HW #8 - MATH 6320 SPRING 2015

DUE: TUESDAY APRIL 28TH

- (1) Suppose $S = k[x_1, \ldots, x_r]$ and $f \in S$. If $in_{lex}(f) \in k[x_s, \ldots, x_r]$ for some s, then show that $f \in k[x_s, \ldots, x_r]$.
- (2) Suppose $S = k[x_1, \ldots, x_r]$ and $f \in S$. If f is homogeneous with $in_{grevlex}(f) \in \langle x_s, \ldots, x_r \rangle$, for some s, then show that $f \in \langle x_s, \ldots, x_r \rangle$.
- (3) Say $S = k[x_1, \ldots, x_r]$ and that F is a finitely generated free S-module with basis and a fixed monomial order >. Suppose that $g_1, \ldots, g_t \in M \subseteq F$. Suppose that $in(g_1), \ldots, in(g_t)$ generated in(M), then show that g_1, \ldots, g_t generate M and hence is a Gröbner basis for M.
- (4) Suppose that $R = \mathbb{R}[x]$, M and N are finitely generated R-modules and $L = R/\langle x^2 + 1 \rangle \oplus R^2$. Suppose that $L \oplus M \cong L \oplus N$. Prove that $M \cong N$.
- (5) Find an ideal I in the ring $A = \mathbb{Z}[x]$ such that A/I has exactly three prime ideals. Identify the ideals and justify your assertion.
- (6) Let G be a finite group of order p^n , where p is prime and $n \ge 1$. Suppose G acts on a finite set S. Let S' be the subset of S consisting of elements fixed by G:

$$S' = \{ x \in S \mid gx = x \text{ for all } g \in G \}.$$

Prove that the order of S' is congruent to the order of S modulo p.

- (7) Consider $f = x^6 + 3 \in \mathbb{Q}[x]$ and let $\alpha \in \mathbb{C}$ be a root of f. Set $E = \mathbb{Q}[\alpha]$.
 - (a) Show that E contains a primitive 6th root of unity.
 - (b) Show that E is Galois over \mathbb{Q} .
 - (c) How many intermediate fields $\mathbb{Q} \subseteq F \subseteq E$ are there with $|F:\mathbb{Q}| = 3$