HW #7 – MATH 6320 SPRING 2015

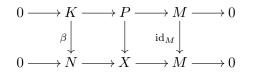
DUE: THURSDAY APRIL 16TH

(10) Suppose that M, N are R-modules and that $\operatorname{Ext}^1(M, N) = 0$. Show that every extension $0 \to N \to E \to M \to 0$ is split. More generally, identify a particular (obstruction) class in $\operatorname{Ext}^1(M, N)$ which is zero if and only if a given extension $0 \to N \to E \to M \to 0$ is split.

Solution: Given an extension $0 \to N \to E \to M \to 0$, apply $\operatorname{Hom}_R(\bullet, N)$. This gives us an exact sequence $\operatorname{Hom}(E, N) \to \operatorname{Hom}(N, N) \to \operatorname{Ext}^1(M, N)$. The image of the identity map $\operatorname{id}_N : N \to N$, is a particular element in $\operatorname{Ext}^1(M, N)$. If that image is zero, that means that there is a map $\phi : E \to N$ such that $\phi|_N = \operatorname{id}_N$. In particular $E = N \oplus M$ and our extension is trivial.

(Note, the original hint, while completely valid, made the next problem much harder.

- (11) We will show that $\operatorname{Ext}^1(M, N)$ is in bijection with the set of equivalence classes of extensions $0 \to N \to E \to M \to 0$.
 - (a) Start with an exact sequence $0 \to K \xrightarrow{i} P \xrightarrow{\rho} M \to 0$ with P projective and induce a map ∂ : Hom $(K, N) \to \text{Ext}^1(M, N) \to 0$. Thus each class x in Ext¹ gives us a (non-canonical) $\beta \in \text{Hom}(K, N)$ with $\partial(\beta) = x$. Let X be the cokernel of $K \to P \oplus N$ defined by $k \mapsto (i(k), \beta(k))$. Prove that there is a commutative diagram



with exact rows. Explain in particular what the map $X \to M$ is.

Solution: Starting with $0 \to K \xrightarrow{i} P \xrightarrow{\rho} M \to 0$ with P projective, obtain ∂ : Hom $(K, N) \to \text{Ext}^1(M, N) \to 0$ as described. Let β be such that $\partial(\beta) = x$.

Let's show that $\alpha : N \to X$ injects $(n \mapsto \overline{(0,n)})$. If $n \in N$ satisfies $\alpha(n) = 0$, then $(0,n) \in \ker(P \oplus N \to X)$. Hence there is some $k \in K$ with $(i(k), \beta(k)) = (0,n)$, but $i: K \to P$ is injective, so n = 0 as claimed.

We define a map $\kappa : X \to M$ as follows. For $x \in X$, choose (p, n) mapping to it. We define $\kappa(x) = \rho(p)$. We need to show it is well defined. Indeed, if (p, n) and (p', n') map to x, then there exists $k \in K$ with $(i(k), \beta(k)) = (p - p', n - n')$. Hence $p - p' = k \in K$. In particular $\rho(p) = \rho(p')$ and κ is well defined. Obviously κ is surjective. The image of $N \to X$ is composed of (0, n). Such elements are mapped to by (0, n), which have image 0 in M obviously. Hence the kernel of κ contains the image of N.

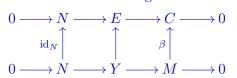
Of course, if $(p,n) \in X$ maps to $0 = \rho(p) \in M$, then $p = k \in K$. Note that $(p,n) = \overline{(p-k, n-\beta(k))} = \overline{(0, n-\beta(k))}$ and hence the image of N contains the kernel of K. This proves that the diagram above exists

(b) In the previous problem, you constructed an element in $\text{Ext}^1(M, N)$ which was zero if and only if a given extension was split. Show that the element $x \in \text{Ext}^1$ corresponds to the extension $0 \to N \to X \to M \to 0$.

Solution: Apply the functor $Hom(\bullet, N)$ to the diagram in (a). This gives us a commutative diagram:

Now the diagram tells us that $\partial \circ \delta = \mu$, so since $\partial(\beta) = x$ we want check that $\delta(\mathrm{id}_N) = \beta$. But δ is induced from β so indeed we see that $x = \partial(\beta) = \mu(\mathrm{id}_N)$. Then we have shown that x corresponds to id_N as claimed.

Alternately, if we had wanted to use the the identity map from the original hint in the previous problem $(\operatorname{Hom}(M, E) \to \operatorname{Hom}(M, M) \to \operatorname{Ext}^1(M, N))$, what we should have done is form $0 \to N \to E \xrightarrow{\psi} C \to 0$ where E is an injective module. Then apply $\operatorname{Hom}(M, \bullet)$ to that to get a surjection $\operatorname{Hom}(M, C) \to \operatorname{Ext}^1(M, N) \to 0$. A class $x \in \operatorname{Ext}^1(M, N)$ gives us a map $\beta \in \operatorname{Hom}(M, C)$. One can then likewise make Y be the kernel of $E \oplus M \xrightarrow{\psi - \beta} C$ and obtain a diagram:



Applying $\text{Hom}(M, \bullet)$ and arguing as above gives us the extension mapping corresponding to x.

(c) Use what you have already done to complete the proof of the desired statement.

Solution: We are nearly done. Given an element of Ext^1 , we have shown how to produce an extension corresponding to it. This shows that the set map from extensions to elements of Ext^1 is surjective. To show it is injective, suppose that $0 \to N \to X' \to M \to 0$ is an extension. Let $0 \to K \to P \to M \to 0$ be another extension with P projective and note we have a map from one extension to the other just as in (b) (using the projectivity of P). A straightforward exercise can then show that X' is forced to be (isomorphic to the) cokernel of $0 \to K \to P \oplus N$. In particular, any two extensions corresponding to the same element of Ext^1 are equivalent.