already know it is F-split, but we can
alternately observe that 2P~! & (2P, yP, 2P).

(b) If f = zyz, then R is F-split (at the origin) since 2P~ yP~12P~1 & (zP yP 2P).

(c) If f = zy — 22 then R is F-split (at the origin) since

(zy — 22)P1 = 2P~ 1yP~! 4 other terms ¢ (2P, y, 7).

(d) If p =2, then R = S/(f) is F-split (at the origin) if and only if f ¢ (2% y?, 2?)
(note p—1=2—1=1). So for example f = 27 + y* + 2® + 2yz yields an
F-split ring.
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(e) Consider f = 23 + y3 + 2 and suppose 1 = p(mod 3). Note that the degree
of every monomial of fP~! is equal to 3(p — 1). Thus the only way that
Pt (aP yP, 2P) is if 2P~ 1yP~ 1271 has non-zero coefficient in fP~!. Since
each monomial 23, 4% and 23 to be raised to the same power we must have
3|(p — 1) which implies that 1 = p (mod 3) as we already assumed. Now we
need the multinomial coefficent of zP~1y?~12P~! to not be divisible by p. But
this coefficient is

which clearly is not divisible by p.
Now we consider several non-F'-split rings.

(a') f = 2% The ring R is not reduced, so it can’t be F-split, but also 22?1 ¢
(P yP, 2P).

(b') f = 2%y — 2? with p = 2. Note that f € (2?42 2?). R actually is F-split if
p# 2.

(') f=a*+y*+ 2*. This is not F-split since every monomial in the expansion
of (z* + y* + 2*)P~! has degree equal to 4 - (p — 1). In particular, each such
monomial is divisible by 2P, y” or 2P by the pigeon-hole-principal.

(d) f=2%+y>+2%and 1 # p(mod 3). In this case, there is no xP~1yP~12P71
term in the expansion of (z3 + y* + 23)P~! by the argument in (e) above.
Thus since each monomial in said expansion has degree 3(p — 1), we see that
P71 e (xP,yP, 2P) which implies that R is not F-split.

3. A crash course in local cohomology

We’ll be doing a series of crash courses over the next few days. We’ll start with
local cohomology and the Cohen-Macaulay condition, and then we’ll move to Matlis
and local duality (as well as a study of the dualizing complex). Today, local coho-
mology, tomorrow the world!

Let R be a Noetherian ring and I an ideal. There is a functor from R-modules to
R-modules I'; which is defined by

I'y(M)={me M| I"m =0 for some n > 0}.
Because [ is finitely generated we also have
Ly(M)={me M]|az"m=0 for all z € I and some n, > 0 depending on z}.
It is not difficult to see that I';(M) is left exact and so we make the following definition.

Definition 3.1. With R, I, M above, we denote by Hi(M) = h'RI';(M) the ith right
derived functor of I';. It is called the ith local cohomology group.

There is another important related functor. Let U = Spec R\ V(I). Choose a
generating set (fo, ..., f;) for I and for each m-tuple f;,,..., fi of these generators,
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we can form the localization M Fiy oo fim - Most notably, we have
dy : é}}‘hfﬁ — E{}jMGhﬂ
J a<b

where

do(ma /Sy J7) = (oo omaf f1o =/ f, ).

The kernel of dy is denoted by I'(U, M) and it is independent of the choice of generators
of I.

Exercise 3.1. Prove that I'(U, M) really is independent of the choice of generators.

Hint: It suffices to consider the case where you add a single generator to the list.
Example 3.2. Suppose M = R = k[x] and T = {(x). Then I'(U,M) = k[z,x 7]
(there are no My, s, terms).

Example 3.3. Suppose M = R = k[z,y| and I = (z,y). Consider the kernel of

1

klz,y, 2 @ k[z,y,y7'] = klz,y, 27y ']

and deduce that I'(U, M) = k[z, y].

On the other hand, if M = (z,y), then T'(U, M) = k[z, y| since (z,y), = k[z,y,z 7]
and (z,y), = k[z,y,y].
Lemma 3.4. Suppose that Q € U, then I'(U, M)q = M.

PRrROOF. We localize the map ag at () and notice that since ) € U, at least one
fi ¢ Q, and so (My,)q = Mg. We may assume that j = 1 and so write

Mo & P (M), — (@(MQ)J%) . ( & (MQ)fafb> :

7>1 i 1<a<b

In particular, it is easy to see that if an element is in the kernel, it is completely
determined by its entry in (Mg)p, = Mg and any such entry gives an element of the
kernel. The lemma follows. U

ALTERNATE PROOF. Alternately, simply observe that I Rg = (1) g, and then the
result immediately follows by change of the generating set. O

It is also easy to see that ['(U, e) is a left exact functor, and its higher derived
functors are denoted by H'(U, e).

Lemma 3.5. With notation as above, suppose E is an injective module. Then I'j(E)
15 also injective.

PROOF. Suppose we have 0 — L Iy M exact as well as a map « : L — ['[(F).
We need to show that there exists §: M — I'j(F) such that & = S o f. In fact, by
[Stal6l, Tag OAVF]EI, it suffices to consider the case when M = R and L is an ideal

IThe trick is to look at the largest submodule to which the map extends, and derive a contradiction
if it’s not M.



3. A CRASH COURSE IN LOCAL COHOMOLOGY 35

(and so in particular, finitely generated since R is Noetherian). Consider the finitely
generated submodule a(L) C I'f(E) and choose n > 0 so that 0 = ["«(L) = a(I"L).
By Krull’s theorem, there exists some m such that ™ML C I"L and so a(I™NL) =0

as well. In particular, « factors as a: L — L/(I™ N L) % T7(E). Tt thus suffices to

show that @ extends to §: R/I"™ — E.
On the other hand, we certainly have

E
FI(E/ v
0—— L/(I"NL) R/I™

where the map labeled v exists by the injectivity hypothesis on E. Applying I () to
the entire diagram yields I';(y) = 3, the map we desired since I';(R/I™) = R/I™. O
Corollary 3.6. If M is I-torsion (in other words M = T'j(M)), then M can be

embedded in an injective I-torsion module M C E. In particular, M =~y s RI'[(M)
(and thus H:(M) =0 fori > 0).

PROOF. For the first statement, simply embed M in an injective module M C F
and then apply the functor I';(e) using [Lemma 3.5, For the second statement, it
follows from the first that we can take an injective resolution of an I-torsion module by
I-torsion injective modules. But then I'; acts as the identity on such a resolution. [

There is a canonical map M — I'(U, M) (the diagonal), the kernel of which is
easily seen to be exactly I';(M).

Theorem 3.7. [Har77, 111, Exercise 2.3] For any I C R, an ideal in a Noetherian
ring, there is a long exact sequence

Hij(M) —  I1d'(M) —  HY(UM)—
HY (M) — 1d"Y M) — H*Y(U,M) —

Where Idi(M ) is the ith derived functor of the identity, in particular equal to zero for
1> 0.
Exercise 3.2. Prove [I'heorem 3.7,

Hint: Show that if M is injective, then 0 — I'y(M) — M — I'(U,M) — 0
is exact (we showed in class everything but the exactness on the right, to do that
use the fact that if [ is injective, then I — Iy is surjective). Now take an injective
resolution of M, use what you just proved, and chase.

Corollary 3.8. With notation as above, Hit' (M) = H'(U, M) for all i > 1 and
0— HY(M)— M — H(U M) — H;} (M) — 0
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1S exact.
3.1. Vanishing and non-vanishing theorems.

Proposition 3.9. If R is Noetherian, I C R is an ideal and M s an R-module then
H{M) =0 fori>dimM =: dEI in particular for i > dim R.

PROOF. It is easy to see that Hj(M)n = Hjp (M) for any maximal ideal m and
so it suffices to work in the local case (in the Noetherian case, a localization of an
injective module is still injective).

Because the local cohomology functor commutes with direct limits, it is harmless
to assume that M is finitely generated. First consider the short exact sequence

0—I/(M)—M— M/T/(M)— 0.
Note that T';(M) is I-torsion and so Hi(T';(M)) = 0 for i > 0 by |Corollary 3.6, Hence
Hi{(M) = H:(M/T;(M)) for all i > 0 and so it suffices to prove the proposition in
the case that M is I-torsion free.

We now proceed by induction on the dimension of M. In the case that M is
dimension zero, we are already done since then M is I-torsion and hence zero.

Claim 3.10. There exists x € I C m such that x is a reqular element for M (in
particular, M = M s injective.

PROOF OF CLAIM. Since M is already assumed to be finitely generated, it has

finitely many associated primes P; = Anngm,;. On the other hand, since M is I-
torsion free, I - m; # 0, thus I € P;. By Prime Avoidanceﬂ, we have that I Z |J P,.

So choose z € I\ (UB) We claim that z is a regular element M. If M -5 M is
not injective with kernel K, then K has an associated prime containing x, and thus
so does M. This is a contradiction which proves the claim. 0

Using the claim, consider now the short exact sequence
0— M3 M— M/zM — 0
and note that dim(M/zM) < dimM — 1 = d — 1 by [AMG69] (in that source, this

is only proved for rings but since M is finitely generated, one can reduce to the case
that supp M = supp R and so this is easy since M /xM is a R/xR-module). By our
induction hypothesis, we have

o= HEY (M /aM) — Hy(M) = Hiy(M) — ...
and so Hi(M) = Hi(M) injects for i < dim M.
Claim 3.11. The induced map on local cohomology is still multiplication by x.

PROOF OF CLAIM. The functor Hi(M) is R-linear (since it is a derived functor of
an R-linear functor). Note that being R-linear that Homg (M, N) — Homg(Hi(M), Hi(N))
is an R-module homomorphism. In the case that N = M, this means that not only

2The dimension of a module is the maximal length of a chain of primes qo C g,, such that Mg, #0.
3This says that if an ideal I is not contained in any of a set of prime ideals P;, then I Z; P;.
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the identity is sent to the identity but also that the identity multiplied by r is sent
to the identity multiplied by r, which is exactly what we want. 0

Now that we have proved the claim, this implies that H%(M) N Hi(M) injects
for each integer m. But every element of Hi(M) is I-torsion, and so killed by some
x™, which proves that H:(M) = 0 for i < dim M. O

Definition 3.12. Suppose (R,m) is a Noetherian local ring and M is a finitely
generated R-module. Then M has depth > n if H:(M) = 0 for i < n. M is called
Cohen-Macaulay if H: (M) = 0 for i < dim R.

Example 3.13. A Noetherian regular local ring is Cohen-Macaulay. To see this we
proceed by induction on dimension and note it is obvious in dimension zero (the case
of a field). More generally let = be part of a regular system of parameters (a minimal

generating set of the maximal ideal) and note we have 0 — R % R A, /R — 0.
As before, we have injections H: (R) % H!(R) for i < dim R but since H!(R) is
m-torsion, this is a contradiction.

The proof we just performed shows that in order to verify that R is Cohen-
Macaulay, it suffices to show that there exists a sequence of elements z1,...,24 € m
such that ;1 is not a zero divisor on R/(x1,...,z;) (likewise for a finitely generated
module). In fact, that is the usual definition of a Cohen-Macaulay ring (likewise
module).

Lemma 3.14. Suppose that M is an R-module but that R is not necessarily local. If
m is a maximal ideal then Hy (M) = H} p (My) where the second term is viewed as
an R-module via restriction.

PROOF. Tt is easy to see that the functors I'y,(e) - Ry, and T'yr(ey) are equal and
hence the same also holds for the associated local cohomology functors (since injective
modules over a Noetherian ring stay injective after localization). But now the result
follows from the following claim.

Claim 3.15. If N is a m-torsion module, then N = Ny = NRy, (as R-modules).

Proor oF crLAIM. Consider the map N — N,. The kernel is the set of elements
n € N such that un = 0 for some u ¢ m. Consider the submodule nR for such a n
with fixed u. Since N is m-torsion, m'n = 0 for some [ > 0. Thus nR is compatibly a
R/m!l-module. But R/m! is a local ring and @ kills n € nR, but % is a unit in R/m’,
a contradiction. 0

O

Example 3.16. Thering R = k[z, y, u, v]/{(xu, zv, yu, vz) = k[z,y, u, v]/{z, y)N{(u,v)
localized at the origin has depth 1. To see this, it suffices to show that H2(R) = 0
and H}(R) # 0. The vanishing statement is obvious because no element is killed by
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all powers of m. For the second statement, note we have a short exact sequence

0 — k[z,y,u,v]/{z,y) N {u,v) —— k[u,v] ® k[z, y] k 0.

Now apply H: (e) and consider the long exact sequence
0 — Hy(k) — Hy(R) — Hy(K[u, o] @ klz,y])

Now, H}(k[u,v] @ k[z,y]) = 0 since this is just a direct sum of local cohomologies
of regular local rings, and H?(k) = k. The result follows. (Note we were not very
careful about localization here, but it doesn’t matter due to [Lemma 3.14]

Now we move to a non-vanishing theorem which we state but do not prove.

Theorem 3.17. Suppose that (R,m) is local and M is a nonzero finitely generated
R-module of dimension n, then H (M) # 0.

As an easy consequence, we obtain the following:

Corollary 3.18. If Q) is a prime ideal such that Mg # 0 and d = dim Rq, then
Hé(M) #0.
PrOOF. HE(M) ®r Ro = Hbp,(Mq) # 0. O

3.2. F-splitting’s implications for local cohomology. Local cohomology
Hi(e) is a functor and so if we consider the e-iterated Frobenius map R — F¢R,
there is an induced map

Hi(R) 55 Hi(F°R) = FCHi(R).
called the Frobenius action on local cohomology.

Lemma 3.19. If R is F-split, then Frobenius acts injectively on H:(R) for any ideal
I and any i > 0.

PROOF. Hi(e) is a functor, apply it to R — FR > R where the composition is
the identity. 0

Thus we have the following definition which is a weakening of the F-splitting
condition.

Definition 3.20. A Noetherian local ring (R, m) of characteristic p > 0 is called
F-injective if F : H: (R) — H' (F,R) injects for all i > 0.

Remark 3.21. Note we only looked at the Frobenius action on the local cohomology
of the maximal ideal above, it doesn’t necessarily imply injectivity of Frobenius on
the local cohomology of other ideals. We will see later though, that under certain
conditions (for example, R is Gorenstein and F-finite), R being F-injective implies
that R is F-split.
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Corollary 3.22. Suppose that Frobenius acts injective only Hi(R) for some I C R
andi > 0. Further suppose that J-Hi(R) = 0, then alsov/J-Hi(R) = 0. In particular,
in an F-injective local ring (R, m, k), if H.(R) has finite length then H!(R) is a k-
vector space.

PROOF. Suppose that z € v/ J with 2" € I and hence that 27 € T for some e > 0.
Choose now z € Hi(R) and suppose for a contradiction that = - z # 0. U

There are ways to weaken the Cohen-Macaulay condition which appear in the
commutative algebra literature. We give only the definitions that are convenient for
our purposes.

Definition 3.23. A Noetherian d-dimensional local ring (R, m, k) is called quasi-
Buchsbaum if each HE (R) is a finite dimension k-vector space for each i < dim R. Tt
is called quasi-Buchsbaum if when we consider an exact triangle

K* — RIy(R) — H(R)[—d] 5
then K* € Db(k)E] In particular, since every short exact sequence of K vector spaces
is split, K" is quasi-isomorphic to the direct sum of its cohomologies (appropriately
shifted).

It was known that for F-pure rings, being quasi-Buchsbaum implies the Buchs-
baum condition [GO83], but it had been an open question popularized by S. Takagi
whether this implication also holds for F-injective rings. This was shown recently to
be the case by L. Ma [Mal5]. We give a proof of this now due to B. Bhatt, L. Ma
and the author which can be found in [BMS15]. We first need a lemma.

Proposition 3.24. Let A — B be a surjection of Noetherian rings with induced
surjection A — B>. Let K* € DY(A*) be a complex such that each h'(K*) is a
B>-module. Then K* ~ K* @Y% B* wia the canonical map, and thus K* comes
from D°(B>) wvia the forgetful functor D*(B*®) — D°(A>).

PROOF. We must check that the canonical map K* — K* ®%. B is an isomor-
phism for K* as above. We first prove the result for K = M[0] being a B-module M
placed in degree 0. But then K* ®%. B> ~ M[0] ®%. (B® ®@%. B*>), so the claim
follows from [Lemma 7.5l

For the general case, we induct on the maximum length [ = j — ¢ such that
h7(K*) # 0 and h'(K") # 0. We have already handled the base case since a complex
that has cohomologies only in degree zero is quasi-isomorphic to a module viewed as
a complex in that degree. Next suppose that the result is true in the case of <[ and
consider a complex K* where h/(K*) # 0 and h'(K*) # 0 where [ + 1 =j — 4.

Consider the exact triangle

W(K )i = K* —C 5

4Note HZ(R) is the top cohomology of RI'y(R) and so there always exists such a map.
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C" isjust the truncation of K* at the ith spot and so the inductive hypothesis implies
that C° >~ C° @4 B*®. Thus we have

WK ) [~ K cr—=

| | 1

hi(K*)[—i] ®% B® — K* @Y. B® —— C* @4 B* -1

The the vertical maps on the ends are quasi-isomorphisms and thus so is the map in
the middle which proves the proposition. 0

Theorem 3.25. Let (R,m,k) be a local d-dimensional F-injective ring of charac-
teristic p > 0 such that H.(R) has finite length for i < d. Fiz K* € D(R) as the
< d-truncation of RUy(R). Then K* € D°(k) and hence R is Buchsbaum.

PROOF. We prove this only in the case when k is perfect (for simplicity) where
we see that R*/m> = k. For the general case (with a proof along the same lines),
see [BMS15].

Note K* still has a Frobenius map F' : K* — K° which is injective on its
cohomologies (which are the H:(R). But since the cohomologies have finite length,
and so are finite dimensional k-vector spaces by |Corollary 3.22 the Frobenius map is
bijective on the cohomologies of K" .

Define K to be the < d-truncation of RI',(R>) and note that

h

() = limg FER(K) = WK

where the second to last equality follows from the fact that Frobenius acts bijectively
on the cohomology of h*(K*). It follows that the canonical map K* — K is a
quasi-isomorphism. But now K° ~g K} ~gs K5 ®pre~ k, which shows that K* is
quasi-isomorphic to a complex of k-vector spaces, as claimed. 0

3.3. Serre’s conditions and Hartog’s Phenomenon. Suppose that S has
dimension n and depth m. If g is an ideal of height say n — 1, it is possible that
depthg, Sq = m and it is also possible that depthg, Sq has depth m — 1. For example,
consider R from and set S = R[w]. It is not difficult to see that S has
depth 2 at the origin (since if you mod out by w you get back R, which has depth
1). However, if one localizes at the prime ideal (x,y, u, v), you obtain a ring of depth
1 (you essentially get R with enlarged base field k£ to k(w)). On the other hand,
localizing at (z,y, u, w) inverts v and so kills z and y and thus produces k(v)[u, w]y v,
a ring of depth 2.

Because of this unpredictable behavior of depth under localization, we have the
following definition.

Definition 3.26. A finitely generated module M over a Noetherian ring R is said to
satisfy S,, if for every prime g € Spec R, depth M, > min{n, dim Rq}ﬂ

®In some published work, dim R, is replaced by dim M, in this definition.
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In particular, an S,-module is Cohen-Macaulay in codimension n and has depth
> n elsewhere.

A crucially important condition is Ss, because it implies a Hartog’s-like phenom-
enon. Before we do that, let’s make a simple observation.

Lemma 3.27. If (R, m) is a local ring, M is a module of depth > 2, and U = Spec \m,

then
M=T(U,M).
PROOF. We have an exact sequence H2(M) — M — T'(U,M) — H.(M) and
the two local cohomologies are zero by the depth condition. 0

The point is that if a module is has depth > 2, then it is completely determined
by its behavior outside the origin. A more general statement holds when the module
is SQ.

Theorem 3.28. Suppose (R,m) is a Noetherian local ring of dimension > 2 and
that M is an So-module. If I C R is an ideal such that dimV (I) < dim R — 2 and
U = Spec R\ V(I), then M = T(U, M).

PRrROOF. We need to show that M — T'(U, M) is bijective and so let K be the
kernel of C' be the cokernel. Let ) be a minimal prime in the support of K & C. In
particular, Mg — I'(U, M)q = I'(U N Spec Ry, M) is not bijective and (K & C)g is
supported only at the maximal ideal. Since I'(U, M)y = My (essentially by definition)
if ) has height 1, we may assume that () has height at least 2. Thus depth My > 2

and so by [Lemma 3.27, Mg — I'(U N Spec Ry, M) is bijective, a contradiction. [

Remark 3.29. Sy-modules are often viewed as the modules that are determined by
their behavior in codimension 1.

4. Local duality and Gorenstein rings

In this section we state local duality. First we need a brief review of injective
hulls.

Definition 4.1. Suppose that R is a ring and M is an R-module. An overmodule
E DO M is said to be an essential extension of M if for every submodule D C F, if
DN M =0then D =0.

An injective hull E(M) of M is an essential extension of M that is also injective
as an R-module.

Fact 4.2. o Injective hulls exist for any module M.
o Injective hulls are unique up to non-unique isomorphism (fixing M).
o The formation of injective hulls commutes with localization, W1 Er(M) =
Ey-1g(W=1M).

Notation 4.3. For the rest of the semester, if (R, m, k) is a local ring, then £ =
Er/m = Ej will denote the injective hull of k£ = R/m.
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Example 4.4. In the case that (R, m, k) is a regular local Noetherian ring (or more
generally a Gorenstein| local Noetherian ring), £, = H3™#(R). This will follow from
local duality below, but that’s not the right way to prove it.

Let’s quickly state Matlis duality which roughly says that Homing into the injec-
tive hull of the residue field of a local ring does not kill (much) information.

Theorem 4.5 (Matlis Duality). Suppose that (R, m) is a Noetherian local ring. Then:
(1) The functor T(__) = Hompg(__, E) is faithful on the category of finitely gen-
erated R-modules and also on the category of Artinian R-modules.
(2) For Artinian modules N, T(T(N)) = N.
(3) For Noetherian modules M, T(T(M)) = M =M ®gR.
(4) T'(_) takes modules of finite length to modules of the same finite length.
If in addition R is complete then

(5) T'(_) induces an antiequz’valenceﬂ of categories
Noetherian o Artinian
R-modules R-modules |-
We now define dualizing complexes.

Definition 4.6. Suppose that R is a Noetherian ring. An object w* € D% (R) is
called a dualizing complez for R if the following two conditions are satisfied.

(a) w* has finite injective dimension (is quasi-isomorphic to a bounded complex
of injectives) and,

(b) The functor D(_) = RHompg(__,w") has the property that the canonical
map C* — D(D(C")) is an isomorphism for all C* € D} (R).

(b’) Or equivalently to (b), R =2 RHompg(w",w").

Exercise 4.1. Prove that (b’) implies (b) above.

Fact 4.7. Dualizing complexes are unique up to two operations.
o Shift (if w* is a dualizing complex, so is w* [n]).
o Tensoring with rank-1 projective modules (if P is a projective module of
rank-1f then if w* is a dualizing complex, so is w* [n]).

Lemma 4.8. If w* is a dualizing complex for a Noetherian ring R and W is a
multiplicatively closed set, then W=w* is a dualizing complex for W1R.

PRroOOF. Inverting multiplicatively closed sets preserves injectives in Noetherian
rings and so condition (a) is fine in the definition of the dualizing complex. The same
operation also preserves the isomorphism of (b’). O

Definition 4.9. A ring R is called Gorenstein if R has finite injective dimension as
an R-module. Note for a Gorenstein ring, R is its own dualizing complex.

6to be defined soon

Ti.e. , a contravariant equivalence

8Meaning that Py = Rg for all Q € Spec R.
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Lemma 4.10. A Noetherian ring R is Gorenstein if and only if R has a dualizing
complezx wy, = M|n| such that M is projective of rank 1.

Example 4.11. Suppose that R is a regular local ring, then R is Gorenstein. To see
this let d = dim R and observe that

Ext™™ (M, R) =0

for all R-modules M (because R has finite global dimension d). But since this holds
for all R-modules M, it implies that R itself has finite injective dimension.
More generally, if R is a regular ring it is also Gorenstein.

Remark 4.12. Not every ring has a dualizing complex, but nearly all the rings we
care about do. In particular, any ring that is a quotient of a regular ring (or more
generally a Gorenstein ring) has a dualizing complex. In particular, if R = S/I where
S is regular, then

wp = RHomg(R, S)

is a dualizing complex. It is certainly of finite injective dimension because if [ is
an injective S-module, Homg(R, I) is an injective R-module (so if we take a finite
injective resolution of S applying Homg(R,_ ) gives a complex of R-modules finite
injective dimension) and then observe that

R Homp(R Homg(M, S), R Homg (R, S))
>~ RHomg(R Homg(M, S) ®% R, S)
>~ R Homg(RHomg (M, S), S)
= M

where the last = holds because S is a dualizing complex for S. In fact the argument
we just used implies that if S — R is any map of rings such that R is a finite S-
module, and if wg is a dualizing complex for S then R Homg(R,wy) is a dualizing
complex for R.

Corollary 4.13. Suppose that (R,m) is an F-finite Noetherian local ring of charac-
teristic p > 0 with a dualizing complex. Then Hompg(FSR,w;,) =: Whep @S a dualizing
complex for FZR. Furthermore, Fiwp ~gis Wpep-

Exercise 4.2. Prove [Corollary 4.13|

Hint: The fact that it is a dualizing complex is just what was worked out in
the above example. Dualizing complexes are unique up to shifting and twisting by
rank-one projectives. Use the fact that it is local to handle the rank-1 projective case.
Then use the that the localization of a dualizing complex is a dualizing complex to
handle the shift (localize at a minimal prime).

Remark 4.14. With the notation in the above corollary, the induced map
Fiwp — wp

dual to R — F¢R is often called the trace of Frobenius for reasons that we will see
later.
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Example 4.15. If R is Gorenstein with dualizing complex wj, ~qs wr[n] and if f € R
is a nonzero divisor, then R/ f is Gorenstein with dualizing complex

Wiy = wr/fln — 1] = Ext'(R/f,wg[n])
To see this, consider the short exact sequence
0—>RLR— R/f —0
and apply R Hompg(__,w;,) = RHompg(__,wg[n]). We obtain

R Hompg(R/f,wr[n]) — R Homg(R,wg[n]) ER R Hompg (R, wg[n]) RN
and taking cohomology (starting at —n) yields

0 —>wRi>wR—>Ext1(R/f,wR) —0— ...

where the first zero 0 = Hompg(R/f,wr) holds because wg is locally free and in
particular, torsion free.

Finally, in order to state local duality, we need one more definition.

Definition 4.16. Suppose that (R, m) is a d-dimensional Noetherian local ring with
dualizing complex wj, € D% (R). The dualizing complex wp, is called normalized if
b (wy) =0 for j < —d and h™%(w},) # 0.

The module h=%(wy,) is called the canonical module and typically denoted by wg.

Remark 4.17. A normalized dualizing complex does not remain normalized after
localization. In particular, if wj, is normalized for (R, m) and q € Spec R is a prime,
then (wy,), is not normalized even though it is still surjective.

We now state local duality.

Theorem 4.18 (Local duality). Suppose that (R, m, k) is a local Noetherian domain
with dualizing complex wy, and C* € Di’[.g.(R) and injective hull of the residue field
E. Then

Hom(R Hompg(C* ,wy), E) >4 RIR(CT).
In the case that R is complete, this can also be written as
R Hompg(C" ,wp) ~us Homg(RTW(C*), E).

Note we do not need to derive the Hom(__, F) functor since E is injective.

We now specialize this to other settings in order to deduce standard facts (this
is not the right way to prove these facts, but it’s not a bad way to remember their
statements).

Corollary 4.19. A Noetherian local ring (R, m) with a dualzing complex w;, is Cohen-
Macaulay if and only if the dualizing complex for R is centered in one degree,

Wh ~gis Wr[N.

Corollary 4.20. With notation as above, if wy is a normalized dualizing complex

then Hompg(wy,), F) = R (R).
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While the above is obvious from the definition.

Corollary 4.21. With notation as above, R is Gorenstein if and only if the normal-
ized dualizing compler wy, ~4s R[dim R].

Definition 4.22. A local ring (R,m) with a dualizing complex is called quasi-
Gorenstein (or 1-Gorenstein) if wg = R.

Corollary 4.23. An F-injective quasi-Gorenstein F-finite local ring is F-split.

PROOF. Since R is F-injective, HZ(R) — H2)(F,R) is injective. But this map is
Matlis dual to what we called the trace Fi.wr — wg, which now must be surjective
(if it had a cokernel, then the map on local cohomology would have a cokernel, which

it doesn’t). But since R is quasi-Gorenstein, wg ~ R and so we have a surjective map
F,R — R. This implies that R is F-split. 0

We'll state some more facts about dualizing complexes (taken for example out of
[Har66] or [Stal6]). For time reasons, we’ll skip the proofs.

Lemma 4.24. Let (R,m,k) be a local Noetherian ring with normalized dualizing
complez wy, and canonical module wr = h~ 4™ w2 Then

(a) The support of wr is equal to the union of irreducible components of Spec R
of maximal dimension.

(b) wg is Ss.

PROOF. See [Stal6, Tag 0AWE], there are some subtle points here: for example
rings with dualizing complexes are catenary. U

Corollary 4.25. Suppose that (R,m) is a local Noetherian domain. Then for any
0 <i < dimR, Anng H.(R) # 0. In particular, for each i < H:(R), there exists
some 0 # ¢ € R such that ¢- H.(R) = 0.

PROOF. If wj, is a normalized dualizing complex for R, it is sufficient (in fact
equivalent) to find 0 # ¢ such that ¢ - h™"(wj) = 0 by local duality (and the fact
that Hompg(__, E) is faithful on the modules in question). Now, h™*(w;,) is finitely
generated so it suffices to show that it is not supported everywhere. Now, if we
localize at the unique minimal prime (), we end up with a dualizing complex on a
field, which lives in exactly one degree. This degree must be — dim R by the previous
lemma, and so all the other h™*(w},) are not supported everywhere as claimed. 0

Note that Anng H9™E(R) = 0 and so the above is about as good as one can do.
Note a version of the above also holds for non-domains (you can pick ¢ not in any
minimal prime defining a maximal component of Spec R).

5. F-regularity, a quick way to prove that rings are Cohen-Macaulay

Historically, F-splittings were used to prove lots of rings were Cohen-Macaulay. In
modern times, we have learned some really slick ways to prove that integral domains
are Cohen-Macaulay.
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Definition 5.1. An F-finite ring is called strongly F-regular if for every ¢ € R not
contained in any minimal prime, there exists an e > 0 such that the map R —

F°R LN F¢R splits as a map of R-modules.

Remark 5.2. Strongly F-regular rings are now known to be the characteristic p > 0
analog of rings with KLT singularities in characteristic zero.

Theorem 5.3. A strongly F-regular Noetherian local domain is Cohen-Macaulay.

PROOF. Fix some i < dim R, we shall show that H’(R) = 0. By [Corollary 4.25,
we can choose 0 # ¢ € R such that ¢ - H.(R) = 0. Now choose an ¢ > 0 so that

R — FfR Fre, F°R splits as a map of R-modules. Applying H:(_) we see that

H!\(R) — HL(F°R) =5 H:(F°R)

is also injective. But H} (FfR) = FfH! ,«/(R) = F¢H}(R) and so Ffc kills it. Thus
we have an injective map that is also the zero map, and so the source is zero as
claimed. 0

Remark 5.4. The domain hypothesis is not necessary above, indeed strongly F-
regular local rings are normal as we will see shortly, which then implies that they are
domains.

This is not so impressive unless you can show that various rings are strongly
F-regular. Here are some common ways to prove that rings are strongly F-regular.

Proposition 5.5. If (R,m) is a Noetherian local F-finite reqular domain, then R is
strongly F'-reqular.

PROOF. Fix 0 # ¢ € R. Choose e > 0 so that ¢ ¢ m? and so Féc ¢ m- F°R =
FemlPl. Since a basis for (F¢R)/m becomes a minimal generating set and hence a
basis for the free module F¢R (here we use that R is regular), we see that Ffc is part
of a basis for FfR over R. Thus we can project from Ffc to R which produces the
map we wanted. [l

Proposition 5.6. Suppose that R C S is an inclusion of Noetherian domains such
that S =2 R® M as R-modules. Then if S is strongly F-reqular, so is R.

PROOF. Choose 0 # ¢ € R. Since S is strongly F-regular, there exists a ¢ :
F¢S — S such that ¢(Ffc) = 1. Let p: S — R be such that p(1lg) = 1z (this exists
since S =2 R @ M). Then the composition FFR C F£S % S % R sends Ffe to 1
which proves that R is strongly F-regular. U
Remark 5.7. The above is an open problem in characteristic zero for KL'T singular-
ities.

Corollary 5.8. A direct summand of a regular ring in characteristic p > 0 is Cohen-
Macaulay.
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The above is obvious if we are taking a finite local inclusion of local rings of
the same dimension. It is not so obvious otherwise (indeed, it has perhaps only
recently been discovered how to show that direct summands of regular rings in mixed
characteristic are Cohen-Macaulay).

Proposition 5.9. If R is an F'-finite ring such that Ry, is strongly F'-reqular for each
maximal m € Spec R, then R is strongly F'-reqular.

PROOF. Obviously strongly F-regular rings are F-split (take ¢ = 1) and so R is
F-split. By post composing with Frobenius splittings, if we have a map ¢ : FfR —
R which sends Ffc +— 1, then we can replace e by a larger e. Now, pick 0 #

evalQc

¢ € R. For each m € Spec R, Homg(F¢R, R)y, —— Ry is surjective for e > 0.

But thus for each m, there exists a neighborhood U, of m and some e, such that
eval@c

Hompg(F¢R, R), —— R, surjects for all n € U, where we take e = e,. These Uy,

cover Spec R and since Spec R is quasi-compact, we may pick finitely many of them,

choose a common large enough e > 0 and observer that Homg(F¢R, R) cval@e p

surjects as desired. O

Theorem 5.10. Suppose that 0 # d € R is such that R[d™'] is strongly F-reqular
and such that there exists a map ¢ : FCR — R satisfying ¢(Ffd) = 1. Then R is
strongly F'-reqular.

PROOF. Note first that R is F-split (pre-multiply ¢ by F¢d). Choose 0 # ¢ € R

and consider the map ®; : Homg(F/ R, R) <0al% R for some f > 0. Because R[d!]

is strongly F-regular, d™ € Image(®) for some f > 0 and some m > 0. Without loss
of generality, we may assume that m = p' for some integer [ (note making m larger
is harmless). In particular, there exists ¢ € Hompg(F/ R, R) such that ¢(F/c) = d*'.
Let x : F'R — R be a Frobenius splitting and notice that x(Flp(Ffc)) = k(d?') = d.
Finally
S(Fer(Fiv(Fle))) = o(Fid) =1

and so ¢ o (F¢k) o (Fe+/)) is the desired map. O

For a computer, the above is not so bad. To show that R = S/I (where S is a
polynomial ring say) is strongly F-regular, you just need to find d € S in the ideal
of the singular locus of V/(I) such that ®(c- (I"1: I)) = S where ® is the map from
the second Macaulay2 assignment. Note that this can only prove that a singularity
is strongly F'-regular, it can’t prove that a singularity isn’t. We don’t have a good
algorithm to do this in general but we do have algorithms that work if the ring is
quasi-Gorenstein (or Q-Gorenstein, a notion we’ll learn about later).

6. A crash course in (ab)normality
Definition 6.1. Suppose that R is a ring. We let
K(R) ={a/b| a,b € R where b is not a zero divisor }.

denote the total ring of fractions.
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In the case that R is a reduced Noetherian ring with minimal primes @)1, ..., Q;,
then each R/(@); is an integral domain with field of fractions K(R/Q;). In this case,
K(R) 2 [[K(R/Q;) (easy exercise, or look it up).

Definition 6.2. Given a reduced Noetherian ring R, the normalization RN of R in
K(R) (or just the normalization of R) is defined to be

{z € K(R) | = satisfies a monic polynomial with coefficients in R}.
R is called normal if R = RN.

Fact 6.3. Under moderate hypotheses (excellence, so for all rings we care about),
RN is a finitely generated R-module. We will take this as a fact at least for now.

Lemma 6.4. In a reduced ring R, the set of zero divisors is equal to | J Q; where Q;
1s the set of minimal primes.

PROOF. Suppose z is a zero divisor zy = 0, y # 0. If z ¢ @, for any ¢, then since
xy=0¢€ Q;, y € Q, for all i. But (Q; = (0) since R is reduced.

For the reverse direction fix some minimal prime @); and let W be the multiplica-
tive set generated by R\ @; and by the set of nonzero divisors of R. Note 0 ¢ W
because if it was, then 0 = ab for a ¢ Q; and b not a zero divisor. Let W~!P be a
maximal ideal of W™!R with P C R the inverse image in R. Thus P is a prime ideal
of R which doesn’t contain any element of . Obviously then P C (@);, but since
(); is minimal P = );. But P doesn’t contain any non-zero divisors, and so @); is
completely composed of zero divisors. 0

Our goal for this section is to understand normal rings, non-normal rings, and
some weakenings of the condition that R is normal. First let’s understand K (R).

Lemma 6.5. Suppose that R is a reduced Noetherian ring, then K(R) = szl K; is
a finite product of fields.

PRrROOF. First we observe that R has only finitely many minimal primes. To see
this write (0) = (._, P as a primary decomposition of (0). Any prime (minimal with
respect to the condition that it contains 0 — any prime) is among this set (since the
primes in primary decomposition commute with localization in as much as possible).
Next let @; be the minimal primes, we claim that (0) = [, Q;, one containment is
obvious. On the other hand, if x is in every minimal prime then it is in every prime,
and so x is nilpotent.

Now, if we localize a reduced ring at a minimal prime, we get a reduced ring with
a single prime, in other words a field. Consider the diagonal map

0:R— ][] Ro.

Note that Q;Rg, is zero since it’s a nonzero ideal in a field hence each R — Ry,
factors through R/Q; (which injects into Rg,). Thus kerd = (Q; = (0). On the
other hand, every nonzero divisor of R certainly maps to a nonzero divisor of [[. R,
where it is already invertible and so we have map v : K(R) — [[, Rg,- We need
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to show that this map is a bijection. It is injective since K (R) is itself Noetherian
and the minimal primes of R contain only zero divisors and so the minimal primes of
K(R) agree with the minimal primes of R. From hear on, we may assume K (R) = R.
Let Q1,2 be minimal primes of K(R) and consider @); + Q2. Since @1 + Q2 is
not contained in any single minimal prime @;, 1 + @2 is not contained in (JQ;
by prime avoidance. But in a reduced ring, |JQ; is the set of zero divisors and so
@1 + Q2 contains a nonzero divisor and so 1 + Q2 = K(R) (since nonzero divisors
are invertible). But now we’ve show that the @); are pairwise relatively prime and so
v is surjective by the Chinese Remainder Theorem. O

Lemma 6.6. If we have an extension of rings R C R’ C K(R) such that R is a
finite R-module and R is Noetherian, then R’ = R.

PRrROOF. Choose z € R’ and so reduce to the case where R’ = R[z] C K(R). On
the other hand, consider the ascending chain of R-submodules of K(R) R C R&xR C
R®xzR®2*R C --- C @), 2'R C .... Eventually this stabilizes to R’ and since
R’ is a Noetherian R-module, this happens at a finite step. Thus for some n > 0,
" € @, 'R C R'. In other words, z satisfies a monic polynomial with coefficients
in R and so z € R and thus R’ = R as claimed. 0

Exercise 6.1. The formation of RN commutes with localization, in particular if
W C R is a multiplicative set then (W'R)N = W~1(RN).

As a corollary of the previous exercise, we immediately obtain the following.

Corollary 6.7. A ring is normal if and only if each of its localizations Ry, are normal
for mazimal ideals m.

Proposition 6.8. If (R,m) is a reduced Noetherian local normal ring then R is an
integral domain.

PROOF. Suppose that K(R) = []._, K; is a product of fields. We need to show
that t = 1 since R C K(R). O

Definition 6.9. A ring is called R,, if for every prime ) € Spec R of height < n, R
is regular.

Lemma 6.10. A Noetherian normal local 1-dimensional domain is reqular. In par-
ticular, normal rings are Ry .

PRroOF. For the first statement, such a domain obviously has two prime ideals, 0
and m. We need to show that m is principal and so choose = € m \ m?. Now, R/(z)
is dimension zero and so as an R-module, has m as an associated prime. Thus there
exists y € R with ¥ € R/(z) such that Anngy = m. In other words

y ¢ (z) but y - m € (x).
Now consider y/x € K(R), we observe that (y/x)-m C R even though y/x ¢ R (since
otherwise y € (z)).
Form m™ = R gz m = {a € K(R) | am C R} and consider m - m™ C R.
Since R € m™!, we see that m C m-m~!. By construction, y/z € m~! and so if
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m=m-m', then y/z-m C m. Thus we can view (-(y/z)) € Homg(m, m) and thus
(y/x)*+ai(y/x)" '+ +a, = 0 with a; € m* by the determinant trick (which leads
to the proof of Nakayama’s lemma). But then y/x is integral over R and thus since
R is integrally closed, y/z € R a contradiction to the assumption that m = m-m™!.
Thus m-m~! = R. Now consider z-m™' C m-m~! = R and observe that if z-m~! C m,
then (z) = - m~'m C m? contradicting our choice of x. Hence - m™! = R as well
and so

(z)=2-m - m=m-R=m
proving that m is principal as desired.

The second statement is a direct corollary for the first since normality of Noether-

ian rings localizes by O

Lemma 6.11. A normal Noetherian reduced local ring (R, m) is a domain.

ProoFr. Let Q4,...,Q,, be the minimal primes of k. Then consider the inclusion
R =[], R/Q; = R'. Obviously R'is a finite R-module (since it’s a product of finitely
many finite R-modules). Thus since R is normal, and obviously R’ C K(R), we have
that R = R’. But R’ is not local unless there is only one Q); (each R/Q); is local). [

Lemma 6.12. A normal Noetherian ring with a dualizing complez is Ss.

PROOF. The statement is local so we assume that R is a normal local domain. It is
easy to see that normal domains are S; since they are domains and so regular elements
are not hard to find. Thus we need to show that Hj(Rg) = 0 for all Q € Spec R of
height at least 2. Thus we may as well assume (R, m) is a local Noetherian, normal
domain of dimension > 2 and set U = Spec R\ m to be the punctured spectrum. We
denote by wj, a normalized dualizing complex. By it suffices to show
that

R — R :=T(U,R)
is surjective. It is not difficult to see that R' C K (R) since if you tensor map defining
R by K(R), the kernel of the tensored map is clearly K(R). We know that the
cokernel of R — R’ is HL(R). Since R is reduced it is S; so it is an easy exercise
in localizing dualizing complexes to verify that h~'w;, has zero dimensional support
(is supported at the closed point). In particular, m? - h~'w;, = 0 and so h~'w;,
is Artinian. It follows that its Matlis dual H.(R) is Noetherian. Thus R’ is an
extension of Noetherian R-modules, R and H!(R) and so R’ is Noetherian. But now
every element of R’ is integra]ﬂ over R (basically for the same reason that finite field
extensions are algebraic) and so R’ C RN = R which completes the proof. 0

Theorem 6.13. An excellenﬂ reduced Noetherian ring R with o dualizing complex
1s normal if and only if it is Sy and R,.

PRrROOF. We already have seen that normal rings are S, and R;. Conversely, if R is
S, and R; and RY is the normalization of R, then since R is is excellent, RN is a finite

gsatisfy a monic polynomial equation
10We only include this to guarantee that RN is a finitely generated R-module
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R-module and so the locus where R is not normal, Z = V(Anng(RN/R)), is closed.
Since R is Ry, Z has codimension at least 2 locally in Spec R, thus U = Spec R\ Z is
the complement of a codimension 2 set and so R — ['(U, R) is an isomorphism since
R is Sy using [ITheorem 3.28]

Claim 6.14. RN is Sy as an R-module.

PROOF OF cLAIM. Choose P a prime ideal of R and suppose that P = QN R a

prime ideal of RY. We know that Hf, .« (RY) = 0 for i = 0,1 since R is S,. On the
Q

other hand, v PRN is an intersection of finitely many prime ideals, Q1,..., Q4 such
that @Q; N R = P. Then

Hpp,, (Rp) = Hppx (Rp) = Hi\/@(ﬁﬁ) =P Ho, (R
j

where the last equality comes from the fact that the functors I' 7zx(_) = @ Lo, (L)

for the semi-local ring RS. But now we are done since the right side is zero for
1=0,1. O

Since RN is a Sy R-module, we have that RN — T['(U, RY) is an isomorphism.
Finally, we see that T'(U, R) — T'(U, RY) is an isomorphism as well (since R and RN
agree on U). Putting this together we get the commutative diagram

R— RN

{ lN
(U, R) — T'(U, RV)

from which it follows that R — RN is an isomorphism as well. U

Remark 6.15. We included some hypotheses above to make our lives easier that
are not strictly necessary. Indeed, the above holds even without assuming that R is
excellent with a dualizing complex.

Note, in many cases it is easy to verify that certain rings are normal. Indeed if R is
Gorenstein (for example, if it is defined by a hypersurface or a complete intersection)
and R;, then it is automatically normal. For example, k[z,y, z]/(z® + y® — 2¢) is
normal if p does not divide a, b, ¢ since then the singular locus is at the origin (using
the Jacobian criterion).

In the previous proof, the ideal Annz(RN/R) appeared, this ideal has a special
name.

Definition 6.16. The ideal ¢ := Anng(RY/R) is called the conductor of RN over R.
It is also an ideal of RN.

Let’s now move towards a proof that strongly F-regular rings are normal.

Lemma 6.17. Suppose that R is an F'-finite Noetherian reduced ring of characteristic
p >0 and pick € Homg(FR, R). Then ¢(Ffc) C .
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ProOF. Tensoring ¢ : FfR — R by K(R) induces a map ¢xr) : FEK(R) —
K (R) which restricts to ¢ and so which we also denote by ¢. Choose z € cand r € RN.
Then ¢(Ffx) - r = ¢(F(r*"x)). But r?° € RN and zRN C R so ¢(F¢(r*"z)) € R.
Thus ¢(Ffx) - RN C R and so ¢(F¢x) € ¢ as desired. O

Corollary 6.18. Strongly F-regular rings are normal.

PROOF. If R was not normal, then the conductor satisfies 0 # ¢ # R and so choose
0 # ¢ € ¢. By hypothesis, ¢(Ffc) C ¢ and so ¢(Ffc) # 1 for any ¢ € Homg(FCR, R)
which proves that R is not strongly F-regular. U

Example 6.19. R = k[z,y]/(xy) is F-split, by Fedder’s criterion, but not normal
since it is not Ry. So we cannot weaken the above strongly F-regular hypothesis to
simply being F-split.

Let’s discuss an example of a non-normal ring.

Example 6.20 (The node). Consider the ring S = k[z] and consider the subring
R={fe€ S| f(0)= f(1)} which one can also view as the pullback of the diagram

S % S/ N (z— 1 L k.
In other words {(s,t) € S@® k | a(s) = 5(t)}. We claim that
R =k[z(x —1),2*(x — 1)] C k[z] = S.

Obviously z(x — 1) and 2*(xz — 1) are both in R. On the other hand, if f € R with
f(0) = f(1) = A, then f—X € R and viewing f—\ € S, we see that f € (z(z—1))s =
Is C R. Thus the question is, are the elements a = z(z — 1), b = 2*(x — 1) enough to
produce all of Ig by multiplying a, b together and scaling them by elements of k. For
example, if we have hx(z — 1) € I with h = hg + hyz + hoz? + ..., we can certainly
assume that h = hoz? + ... (since lower degree terms are easy to handle with a,b).
But
c=r"z(z—-1)=a*+bd=2"+(x—1)=a*xb—c
and so on...
On the other hand, it is easy to verify that R = k[a, b]/(a® + a x b — b?).

Example 6.21. Similarly, it is not difficult to see that R = k[z? 23] C k[z] = S is
the pullback of (S — S/(z?) < k). In particular, the cusp can be thought of as what
you get when you kill first order tangent information at the origin of Al.

Theorem 6.22. Suppose that we have a diagram of rings (A — A/I <& B) and let
C ={(a,b) |a=g(b)} be the pullback. Then Spec C' is the pushout of the diagram of
induced map of topological spaces {Spec A +— Spec A/I — Spec B}.

Proor. I will only sketch this in the category of sets, I will leave the verification
that it behaves properly on thhe level of topological spaces as an exercise to the
reader.

First consider the following ideal J = {(7,0) | i € I} C C. It is easy to see that
C/J = B and so C contains a copy of SpecC, V(J) C SpecC. On the other hand,
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for any prime ideal of Spec C' not containing J, doesn’t contain some (i,0) and so
if we let W = {(4,0), (:2,0), ... } denote the induced multiplicative set, we see that
W-(C) =2 WA = A[i"!]. From this it is not hard to see that the primes of Spec C'
that don’t contain J correspond precisely to the primes of Spec A that don’t contain
I (the map Spec C' — Spec A is an isomorphism outside of V(.J) and V(I)). Putting
this together plus the commutative diagram

A/A/]\B
N

is enough to prove the result. U
We now prove that every non-normal ring arises this way.

Proposition 6.23. Suppose that R is a reduced non-normal ring with normalization
RN and suppose that R € S C RN. Let ¢ = Anng(S/R) denote the conductor of
R C S and recall it is an ideal in both R and S. The R is the pullback of (S —
S/c <+ R/c).

Proposition 6.24. Let C' denote the pullback and so by the universal property, we
have a map R — C. We need to prove it is an isomorphism. It is obviously an
injection since we already have R C S. Thus we need to show that R — C 1is
surjective. Choose an element (s,7) € C. Choose r € R whose image in R/c is T.
Now then s—r € RN and is sent to zero S/¢ and so s—r € ¢ C R. Therefore s € R as
well and so (s,T) is the image of s € R which proves that R — C'is an isomorphism.

In other words, a normal ring is a ring without any excess gluing and non-normal
rings are obtained from normal ones by gluing points (or subschemes) together and
killing (higher) tangent spaces. At this point it is also not hard understand where
non-S, rings come from as well. They arise as gluings where the conductor has
information in codimension 2. On the other hand if your gluing information is pure
codimension 1, then the resulting non-normal ring will be Sy but not R;.

7. Frobenius splittings of non-normal rings

Suppose that R is not normal but that it is F-split (this isn’t impossible, the node
is F-split by Fedder’s criterion, although the cusp is not).

Lemma 7.1. Suppose that R is an F-finite reduced Noetherian ring with normaliza-
tion RN. Further suppose that ¢ : F°R — R is an R-linear map. Then ¢ extends to
br(r) : FCK(R) — K(R) which restricts to ¢p~ : FCRN — RN,

PROOF. The extension is easy, simply consider the image ¢ € Homg(FfR, R) —
Hompg(FfR,R) ®r K(R) = Homg(FfK(R), K(R)). It is easy to verify that this
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image ¢k (r) extends ¢. By restriction we then get a map ¢p~ : FFRN — K(R). We
just need to show that the image lies in RY. Choose z € RN and consider ¢~ (FCx).

Let @; denote the minimal primes of R. It is not hard to see that ¢(FfQ;) C Q;
for all ¢ (simply localize that @); which turns ¢ into a map on the field level, which
sends 0 to 0) and so we have induced maps ¢; : FS(R/Q;) — R/Q;. But since
RN =TI,(R/Q;)Y, it suffices to assume that R is a domain. Let ¢ denote the conductor
of R in RN. Consider ¢ - ¢pn(FCR). For z € ¢ and any integer m > 0

z - (ppy(Fi))™
2 (ons(Fea)) - (9 (Fra)pn
Ory(FE2P"x) - (ppn (Flx))™ !

€ Opx(Fie)(opn(Fia))™ ™

C ¢

C R
In other words if y = ¢pn(FCx), then z-y™ € R for all m > 0. The result then follows
from the following lemma. U

Lemma 7.2. If R is a Noetherian normal domain with y € K(R) there exists 0 #
c € R such that cy™ € R for allm > 0, then y € R.

PRrROOF. Consider the ideal I = (c,cy,cy®,cy®...) C R. Since R is Noetherian,
I={c,cy,...,cy") for some n > 0. Thus we can write cy" ™ = a,cy”™ + - - - + apc for
some a; € R. Dividing by ¢ we obtain that

which proves that y is integral over R and thus y € R. 0
Remark 7.3. The converse to the above lemma holds too, exercise!

Corollary 7.4. If R is F-split, so is RN, R/c and RN /c. In particular both R/c and
RN /¢ are reduced rings.

While F-split and F-injective rings are not necessarily normal, they are something
called weakly normal.

Definition 7.5. Suppose R is a reduced Noetherian ring R with finite normalization
RN. An extension of rings R C R’ C RN is called subintegral if Spec R’ — Spec R is
a homeomorphism and if Q" € Spec R’ then k(Q' N R) — k(Q’) is an isomorphism.
R is called seminormal if the only subintegral extension of R is R’ = R.

An extension of rings R C R’ C RN is called weakly subintegral if Spec R’ —
Spec R is a homeomorphism and if @ € Spec R’ then k(Q' N R) — k(Q’) is insep-
arable. R is called weakly normal if the only weakly subintegral extension of R is
R =R.

We state some facts about weak and semi-normalization without proof.

Lemma 7.6. Suppose that R is an excellent Noetherian domain.

o The seminormalization of R exists. In other words there is a unique subin-
tegral extension R C RSN C RN with RSN seminormal
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o The formation of the seminormalization commutes with localization. In par-
ticular if R s seminormal so are its localizations.

o The weak normalization of R exists. In other words there is a unique weakly
subintegral extension R C RWN C RN with RN weakly normal.

o The formation of the weak normalization commutes with localization. In par-
ticular if R is weakly normal so are its localizations.

Our goal for now is to show that F-injective rings (and hence F-split rings) are
weakly normal. First we give another characterization of weakly normal rings.

Proposition 7.7. Suppose that R is a reduced Noetherian ring of characteristic p > 0
with R C RN finite. Then the following are equivalent.

(a) z € K(R) and z € R implies that x € R.
(b) R is weakly normal.

PRrROOF. We first show that (a) = (b). Suppose that R is not weakly normal, this
means that there exists R C R’ weakly subintegral. By localizing, we may assume
that (R, m, k) is weakly normal except at m and so (R',m’, k') is local as well. Choose
some x € R’ which we will try to show is in R. Let ¢ be the conductor of R'/R and
note it is m-primary by assumption (and also m’-primary in R'). It is easy to see that
R is the gluing of (R' — R'/c <— R/c). Now, there are two possibilities.

(1) € m'. In this case 27" € ¢ for some e. But ¢ C R and this case is taken
careof.

(2) z is a unit in R’ and so consider T € R'/m’ = k’. Thus 2?° € k for some e > 0
since k C k' is purely inseparable. Consider y € R with the same image in k.
It follows that z = 27" —y € m’ and so applying (1) to z, we see that z € R.
But then 27" = z + y € R as well. But now x € R again.

In either case, x € R.

Now we prove that (b) = (a). Choose z € K(R) with 2P € R. Consider the
extension R C R[z|. It suffices to prove that this is weakly subintegral. Since we
have R C R[z] C RYP are all integral extensions, we see that Spec R[z] — Spec R is
a bijection. On the other hand for each @' € Spec R[z] with Q@ = RN Q’, we see that
E(Q) C k(Q") C k(Q)Y? by the above factorization. Thus k(Q) C k(Q') is purely
inseparable and so R C R[z] is weakly subintegral as claimed. O

We need one more lemma before proving our result on weak normality of F-
injective rings.

Lemma 7.8. Suppose that (R, m) is a reduced local ring of characteristic p, X =
Spec R and that X — m is weakly normal. Then X is weakly normal if and only if
the action of Frobenius is injective on H} (R).

ProoF. We assume that the dimension of R is greater than 0 since the zero-
dimensional case is trivial. Embed R in its weak normalization R C RWN (which is of
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course an isomorphism outside of m). We have the following diagram of R-modules.

0 }f( (X -m,Ox_p) ——» H} (R)——0
0 RWNC D(XY" —m, Oxwn_p) —» HL(RVN) —— 0

The left horizontal maps are injective because R and *R are reduced. One can check
that Frobenius is compatible with all of these maps. Now, R is weakly normal if and
only if R is weakly normal in RWN if and only if every r € RVN with r? € R also
satisfies r € R by [Proposition 7.7]

First assume that the action of Frobenius is injective on H} (R). So suppose that
there is such an » € RN with v» € R. Then r has an image in I'(X —m, Ox_,,) and
therefore an image in H} (R). But r? has a zero image in H} (R), which means r has
zero image in H! (R) which guarantees that r € R as desired.

Conversely, suppose that R is weakly normal. Let r € I'(X — m, Ox_,,) be an
element such that the action of Frobenius annihilates its image 7 in H] (R). Since
r € (X —m, Ox_,,) we identify r with a unique element of the total field of fractions
of R. On the other hand, v € R so r € *R = R. Thus we obtain that » € R and so
T is zero as desired. 0

Theorem 7.9. Suppose that R is a reduced F'-finite F'-injective Noetherian ring.
Then R is weakly normal.

PROOF. It is not difficult to verify that weak normality can be checked locally
and so suppose that (R,m) is a local ring. Also recall that if @ is any prime of R
then R is also F-injective by the worksheet (here we use that R is F-finite). Now
we need to show that R is weakly normal. If R is not weakly normal, choose a prime
P € Spec R of minimal height with respect to the condition that Rp is not weakly
normal. Apply to get a contradiction. 0

8. A quick introduction to Q-Weil divisors

Setting 8.1. Throughout this section R is a normal Noetherian domain.
We first state some facts about S2 and reflexive modules.

Definition 8.2. A finitely generated R-module M is called reflezive if the canonical
map M — Homg(Homg(M, R), R) is an isomorphism. Given M, the reflezification
of M is simply Hompg(Hompg (M, R), R) =: M"V.

Exercise 8.1. Show that for any finitely generated module M, Homg(M, R) is re-
flexive.

Lemma 8.3. A finitely generated R-module M 1is reflexive if and only if it is S,.

PROOF. We leave at as an exercise, see [Har94] for details. O



8. A QUICK INTRODUCTION TO Q-WEIL DIVISORS 57

Example 8.4. If M is a torsion-free R-module of rank-1 (meaning that M @z K (R) =
K(R)), then because M is torsion free, the canonical map M — M ®p K(R) is in-
jective. Thus we can embed M C K(R). In this case, we see that Homg(M, R) =
R gy M. Indeed, any such a € R :gg) M yields a homomorphlsm by multiplica-
tion. Conversely, given any ¢ € Homp(M, R) C Homg g (M ®r K(R), K(R)) and
then our identification M ®r K(R) = K(R) lets us identify ¢ with multiplication by
some element of K(R).

In this case, MYV, the reflexification of M, can be viewed as R :xr) (R :xr) M).
This is a subset of K (R) that obviously contains M.

Definition 8.5. A Weil divisor D = > a;D; on Spec R (or on R) is a finite formal
Z-sum of distinct height one prime ideals D;. A Q-(Weil-)divisor D = > a;D; on
Spec R is a finite formal Q-sum of distinct height one prime ideals D;. In either case,
the divisor is called effective if all the a; > 0.

Given any 0 # g € K(R), we define div(g) = > vp,(g)D; where vp,(g) is the
value of g with respect to the discrete valuation vp, which one obtains after localizing

R at Dz

Associated to any Weil divisor D is a reflexive fractional ideal"| R(D) (frequently
denoted in the sheaf theory language as Ogpecr(D)). In particular, if D = )" a;D
then R(D) is the subset of K (R) that have poles of order at most a; at D; whenever
a; > 0 and have zeros of order at least |a;| at D; whenever a; < 0. Explicitly,

R(D) = {g € K(R) | div(g) + D > 0},

Exercise 8.2. Using the definition, show that R(D) is reflexive, or equivalently that
it is SQ.

Let’s say what this is explicitly in some special cases.

(i) If D =0, then R(D) = R.

(ii) If D = D; is a single prime ideal, then R(D) := R :x(r) D.
(iii) If D = —D,; is the negative of a single prime, then R(D) = D;.
(iv) If D = —nD; (for n > 0) is the negative of a single divisor, then R(D) =

(D)"Y
) If D=—> a;D; (for a; > 0), then R(D) = (HD;”)W

(vi) If D > 0 (is effective) then R(D) = R k) R(—D).
(vil) If D = A+ B, then R(D) = (R(A) - R(B))"’
(viii) For any D, R(—D) = R :x(ry R(D).

(ix) If D = A — B then R(D) = Hompg(R(B), R(A)) = R(A) :xr) R(B).

(x) For any 0 # f,g € K(R), —div(g) = div(1/g) and also div(f - g) = div(f) +
(xi) R(div(g)) = % ‘R.

div(g).
Definition 8.6 (Cartier divisors). A Weil divisor D is called Cartier if R(D) is
projective (locally free). A (Q-)divisor D is called Q-Cartier if there exists an integer

A%

A fractional ideal is by definition a finitely generated submodule of K (R).
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n > 0 such that nD is Cartier. The smallest such integer n > 0 is called the (Cartier-
)index of the divisor.

Example 8.7. In k[2?, zy, y?] the ideal Q = (2%, xy) corresponds to a prime divisor D
but D is not Cartier (since it is not generated by a single element locally). However,
D is Q-Cartier since R(—2D) = (2?) (and hence R(2D) = 5 R).

Definition 8.8 (Linear equivalence). Two Weil divisors Dy, Dy are said to be linearly
equivalent if Dy — Dy = div(g) for some 0 # g € K(R). In this case we write Dy ~ Ds.
If Dy, Dy are Q-divisors, we say that they are Q-linearly equivalent if there exists an
integer n > 0 such that nD; and nD, are linearly equivalent Weil divisors.

Example 8.9. Working in k[2?, zy, y?] set D; to be the prime divisor (2% zy) and
D, to be the prime divisor (zy,y?), then Dy — Dy = div(x/y) and so Dy ~ Ds.

Lemma 8.10. Two divisors Dy and Do are linearly equivalent if and only if there is
an (abstract) isomorphism R(D;) = R(Ds).

PROOF. Suppose first that Dy and D are linearly equivalent, and so Dy —div(g) =
D, for some 0 # g € K(R). We claim that

R(D) - g = R(Dy).

Choose f € R(D;). Then div(f) + D; > 0. It follows that div(f - g) + D1 =
div(f) + Dy + div(g) > div(g). Thus div(f - g) + Dy — div(g) = div(f - g) + D2 > 0
and so f-g € R(D,y). Conversely, if h € R(D5) then div(h) + Dy > 0 and so
0 < div(h) + D; — div(g) = div(h/g) + Dy which implies that h/g € R(D;) and so
h € R(Dy) - g as desired.

Conversely, suppose that R(D;) = R(D,) and so Homg(R(D;), R(D3)) = R.
Since we have R(D,), R(D,) € K(R) we see that R(D3) :xr) R(D1) = h- R for some
h € K(R). We see that h - R(D;) = R(Ds) and so an argument similar to the one
above shows that Dy — Dy = div(h). O

Lemma 8.11. If D is a divisor on R, then every g € R(D) determines an effective
divisor D, ~ D, explicitly D, :== D + div(g). Furthermore h € R(D) determines the
same dwisor as g if and only if h and g are associates in R (unit multiplies).

PROOF. We first observe that div(g) = div(h) if and only if div(g/h) = 0. But
div(g/h) = 0 if and only if g/h has zero valuation at each height one prime of R.
Obviously units have this property. On the other hand if div(g/h) = 0, then g/h € R
and must also be a unit (because if not, it would vanish at some height one prime).
This handles the uniqueness. Now we simply have to show that D, > 0. But R(D)
is the set of elements g € K(R) such that div(g) + D > 0. O

Remark 8.12. The choice of a finitely generated reflexive rank-1 module M and
an embedding M C K(R) also determines a divisor D such that M = R(D). To
see this, for each height one prime D; with associated discrete valuation vp, set
a; = max{—vp,(m) | 0 # m € M}. It can be verified that D = )" a;D; is a divisor
(one has to verify that the sum is finite using that M is finitely generated) and that
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M C R(D). By construction R(D) — M is an isomorphism at height one primes
and so since both modules are S, it is an isomorphism everywhere.

With this in mind, T like to think about a choice of g € R(D) as a choice of a new
way to embed R(D) into K(R). In particular, it is just the embedding of R(D) into
K (R) which sends g to 1.

Suppose now that R has a canonical module wg.
Lemma 8.13. wgp is Ss.

PROOF. Note the canonical module is unique up to tensoring with a locally free
module, which obviously does not change whether a module is S,, so any canoni-
cal module is as good as any other. The Lemma can be checked after localization
and completion (since it is a statement about local cohomology and the comple-
tion of a dualizing complex is a dualizing complex say by local duality). Thus
choose A C R a finite extension with A complete and regular (this exists as part
of the Cohen Structure Theorem, see for example [Stal6, Tag 032D]). It follows
that RHomy (R, A) is a dualizing complex for R. A canonical module for R is
thus hR Homy (R, A) = Homyu (R, A). Now, Hom4(R, A) is obviously reflexive as
an A-module and hence it is Se as an A-module. But then it is not hard to see
that Hom4 (R, A) is Sy as an R-module as well (this requires a bit of work). Hence
wr = Homy (R, A) is reflexive as claimed. O

Definition 8.14. Fix wg a canonical module. A canonical divisor is any Weil divisor
KR such that WR = R(KR)

Remark 8.15. So far we seen that canonical modules are only unique up to twisting
by locally free modules. In particular, based on what we have seen, canonical modules
are only unique up to a Cartier divisor. For local rings this is file (all Cartier divisors
are linearly equivalent to zero). For more general rings and especially for schemes, this
is not so good since you want some compatibility between your dualizing complexes
(you want them to behave reasonably with respect to morphisms). However, most of
the time we are working with objects and morphisms (essentially) of finite type over
a Gorenstein ring A (for example a field or Z,), say f : X — Spec A. In that case,
there is a canonical choice of a dualizing complex, f'A[dim A]. In the case that R is

a normal domain of finite type over a field k, R = klx1,...,2,]/I, then this choice
boils down to wp = Extz[;fjffn](R, klxy, ..., 2.)).

Note that a ring is Gorenstein if and only if Ky is Cartier and R is Cohen-
Macaulay. We also have the following definition.

Definition 8.16 (Q-Gorenstein). R is called Q-Gorenstein if K is Q-Cartier. (Note
there is no Cohen-Macaulay hypothesis). For a Q-Gorenstein ring, the (Q-Gorenstein-
Jindex is the smallest integer n > 0 such that nKx is Cartier.

9. Frobenius splittings and divisors

Suppose that R is an F-finite Noetherian normal domain. Notice that Hompg(F¢R, R)
is a reflexive R-module and hence a S, R-module. Since the S, condition can be
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checked via local cohomology and localization, neither of which care whether we are
viewing the Hom-set as an R-module or F¢R-module, it follows that Hompg(FfR, R)
is S, as an FY R-module as well.

Exercise 9.1. Suppose R is an F-finite Noetherian normal domain, show carefully
that the Ff R-module Homg(F¢R, R) is So.

Thus Hompg(F?R, R) is a reflexive FfR-module of rank 1 (it has rank 1 because
its rank as an R-module is the same as the rank of FfR as an R-module). You might
naturally ask what linear equivalence class of divisor this Hom set corresponds to?

First we work in the following setting.

Setting 9.1. Suppose R is as above in this section. Suppose we have a dualizing
complex wp, such that R Homp(Fy R, wp) = wi.p (this always exists if R is local or of
finite type over a field, it probably also follows that such a dualizing complex exists
in general by some unpublished work). We fix this dualizing complex forever more.
Notice that if wp is the associated canonical module, the Hompg(Ff R, wr) = wpep =
Ffwr (note we don’t need to worry about the derived Hom’s all the modules are
reflexive and they are certainly isomorphic in codimension 1 where R is regular). We
fix Ki to be a canonical divisor associated to this canonical module.

Lemma 9.2. With notation above, F¢R((1—p®)Kr) = Hompg(F¢R, R). In particular,
if R is local and quasi-Gorenstein, then Homg(F¢R, R) = F¢R as F¢R-modules.

ProoF. This follows from the following chain of isomorphisms (in this chain, in
almost every step, we use that all modules are reflexive, and so it is enough to verify
the isomorphisms in codimension 1 where we can treat the modules as if they were
free).

Hompg(F¢R, R)

Hompg((FYR) @r R(KR), R(KR))

HomR(Fe(R ®gr R(p°KR)),wr)

HOHlFeR(Fe(R QR R( EKR)), HOH1R<F*6R, wR))
Hompep(FE(R(p°KR)), Ffwr)

Fe Homp((R(p° Kr)), R(Kr))

FeR((1 - p)Kr).

11111 1R 11 1R

O

Corollary 9.3. Every nonzero map ¢ € Homg(F¢R, R) determines an effective Weil
divisor Dy ~ (1 — p®)Kg. Furthermore, two maps ¢,¢" determine the same divisor if
and only if they are the same up to pre-multiplication by a unit of FER

Corollary 9.4. Suppose R is a normal Noetherian F-finite domain. There exists a
¢ € Homg(FER, R) which generates the Hom-set as an F¢R-module if and only if
(1 —p°)Kg ~ 0. In the case that R is local, such a ¢ exists for some e > 0 if and
only if R is Q-Gorenstein with index not divisible by p > 0.

In many cases you want this divisor to be in some sense independent of the
characteristic, or more generally, independent of self-composition. In particular, you’d
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like the divisor corresponding to ¢ o F¥¢ to be the same as the divisor corresponding
to ¢. We can accomplish this by normalizing our divisor.

Definition 9.5. For any nonzero ¢ € Hompg(F¢R, R) we define A, := —=D,. Note
that KR+A¢ ~Q 0.

Lemma 9.6. If ® € Homg(F¢R, R) generates the module (as an FfR-module), then
Ag = 0 = Dg. Furthermore, if we write ng(Fe ) = W(Fe(r-_)) for somer € R,
then Dy = Dy + dive(r) and so Ag = Ay + = dive(r).

PROOF. Left as an exercise to the reader. [l

Lemma 9.7. For any map ¢ and any integer n form ¢™ := ¢ o (F¢)o (F?*¢)o
(F" V%) € Homp(F™R, R). Then Agn = Ay,

Proor. This statement may be verified in codimension 1 since divisors are defined
in codimension 1. Thus we localize R at a height one prime to obtain the (R, m = (r))
is a DVR (remember, R was normal). Since regular rings are Gorenstein, we choose
¢ € Hompg(FER, R) generating the Hom set as an F¢R-module. Then we can write
O(Ff_) = O(Ffur™_) for some integer n > 0 and unit © € R. Note that in this case,
Dy = ndiv(r) and so Ay = =5 div(r). It follows that

¢2(F26_) _ (I)Q(F*Qe(urn)l—i-pe_)

and so Ay = ;jpl div(r) =

iv(r) = Ag. More generally

¢n(Fne ):@n(Fne(uTn)1+pe+‘..+p(n71)e )

(n— )e
and thus Agn = n{l4p° ;nei”f i dlv( )=

iv(r) = Ay D

Exercise 9.2. Suppose that 0 # ¢ € HomR(FfR, R) and 0 # ¢ € Homg(FIR, R).
Find a formula for Agpey in terms of Ay and A,

Putting together what we know now, we have a bijection

Q-divisors A such that
Kr+A~g0 Nonzero
with trivializing index{™ not < ¢ € Homg(FfR, R) / ~
divisible by p

where the equivalence on the right is generated by self-composition and pre-multiplication
by units.

Suppose that A = A, is such that ¢ € Homg(F¢R, R) satisfies ¢(F 1) C I. For
simplicity assume that R/I is normal, then ¢ induces a map ¢r/; : FS(R/I) — R/I
which, if this is not the zero map, induces a divisor Ag/;. In particular for every such
Ay with Kr + Ay ~g 0 we obtain a canonical Ar/; with Kg/; + Ag/; ~g 0. This
canonical way of associating a divisor on a subscheme is an analog of Kawamata’s
subadjunction theorem in the characteristic zero world [Kaw98].
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Example 9.8. Suppose chark > 2, consider S = k[z,vy, 2|, R = k[z,y, 2]/{xy — 2?)
and I = (x,z) € R. Hompg(FfR,R) is isomorphic to FfR and is generated by
Pr(F°_), the restriction of the map ®g(F¢(xy — 22)P"~1 . _) € Homg(F<S,S) (by
Fedder’s criterion). Now, consider the map

U(FE_) = Dp(Fra® V2. )

which is the restriction of ®g(F¢(zy — 22)P"~'z®*~1D/2. ). If you apply this map to
the ideal I = (x, z) one obtains

D(Fe(ay — 2 a2 (2 1))

We claim that (zy — 22)P" " 1z® —D/2(x 2) C (2P, 27°). Indeed, when we expand we
get

()P 2P =D/2 1 () P D/2,0 D0 D/2 Ly 2050, 08D/

which when multiplied by (z, ) is obviously contained in (z*", z7°) which means that
¢r(FET) C I. On the other hand, if we didn’t multiply by (x, z) then the expansion
is not in (zF", 2/") which means that ¢ = ¢r/r is not the zero map. In particular it
induces a divisor on k[y] = S/(z, z) and so we can ask what divisor it gives us.

In the above expansion, the only term that is not in (7", 27"} is the middle term
(zy) P —D/2,° =1z (0"=1/2 " The generating map for Hom(F¢S/(z, z), S/{x, z)) is ob-
tained from ®g(Fe2P 127"~ ). Hence the map 1) we found is the generating map for
Hom(F*k[y], k[y]) pre-multiplied by y*~1/2. In particular, the divisor corresponding
to 1 is 5 div(y) on Speck[y].

10. Divisors, Frobenius splittings and finite extensions

Suppose that R C S is a finite extension of normal Noetherian domains. Suppose
we have ¢ : FFR — R. It is natural to ask when ¢ extends to ¢g : FS — S and
when it does, what is the relation between the divisors Ar and Ag.

Example 10.1. Suppose R = k[z?] C k[z] = S for chark = p > 2. Consider the
generating homomorphism ® € Homg(F, R, R) which sends F,(z?)P~! to 1 and the
other basis elements to zero. This map does not extend to a map Homg(F,S,S5),
indeed if it did then F,zP~2 = F*% would necessarily be sent to 1/ which is not
in S.

On the other hand, consider the map ¢ € Homg(F, R, R) is the map that projects
onto the basis monomial F,(2%)?~1/2 and projects the other basis monomials to
zero. It is easy to see that any extension of this map to S sends F,aP~! — 1 since
2P~! = (22)P=V/2_ Furthermore we claim such an extension also sends the other basis
monomials to zero. Consider the element F,27/ for 0 < j < p — 1. If j is even, then
there is no problem, F,z7 is one of the other basis elements of F,R and is thus sent
to zero. So suppose j is odd. Now, j + p is even and j 4+ p < (p — 1) + p but since
the right side is odd, j +p < 2(p — 1). Thus F,z’™? is a monomial basis element of
F.R. But since j + p cannot equal p — 1 = (2(p — 1)) /2, we see that any extension of
¢ must send F,z/*? to zero. But then such an extension must send F,z? to 0/p = 0.
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Therefore, because we can describe an extension of ¢ by describing what it does to
the basis elements of F.S, we see that ¢ can indeed extend. It follows immediately
that any ¢(F._ ) := ¢(F.(r-_)) also extends.

Let us first analyze this in the case where R and S are fields.

Lemma 10.2. Suppose K is an F-finite field and ¢ : FC K = KY?" — K is a nonzero
map. If K C L is a finite separable extension of fields then ¢ extends uniquely to a
map ¢, : FCL = LY? — L.

PROOF. Since L and K/?° are linearly disjoint extensions of K (one separable,
the other purely inseparable), L ®x KY?° = L - KY/?" = L'/% (to see the second
equality, note we have the containment C and also that [LY/?" : L] = [K'/P° : K] since
[LYP* . KYP°] = [L : K]). It follows that

@ L LY 2KV @p L — K @k L

is a map extending ¢. 0

Exercise 10.1. Suppose that L/K is a finite extension of characteristic p > 0 fields
and x € L'\ K but 2? € K. Show that if ¢ : K/ — K extends to L'/?" — L,
then ¢ is the zero map on K. Conclude in general that if L/K is inseparable, then
no nonzero ¢ : K'/? — K can extend to L'/?" — L.

Recall that given a finite extension of fields K C L, we have the trace map
Tr : L — K. This is defined as follows, for each y € L, we have a K-linear map

L % L, Tr(y) is then defined to be the trace of the linear operator -y.

Lemma 10.3. Suppose L/K is a separable extension of fields and that ¢ : K'/*° — K
extends to ¢ : L'? — L. Let Tr : L — K be the trace map. Then the following
diagram commutes

RV N

L
Trl/pel lTr

K'Y/ K
¢

PrOOF. Choose :c}/pe, ., 2d/" a basis for KY? /K. Tt follows since L'/?* =
L-KY" = Lok KYP° that xi/pe, o ,:c,ll/pe is a basis for L!/?° /L. On the other hand,
if 21,..., 24 is a basis for L/ K, then it remains a basis for L'/?° /K/?° Tt follows that
(Tr)Y/?°|, = Tr. Now since ¢ extends to ¢y, gb(xil/pe) = ngL(m;/pe). Finally, for any

y € L, write
yl/Pe — Zaile/pe
6o TH! (')

= (o (T ()
= Y (") Tr(a).

for some a; € L. Thus
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and also
Trogy, (yl/pe)
= (X aio(a;”))
> Tr(a;)p(;").
The result follows. O

We need the following standard result.

Lemma 10.4. Suppose R C S is a ﬁm’tc{r_gl inclusion of normal Noetherian domains.
Let Tr : K(S) — K(R) denote the trace map, then Tr(S) C R.

PROOF. Since R is S,, it suffices to prove the result after localizing at a height
one prime of R (to see this, simply notice that Tr(S) C R is a finite R-module and so
if it agrees with R in codimension 1, it is contained in R). But since R is normal, such
a localization is a DVR and so we may assume that R is a DVR. But now S is a free
R-module so a basis for S/R becomes a basis for L/K. It follows that for any s € S,

S % S is written as a matrix with entries in R and so Tr(s) € R as claimed. O
We now also explain how to pullback divisors under finite maps of normal domains.

Definition 10.5. Suppose R C S is a finite inclusion of normal domains with induced
map 7 : Spec S — Spec R. For any Weil divisor D on R, we define 7*D to be the
divisor such that (R(D) - S)¥Y = S(7*D). Alternately, for each height one prime @
of R, let Q1,...,Qq be the primes of S lying over ). In this case R(D)g = ggRqg
since each Rg is a DVR. We define 7*D = >, >, —vq,(9¢)Q:- In particular, if
D = divg(f), then 7*D = divg(f).

Example 10.6. If S = F¢R, then 7*D = p°D.

If R C S is a finite inclusion of normal domains such that K(R) C K(S5) is
separable (with 7 : Spec S — Spec R the induced map), the map Tr € Hompg(S, R) is
a nonzerdf] element in a rank-1 Sy S-module. Also note that if wg := Homg(R, wg),
then

Homg(S, R)
= HOII]R<S QR WR, wR)
= HOIHR(S<7T*KR), wR)
= Homg(S(m*Kg),ws)
= S(Kg—71"Kpg).
and so the effective divisor D, corresponding to Tr is linearly equivalent to Kg —
W*KR.

Definition 10.7. With notation as above the effective divisor D, corresponding to
Tr is called the ramification divisor (of R C S ). Throughout the rest of the paper, it
will be denoted by Ram = Ramgp.

I3Pinite means S is a finitely generated R-module.
Ty of an extension of fields is nonzero if and only if the extension is separable.
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You may have seen the ramification divisor defined somewhat differently, these
two definitions are indeed the same. Let’s do a hopefully convincing example.

Example 10.8. Consider R = k[z"] C k[z] = S where chark does not divide n.
We will compute the trace map and thus the ramification divisor. Note that S is
a free R-module with basis 1,z,...,2"" . Tt is easy to see that Tr(z') = 0 for
0 <i<nand Tr(1) = n (just write down the matrices). On the other hand the map
® that projects onto "' obviously generates Homp(S, R) as an S-module. Note
Tr(_) =n-®(z"'_) so that because Dy = 0, we see that D, = div(z"!).

Definition-Proposition 10.9. If R C S is a finite separable extension of rings with
R a DVR with uniformizer s, then it is said to have tame ramification at a maximal
ideal @ € Spec S (so that Sg is a DVR with uniformizer s) if it satisfies the following
two conditions:

o when we write r = us”, p does not divide n
o and if R/rR C Sg/sSg is separable.
In this case, the coefficient of Ram at () is equal to n — 1.

Exercise 10.2. Verify the above definition - proposition.

Lemma 10.10. Suppose we have finite inclusions of normal domains A C B C C
with p : Spec C' — Spec B the induced map. If p € Homy (B, A) and ) € Homp(C, B)
then D¢o¢ = D¢ + p*Dd).

PROOF. Since we are concerned above divisors, we may assume that A is a DVR
so that B and C are semi-local. In this case if ® and ¥ generate their respective
Hom groups, we see from an older homework assignment that so does ® o ¥ and
thus all divisors in question are zero. On the other hand, if ¢(_) = ®(b-_) and
() = ¥Y(c-_), then D, = divg(b) and D, = dive(c) and divyey = dive(be) =
Dy + p*Dy. O
Theorem 10.11. Suppose that R C S is a finite generically separable inclusion of
F-finite normal domains with induced w : SpecS — SpecR. Then a map ¢ €
Hompg(FER, R) extends to a map ¢g € Homg(FES, S) if and only if ™Ay —Ram > 0.
In this case Ayy = ™Ay — Ram.

PROOF. Suppose first that ¢ extends to ¢g (note Ay is automatically effective)
and so by we have a commutative diagram

S %, g

Trl/pel lTr

RY? — R.
¢
It follows from [Lemma 10.10| that Ram + 7*D, = Dy, + p°Ram. Thus 0 < A, =
L (7*D,) — Ram = 7*A4 — Ram.

Conversely assume that 7*A, — Ram > 0. We can still extend ¢ to ¢g : S/pt
L = K(S). We need to show that the image of is contained in S. After localizing

pe
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at a height one prime of R if necessary, we can assume that ®s € Homg(S'?",S)
generates the Hom-set as an S'/P"-module. We may then write ¢(_) = ®g(y'/?"_)
for some y € K(5). It suffices to show that y € S, or in other words that div(y) > 0.
We still have the following diagram

SUP 25 K (S)

Tyl/pel lTr

RY/P* —— K(R).

An argument similar to the one above proves that div(y) = 7*D, — (1 —p®)Ram (note

this requires a slight modification of the proof of [Lemma 10.10)). 0

Corollary 10.12. Suppose that R C S is a finite generically separable inclusion of
F-finite normal domains with 7 : Spec S — Spec R the induced map. Suppose R is
F-split and that ¢ : FfR — R is a Frobenius splitting such that ™Ay > Ram. Then
S is F-split as well.

Definition 10.13. A finite inclusion of normal domains R C S is finite étale in
codimension 1 if the ramification divisor Ram = 0.

Corollary 10.14. Suppose that R C S is an inclusion of normal domains that is
finite €tale in codimension 1. If R is F'-split, then so is S.

Remark 10.15. The converse to these results does not hold in general, but it does
hold with the additional hypothesis that R C S splits (as we have seen). Note that
in the case that R C S is étale in codimension 1, this is equivalent to the hypothesis
that Tr(S) = R since in that case Tr € Hompg(S, R) generates the Hom-set.

There is a version that we can easily state for F-regularity as well.

Corollary 10.16. Suppose that R C S is a finite inclusion of normal F-finite do-
mains. Fiz a 0 # ¢ € R such that R. and S. are strongly F'-reqular. If there exists a
map ¢ € Homg(FER, R) such that ¢(Ffc) =1 and such that 7*A, > Ram, then S is
strongly F'-regular as well. In particular, if R C S is étale in codimension 1 and R is
strongly F'-regular, then so is S.

Proor. Use[Theorem 5.10| applied to c € S. O




CHAPTER 3

Hilbert-Kunz multiplicity and F-signature

Consider the problem of measuring how singular an F-finite local ring (R, m) is.
Based on Kunz’s theorem, we should measure:

How close to free is FfR as an R-module.

Hilbert-Kunz multiplicity and F-signature are both attempts at quantifying that
notion, asymptotically as e — oo.

Hilbert-Kunz multiplicity: Measures how many generators F¢ R has relative
to the expected number if R was regular.

F-signature: Measures how many free summands F¢R has relative to the ex-
pected number if R was regular.

1. Hilbert-Kunz multiplicity

Suppose that (R, m, k) is a local Noetherian ring and that M is an R-module. We
let pir(M) denote the minimal number of generators of M as an R-module. Note that
pur(M) = Llp(M/m - M) = ranky(M/m - M) by Nakayama’s lemma.

Suppose that R = k[, ..., x4] and that k = kP is perfect of characteristic p > 0.
In this case, F¢R is a free R-module with p°® generators. Because of this we make
the following definition:

Definition 1.1 (Hilbert-Kunz multiplicity, perfect residue field case). Suppose that
(R, m, k) is a Noetherian local ring of characteristic p > 0 and dimension d. Suppose
further that k& = kP is perfect. Then we define the Hilbert-Kunz multiplicity of R to

be the -
14 P Fe
o () )
e—>00 pe e—>0o0 pe

if it exists. It is denoted by eyk (R).
Example 1.2. If R = k[xy,...,24] and k = kP is perfect, then ey (R) = 1.

We'll show that this limit always exists later, after we generalize this definition a
bit. For now, suppose that R is the localization (at some maximal ideal) of some finite
type algebra over a perfect field. If dim R = d, it follows that [FK (R) : K(R)] = p*,
and so the generic rank of FR over R is p®». Hence ug(F°R) > p®. On the other
hand if we ever had that pugr(F¢R) = p°, then F°R would be a free R-module and
hence R would be regular (and then an argument similar to the one above would
show that egx(R) = 1).

Next let’s figure out what to do when k is not perfect, we’ll use the case of an
F-finite residue field as our starting point.

67
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Lemma 1.3. Suppose that (R,m, k) is a local ring with F-finite residue field (i.e.
such that [k : kP] < 00). If M is an R-module of finite length then

(1.3.1) (R(FEM) = [k« k"] - bper(FEM) = [k« KP] - Lp(M).
In particular, ur(FSR), the number of generators of FER as an R-module satisfies
(1.32)  pr(FCR) = (r((FER)/m) = Lr(Fo(R/mP)) = [k k7] - £g(R/mPT)
PROOF. In|(1.3.1)} the second equality is trivial. The first equality follows from
the fact that [k : kP"] = (r(FCk).
In|(1.3.2), the first equality is just Nakayama’s lemma and the second is the fact

that (R/m) - F°R = F,(R/mlPl). The third equality is simply applied to the
finite length module M = R/mll. O

On the other hand if R = k is an imperfect but F-finite field, we still might want
enk(R) = 1 (since R is regular). Now, if px(Fik) = [Fik : k] = [k : k] = n, then
wi(F2k) = [F2k : k] = n? and more generally, p,(F°k) = n°. Thus it is natural to try
to normalize at the very least for the residue field. In particular, it would be natural
to simply define

. pr(F{R) - LR((FL(R/mPT)
R)= lim ——————— =1
enc(R) = 1 oo = o e
However, based on our above lemma, this is already the same as:
Cr(R/mPT)

ed

enx(f) = lim p

We take this to be our definition of Hilbert-Kunz multiplicity independent of whether
or not k is perfect (even if k is not F-finite). At this point, there is one more
generalization we will make. Instead of modding out by mPl we fix J to be an
m-primary ideal (ie, v/.J = m) and mod out by JP7,

Definition 1.4 (Hilbert-Kunz multiplicity, general case). Suppose that (R, m) is a
Noetherian local ring of characteristic p > 0 and dimension d. Suppose further that
J is an m-primary ideal. Then we define the Hilbert-Kunz multiplicity of R along J

to be -
(r(R/JP
enx(J; R) = lim Ld)
e—>0o0 pe

if it exists.
Before showing it exists, let’s figure out what it is for regular rings in general.

Proposition 1.5. Suppose (R,m, k) is a reqular local Noetherian ring of charac-
teristic p > 0 and dimension d. Then enx(J;R) = ((R/J) and in particular,
eHK(m; R) = 6HK<R) =1.

PROOF. We first handle the case when J = m. Consider R = k[xy,...,zq4). By
construction, R/(JR)P1 = R/JP1 and so egk(J; R) = enx(JR; R). Thus we may
assume that R = k[z1,...,z4]. But clearly then ((R/mP7) = pe.
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For the general case, we will show that
(r(R)J") = p™lr(R)J)

which will complete the proof. Consider a decomposMon 0=NoC N TNy C -+ C
Ny = R/J where s = {g(R/J) and N;y1/N; = k = R/m. Tensorlng “with the flat
module F¢R we obtain

0= (F'R)®rNy € (FCR)®R N1 € (FER)®prN2 C -+ € (FER)®g N, = FE(R/JFY).

Each (F°R) ®g Niy1/(FCR) ®@g Nj is isomorphic to F¢(R/mlPl) and so has length p
as an F¢R-module. It follows that

tr(R/JPT) = p*R(R/J)
as desired. O

Theorem 1.6. For (R,m) a Noetherian local d-dimensional ring of characteristic
p > 0, the following are equivalent:

(a) R is regular.
(b) Lr(R/mlP) = ped for every e > 0.
(c) Lr(R/mPT) = p for some e > 0.

PrOOF. We just showed that (a) <= (b) and obviously (b) < (c), so it suffices to
show that (c) implies (a). We essentially already sketched this when the residue field
is perfect (since then (c) implies that F¢R is free). The general case is left as an
exercise (if time permits, we may prove a more general theorem later showing that
enk (R) = 1 actually implies that R is regular). O

Exercise 1.1. Prove [Theorem 1.6l
Before moving on to existence, let me make one more observation.
Proposition 1.7. With notation as above
p*enk (J; R) = enx (JP': R).
PROOF. It is obvious. ([l

1.1. Existence of the limit. We follow closely the recent proof of the existence
of Hilbert-Kunz multiplicity as shown in [PT16].
First we state a fact that we won’t have time to prove.

Lemma 1.8. If (R, m, k) is a local F-finite Noetherian domain of dimension d then
FEK(R) : K(R)] = [Fek K] -
You probably already believe it anyways.

Lemma 1.9. Suppose that (R, m, k) is a local ring and that M is a finite R-module.
Then there ezists a constant (depending on M ) so that

KR(M/m[”E]M) < Q. pedimM,
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PROOF. Suppose that m is generated by ¢ elements, then m*?° C m®*~*+1 C ml[r*]
by the pigeon-hole principal. But

Cr(M/m"™")
is eventually a polynomial
D (tpe)dmM 4 ... = p.gdimM  pedmM |
of degree degree dim M in p°®. We can thus pick C = D-t4%™M for e > 0, and choosing
C even bigger for finitely many smaller e completes the proof. O

Remark 1.10. The fact that /p (M / mtpc) is eventually a polynomial can be found
for example in [AMG69, Chapter 11] for the case that M = R. For the general case,
if you only want to bound its length by a polynomial of degree dim M (which is all
we actually need), write J = Anng(M) and note that dim R/J = dim M and that
there exists a surjection (R/J)®® — M — 0 for some b > 0.

Lemma 1.11. Let R be an F-finite domain with [F.K(R) : K(R)| = p". Then there
exists a short exact sequence
0— R"™ — F,R— M —0
such that dim(M) < dim(R).
PROOF. After inverting an element ¢ € R, we have that R®?" = F,R.. This
gives us an injective map R®"" — F,R,.. If the image is not in F,R C F,R,, then
multiplying by a high power of ¢ € R will make it in R. This gives us the first map.

Then if we we let M be the cokernel, it is easy to see that Supp M C V(¢) and so
dim(M) < dim(R/cR) < dim R. O

Theorem 1.12. Suppose that (R, m, k) is an F-finite Noetherian local domain of
characteristic p > 0 and dimension d > 0 and that {I.} is a sequence of ideals such

that mlPl C T, for all e > 0. Suppose further that L[;p} C I.y1. Then

V4 I
lim —R(Rg )
e—r00 pe
exists

Proor. We follow [PT16]. Consider a short exact sequence as in |[Lemma 1.11

0— R &% R M—0
with dim M < dim R. Now, I} C (I..,) implies that I.F.R C F,I.,; and so
S(I8") = ¢(I - R®") C ILF.R = F.IP C F.I,..,.

Thus we have

G (B/LY — Fu(R/I.).
Therefore the length of (R/I.)P" plus the length of the cokernel of ¢ is at least the
length of Fi(R/I.+1). In other words

(1121)  Lg(cokerd) +p la(R/L) > Ca(FuR/Topn) = (K77 K] - Ca(R/ L),
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Now, coker ¢ is the image of F,(R/I.,,) and so F,I,., annihilates it. But
mP) C Fm C FILy,

and so m”! annihilates coker ¢. But coker ¢ is also the image over M and hence of
M/mPIM . In particular

ER(cokerg_Z)) < ER(M/m[pelM).

By this is bounded by Cyp®® Y. Now, we divide |(1.12.1)| by [F.k :

k]pletVd = ped+7 and obtain

CM/p7 1
(1.12.2) o + WER(R/IE) > WER(F*R/IeH).
The existence of the limit now follows from the following lemma. O

Lemma 1.13. Suppose that p is prime, d > 0 an integer, and {t.} is a sequence of
real real numbers such that {t./p*®} is bounded. Further suppose that there exists a
constant C' such that

o1 1
C/p°+ Iﬁte > Wteﬂ-

Then t :=lim,_ ;:d exists and t — 1/p°it, < i—f,

PROOF. Note that

1
e+1 e e+1
Clp™ +C/p° + ﬁte > C/p + Wte—i-l > Wte—m

and more generally that
1 1 1
e e+m+41 e
20/]9 —f-ﬁteZC(l/p +"‘+1/p)+ﬁtezzmte+m.
Let t* denote the limit supremum of {t./p**} and ¢~ the limit infimum. Note
1
20/]96 + _dte > tt.

pe

Apply the limit infimum to both sides we get ¢t~ > t* and so the limit exists and

hence so does the desired bound. [

Theorem 1.14. For any m-primary tdeal in a domain, and J C m s m-primary,
enk(J; R) exists.

PROOF. Suppose first that R is an F-finite domain. We’d be tempted to show
that mP?! C JP! but this is impossible unless J = m. However, we certainly have
mlP’l C J for some integer ¢ and so mP?l C JP°] for all e. Hence we see that

1 e—t 1 1 e
lim s (R/JVY) = o tim (R
e—>00 ped f / ptd e—>o0 ped R< / )
exists (say it equals b). Thus so does

1
bp'd = lim —(lx(R/JP) = J: R).
P einooped R( / ) eHK( )
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For the non-F-finite case, it is harmless to assume that R = kfzy,...,2,]/] is
complete with residue/coefficient field k since the lengths R/JP! are unchanged by

L —

completion. But now S = R®y, k is F-finite and the R-lengths of R/JP are equal
to the S-lengths of S/(JP1S). O

2. F-signature

Suppose that (R, m, k) is an F-finite domain of dimension d. For now, suppose
that k = kP is perfect. Write
F°R = R®* & M,

where M, has no free summands. It turns out (we’ll see shortly) that even though this
sort of decomposition is not necessarily unique (it is if R is complete), the number a,
is independent of the decomposition. We’'ll define

to be the F-signature of R. Note
(i) If R is regular, then s(R) = 1.
(i) If R is not F-split, then s(R) = 0 (in fact, we’ll see that if R is not F-regular,
then s(R) = 0).
(iii) In general 0 < s(R) < 1.
2.1. Existence of F-signature. Let’sdefine I, = {r € R | ¢(F<r) C m for all ¢ €
Hompg(FfR, R)}.

Lemma 2.1. [, is an ideal of R.

PrOOF. Obviously I, is closed under sum. If z € I, and r € R, we need to
show that rx € R. For each ¢ € Hompg(FFR, R), define ¢'(F¢_) = ¢(Ffx_). Then
¢ (Fer) € m so then ¢(Ffxr) € m and so I, is an ideal. O

Lemma 2.2. With notation as above, (g(R/1.) = a. In particular, a. is independent
of the decomposition.

PROOF. Since M, has no free R-summands, ¢(M.) C m for all p € Homgz(F¢R, R).

Thus M, C I.. In fact we even have:

m% o M, C ..
On the other hand, if Ffz € (FfR) \ (m®* @ M,), say the ith term in the direct sum
decomposition is a unit v not in m. But then the projection onto the 7th term sends
Ffr— u ¢ m. Hence

m® ¢ M, = I..
But /RR/I. = a. as desired. O

Obviously I, O mlPl. Hence the F-signature limit exists if can show that
Ic[p 1 C I

by our previous work with limits.
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Lemma 2.3. With notation as above I C I..1 and hence the F-signature limit

exists by [Theorem 1.14

PROOF. Choose 1 € I.. Then for any ¢ € Homg(F¢™' R, R), we have a restricted
¢ = ¢|per. Note the elements in F¢R C FfM' R are the pth powers of elements of
FeH R, hence

GFSTP) = p(Fir) € m.
Thus 1P C I, as desired. O

Remark 2.4. One can define s(R) = lim,_ (r(R/I.) even if the residue field is
not perfect. Our work above shows that the limit still exists.

2.2. Positivity of F-signature. Our next goal is to explain when the F-signature
is positive. It is obviously zero if R is not F-split. First we need a lemma.

Lemma 2.5. With notation as in the beginning of the section (), I. = 0 if and only
if R is strongly F'-regular.

PROOF. Exercise! O
Theorem 2.6. s(R) > 0 if and only if R is strongly F-reqular.

PrROOF. We suppose that the residue field is perfect for simplicity.
Suppose first that (), Ic # 0 (ie, that R is not strongly F-regular) that 0 # ¢ €
M. Le- Since mlPl C 1., we see that

R
KR(R/IE> < ER(W) < C’pe(d—l)‘

Therefore

1
s(R)= lim —/r(R/1.) = 0.
(B) = lim —tu(R/1)

Now assume that R is strongly F-regular. Without loss of generality we may
assume that (R, m, k) is complete. The Cohen-Gabber-Structure Theorem says that
we can find A = kfzy,...,z,] C R afinite separable extension (Noether normalization
for complete rings). Furthermore, we can choose 0 # ¢ € A such that

c- RYP C R[Al/pe] ~ R, AYP

for all e. In other words, ¢- FfR C R[FfA]. Now, since R is strongly F-regular, we
can find ¢ € Hompg(RY?™, R) for some e, > 0 such ¢(c'/?*) = 1. We will show that
s(R) > 1/pd > 0.

Now, the p¢th roots of the monomials x*, 0 < a < p® — 1 for a basis for A/?°
over A. Let p, be the projection so that p,(x*/?°) = 1 and pg(x?/?*) = 0 for B # a.
We form the compositions

T RY/? 5 R@y, AV 1870y g
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Note m,(x?") = pu(cx®/P") = ¢. Now we post compose with ¢ and we obtain
b = ¢ 0 (7o) /P which sends x*/7""* » 1 and x?/P"" - 0 for B # a. Taking the
direct sum of these maps gives a surjection

ed

(Do) : RV — RO
Hence s(R) > 1/p. O

Question 2.7. If one starts in characteristic zero with R¢, can one find a lower bound
on F-signatures of the mod p reductions s(R,)? Better yet, it would be better to find
a geometric interpretation of

lim s(R
pgﬂoﬁ( )

(say in the case that R is essentially of finite type over Q).

3. Transformation of F-signature under étale in codimension 1 extensions

Our goal in this section is to understand how F-signature behaves under finite
extensions.

Lemma 3.1. Suppose that (R,m, k) C (S,n, k) is a finite extension of local domains
with the same residue field. Then Tr(n) C m.

PRrROOF. We prove it only in the case where the extension is generically Galois
since the proof there is easier.

Let G = Gal(L/K) where L = K(S5) and K = K(R). Then Tr(z) = }_ ;9.7
But if © € n, then g.x € gn = n (since the extension is local and finite). Thus
Tr(z) enNR=m. O

Lemma 3.2. Suppose that (R,m, k) C (S,n, k) is a finite extension of local domains
with the same residue field. Further suppose that R C S is étale in codimension 1
(or in other words that the ramification divisor is zero). Then S has at most one free
R-summand.

PROOF. The fact that the ramification divisor is zero means that Tr € Hompg(S, R)
generates the Hom-set. Consider J = {s € S | Tr(sS) C m}. Now {(g(S/J) is the
number of free R-summands by the same argument as [Lemma 2.2l But this length

is at most one by since n C J. O

Next we need the following result (whose proof we don’t have time for).

Proposition 3.3 ([Tucl2]). Suppose (R, m, k) is a d-dimensional Noetherian local
ring and for simplicity assume that k = kP. Let M be a finitely generated R-module
and let b, denote the maximal rank of a R-free summand of FEM. Then

b
eh_I)Iloo pTed =rank(M) - s(R)

where rank(M) is the generic rank of M.

We need one more result we probably should have proven earlier.
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Theorem 3.4. If R is strongly F-reqular and R C S is a module finite extension,
then R — S splits as a map of R-modules.

PROOF. For any ¢ € Hompg(FER, R), consider the composition
n: F¢Hompg(S, R) = Hompep(FYS, FYR) — Hompg(S, FY R) — Homg(S, R)

where the first map is induced by restriction and the second by ¢. It is not difficult
to verify that the follow diagram commutes

Hom pe g (F€S, F*R) —— Hompg(S, R)

ev@ll lev@l

F°R R.
¢

But then the image of Hompg(S, R) in R is stable under every ¢. Any nonzero element
in the image can be sent to 1 by some ¢ and hence Hompg(S, R) — R must surject. [

Next we obtain a transformation rule for F-signature.

Theorem 3.5. Let (R, m, k) C (S,n,k) be a module-finite local extension of F-finite
d-dimensional normal local domains in characteristic p > 0, with corresponding ex-
tension of fraction fields K C L. Suppose R C S is étale in codimension 1, and that
R is strongly F-regular. Then the following equality holds:

s(S)=[L:K]-s(R).

PrOOF. We know the trace map Tr : S — R generates the S-module Hompg(S, R).
Moreover, the trace map is surjective since if not, then the evaluation-at-1 map

Homp(S, R) — R

would not be surjective (since all maps are pre-multiples of Tr). Thus we know S has
exactly one free R-module summand, S = R& M.

Now let b, denote the maximal rank of a free R-module-summand of S'/7°. We
can also write an S-module decomposition

Sl/Pe — S@CLE(S) @ N,

which we can further decompose as (R®M)®%<()GN,. While N, has no free S-module
summands, it is natural to think it might have R-module summands.

But Hompg(N,, R) = Hompg(N.®sS, R) = Homg(N,, Homg(S, R)) = Homg(Ne, S)
and it follows that any map N, — R factors through Tr : S — R (we did an exercise
on this once). But if N, — R is surjective, so is the induced N, — S (since if not, the
image would be contained in n which is sent into m). Hence if N, has an R-module
summand, it has an S-module summand, which it does not.

By [Proposition 3.3 if b, is the number of free R-module summands of S'/7°, then

be

lim — = s(R) - [L: K].
Jm s(R) - [L: K]




76 3. HILBERT-KUNZ MULTIPLICITY AND F-SIGNATURE

The above however shows that the number of R-module summands of S'/7° is a.(S5).
Hence

s(S) =s(R)-[L: K]
as desired. U

4. An application to fundamental groups

Throughout this section we wuppose (R, m, k) is a normal complete local domain
and for simplicity that k = k is algebraically closed. (In fact, the results of this
section hold if R is only strictly Henselian instead of complete with algebraically
closed residue field). Note that if k is characteristic p > 0, then this implies that R
is F-finite since it is a quotient of some kfzy, ..., x,].

We will study the étale fundamental group of the regular locus of R. Let U C
Spec R denote the regular locus of R (this is always an open set because R is complete
and thus excellent). For example, if R has an isolated singularity at the origin, then

U = Spec R\ V(m).
Definition 4.1. We define the étale fundamental group
' (U) = lim Gal(K (S)/ K (R))
—

where the limit runs over (isomorphism classes of) finite local extensions of rings
R C S which are generically Galois and which are étale over U (or equivalently, étale
in codimension 1 since the complement of U is regular and étale in codimension 1
extensions of regular schemes are étale).

This is not the normal / most general definition of the étale fundamental group,
but it is equivalent see for example [Mil80].

Remark 4.2. An easy fact is that for any two finite extensions R C S§’,S” satisfying
the definition above, one can find a dominating finite extension S D S’, S” that also
satisfies the condition of the definition. To do this, take the tensor product S’ ®z S”,
mod out by a minimal prime and normalize (if needed).

Theorem 4.3. [?] If R defined as above is also strongly F-reqular and U = (Spec R);eg,
then w$(U) is finite and it size is bounded above by 1/s(R).

PRrROOF. Consider a finite local generically Galois extension S O R which is étale

in codimension 1. We know that s(R) - [K(S) : K(R)] = s(S) < 1 by [Theorem 3.5|
Hence [K(S) : K(R)] < 1/s(R). By|[Remark 4.2|there is a unique (up to isomorphism)
largest such extension S O R. It follows that 7¢4(U) = Gal(K(S)/K(R)) for that
extension and in part O

Remark 4.4. It is also possible to show that p A #(pS(U)) even in the strictly
Henselian case.
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