MATH 6320 – MIDTERM

Your Name

- You have 80 minutes to do this exam.
- No calculators!
- For justifications, please use complete sentences and make sure to explain any steps which are questionable.
- Good luck!

Problem	Total Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

- 1. Short answer questions (2.5 points each).
- (a) What does it mean for a field extension $F \subseteq K$ to be separable?

Solution: It means that every element of K is a root of a separable polynomial $f(x) \in F[x]$. Recall that a separable polynomial is one without multiple roots.

(b) Give an example of a separable field extension that is not Galois.

Solution: $\mathbb{Q} \subseteq \mathbb{Q}[2^{1/3}]$ works, as do many others.

(c) Let $K = \mathbb{Q}(\sqrt{2}, i) \subseteq \mathbb{C}$. What group is $\operatorname{Gal}(K/\mathbb{Q})$?

Solution: Obviously $[K : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, i) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, i) : \mathbb{Q}[\sqrt{2}] : \mathbb{Q}[\sqrt{2}] : \mathbb{Q}] = 2 \cdot 2 = 4$. Since both $x^2 - 2$ and $x^2 + 1$ split completely in K, we see that K/\mathbb{Q} is Galois and hence $G = \text{Gal}(K/\mathbb{Q})$ has 4 elements. Note G cannot be cyclic since it has two distinct elements of order 2 (notably the map that sends $\sqrt{2} \to -\sqrt{2}$ and fixes i coming from $\text{Gal}(\mathbb{Q}[\sqrt{2}]/\mathbb{Q})$ and then also complex conjugation). Hence $G \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$.

(d) If $K \supseteq \mathbb{Q}$ is a Galois extension of degree 6, at most how many proper subfields can K have that are not equal to \mathbb{Q} ?

Solution: There are two groups of order 6, the cyclic one which has 2 proper non-maximal subgroups and S_3 which has 3 subgroups of order 2 and 1 one subgroup of order 3, or in other words 4 subgroups. Since $\operatorname{Gal}(K/\mathbb{Q})$ is a group of order 6, and the subfields of K are in bijection with the subgroups of G, there can be at most 4 proper non-trivial subgroups of K.

(e) Suppose $W \subseteq R$ is a multiplicative set, $M \to N$ is a map of *R*-modules and the induced map $W^{-1}M \to W^{-1}N$ is injective. Give an example to show that $M \to N$ need not be injective.

Solution: Let $M = \mathbb{Z}/4$ and $N = \mathbb{Z}/2$ with the map $M \to N$ the canonical surjection (it is not injective). But if we set $W = \{12, 4, 8, ...\}$ the $W^{-1}M = W^{-1}N = 0$ and the map between them is certainly injective.

(f) Compute $\operatorname{Hom}_{k[x]}(k[x]/\langle x \rangle, k[x])$.

Solution: Suppose $\phi \in \text{Hom}_{k[x]}(k[x]/\langle x \rangle, k[x])$. We will show that $\phi = 0$ is the zero homomorphism. Then for any $\overline{f} \in k[x]/\langle x \rangle, x\phi(\overline{f}) = \phi(x\overline{f}) = \phi(0) = 0$. Hence $x\phi(f) = 0 \in k[x]$. But k[x] is an integral domain hence $\phi(f) = 0$. Thus ϕ is the zero homomorphism. In particular

$$\operatorname{Hom}_{k[x]}(k[x]/\langle x\rangle, k[x]) = 0.$$

(g) State one form of Nakayama's lemma.

Solution: Suppose (R, \mathfrak{m}) is a local ring and M is a finitely generated R-module. Suppose $\mathfrak{m}M = 0$ then M = 0.

(h) Suppose $I, J \subseteq R$ are ideals. If I + J = R prove that $(R/I) \otimes_R (R/J) = 0$.

Solution: Write $1 = i + j \in I + J$. Then for any $\overline{a} \otimes \overline{b} \in (R/I) \otimes_R (R/J)$ we see that

 $\overline{a} \otimes \overline{b} = (\overline{a}1) \otimes \overline{b} = (\overline{a}i + \overline{a}j) \otimes \overline{b} = (\overline{a}i) \otimes \overline{b} + (\overline{a}j) \otimes \overline{b} = 0 \otimes \overline{b} + \overline{a} \otimes (j\overline{b}) = 0 \otimes \overline{b} + \overline{a} \otimes 0 = 0.$

The result follows.

2. (a) Suppose that $f : R \to S$ is a map of rings. Show that the induced map $f^{\sharp} : \operatorname{Spec} S \to \operatorname{Spec} R$ is continuous in the Zariski topology. (12 points)

Solution: Choose $V(I) \subseteq \text{Spec}R$ an arbitrary closed set. We will show that $(f^{\sharp})^{-1}(V(I)) = V(IS)$ showing that the inverse image of a closed set is closed.

Suppose $Q \in (f^{\sharp})^{-1}(V(I))$, then $f^{\sharp}(Q) = f^{-1}(Q) \in V(I)$. Hence $f^{-1}(Q) \supseteq I$ and so $f(I) \subseteq Q$ and hence $IS \subseteq Q$.

Conversely, suppose $P \in V(IS) \subseteq \operatorname{Spec} S$ so $IS \subseteq P$. Then $f^{\sharp}(P) = f^{-1}(P) \supseteq I$ and so $f^{\sharp}(P) \in V(I)$ as desired.

(b) If S = R/I and $f : R \to S$ is the canonical surjection, show that $f^{\sharp} : \operatorname{Spec} S \to \operatorname{Spec} R$ is injective and show that the Zariski topology on $\operatorname{Spec} S$ is the same as the subspace topology induced by the injection f^{\sharp} . (8 points)

Solution: The primes of S are in bijection with the primes of R that contain I. This bijection is the map from (a) (ie, f^{\sharp} is inverse image of a prime, which is how the bijection works as well). It follows that f^{\sharp} is injective.

More generally, the ideals of S are in bijection with the ideals of R that contain I. In particular, if $J/I = \overline{J} \subseteq S$ is an ideal of S corresponding to the closed set $V(\overline{J})$, then we claim that $(f^{\sharp})^{-1}(V(J)) = V(\overline{J})$. But the primes of V(J) are those elements of SpecR that contain $J \supseteq I$. These correspond to the primes of SpecS that contain J/I. We have just shown that f^{\sharp} is closed, injective and continuous. Hence (b) follows. Consider the following fact.

Fact: Suppose K is a field and $K \subseteq L$ is an extension of fields (possibly infinite with tons of transcendental elements). Say $a_1, \ldots, a_n \in L$. If $K[a_1, \ldots, a_n]$ is a field, then each a_i is algebraic over K.¹

3. Using the fact, show that if $k = \overline{k}$, then every single maximal ideal of $R = k[x_1, \ldots, x_n]$ is equal to $\langle x_1 - \alpha_1, \ldots, x_n - \alpha_n \rangle$ for some $\alpha_i \in k$. (20 points)

Solution: Obviously $\langle x_1 - \alpha_1, \ldots, x_n - \alpha_n \rangle$ is maximal in R for any $\alpha_i \in k$.

Now conversely suppose that $\mathfrak{m} \subseteq R$ is a maximal ideal. Consider the map $\phi : R \to R/\mathfrak{m}$. Obviously $k \subseteq R/\mathfrak{m}$ and by the fact, $k = R/\mathfrak{m}$. Set $\alpha_i = \phi(x_i) \in k$. Then certainly $x_i - \alpha_i \in \ker \phi = \mathfrak{m}$ for each *i* so $\langle x_1 - \alpha_1, \ldots, x_n - \alpha_n \rangle \subseteq \mathfrak{m}$. But both ideals are maximal, so this inclusion is equality. This completes the proof.

¹There are various ways to prove this fact. If you want to convince yourself its true without a real proof, consider what would happen if a_1 was transcendental, then you'd need $\frac{1}{a_1}$, $\frac{1}{a_1+1}$, and more generally $\frac{1}{p(a_1)}$ where $p(a_1) \in R$ is some irreducible element. There's no way we can add all these to $K[a_1, \ldots, a_n]$ and keep it a finitely generated ring extension.

4. Suppose $K \subseteq L$ are fields. Suppose that L = K[a] with $a \neq 0$. Suppose that $a^n \in K$ and that n is the smallest integer > 0 with this property.

(a) If $a^m \in K$ show that n|m. (4 points)

Solution: Write m = qn + r with $n > r \ge 0$. Then $a^n, a^m \in K$ and so $a^r \in K$. Since n is the minimal integer with this property, r = 0 and (a) follows.

(b) Suppose that $K \subseteq L$ is separable. Show that char $K \not\mid n$. (6 points)

Solution: Suppose that $p = \operatorname{char} K$ does divide n, n = pm. Since $a^n = (a^m)^p \in L$, and L/K is separable, we see that $a^m \in L$. This contradicts the choice of n.

(c) Now suppose that every root of unity in L also is an element of K. Show that [L:K] = n. (10 points)

Hint: If p(x) is the minimal polynomial for a over K, then it divides $x^n - a^n$. Consider the constant term of p(x) and extract an *n*th root of unity from part of it.

Solution: Note $p(x)|\prod_{i=0}^{n}(x-\zeta_{n}^{i}a)$ where ζ_{n} is a primitive *n*th root of unity. Then p(x) is a product of terms $(x-\zeta_{n}^{i}a)$. It follows that $p(0) = a^{d}(\prod_{j} \zeta_{n}^{i_{j}}) \in L$ where *d* is the degree of p(x). Since $p(0), a^{d} \in L$, we have $(\prod_{j} \zeta_{n}^{i_{j}}) \in L$, but this is a root of unity so $(\prod_{j} \zeta_{n}^{i_{j}}) \in K$. But $p(0) \in K$ hence $a^{d} \in K$. The only way this can happen is if d = n by our choice of *n*. Thus $p(x) = x^{n} - a^{n}$ and in particular $[L:K] = \deg p(x) = n$.

5. Show that $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$ is cyclic. (20 points)

Solution: Consider the Frobenius map $F \in G = \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$ defined by $F(a) = a^p$ obviously this fixes \mathbb{F}_p (since everything does). We will show that the order of F in G is equal to n. Indeed, every element of \mathbb{F}_{p^n} is a root of $x^{p^n} - x$ and so clearly F^n , the automorphism which sends $a \mapsto a^{p^n}$, is the identity. Hence the order of F divides n. On the other hand if $F^m = \operatorname{id}$, then the automorphism which sends $a \mapsto a^{p^m}$ is the identity and so every element of \mathbb{F}_{p^n} is a root of $x^{p^m} - x$. But the only way this can happen is if m = n. Since $\operatorname{ord} F = n$ and $[\mathbb{F}_{p^n} : \mathbb{F}_p] = n = |G| = |\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)|$, we see that G is cyclic as desired.