HW #7 – MATH 6320 SPRING 2015

DUE: THURSDAY APRIL 16TH

(1) Suppose that M is a finitely generated module over a R. Suppose that $f: M \to M$ is a surjective R-module homomorphism. Show that f is an isomorphism.

Hint: Nakayama's lemma is a good approach. View M as an R[x] module where x acts via f.

(2) Suppose that M is a finitely generated projective module over a local ring (R, \mathfrak{m}) . Show that M is actually a free module. Another way to say this is that *projective modules are locally free*.

Hint: Use the previous problem.

(3) Suppose that R is a ring and M is an R-module. Show that M is injective if and only if for every ideal $J \subseteq R$ and every R-module homomorphism $g: J \to M$, g can be extended to $g': R \to M$.

Hint: Replacing $J \subseteq R$ with an arbitrary inclusion of modules gives you the definition of *injective*. Hence say $N' \subseteq N$ and $g: N' \to M$ is a map. Consider the set of submodules of N to which g extends, use Zorn's lemma to make a biggest submodule of N to which g extends and then make a bigger one for a contradiction.

- (4) Suppose that R is a ring.
 - (a) If $W \subseteq R$ is a multiplicative set and I is an injective R-module, show that $W^{-1}I$ is an injective $W^{-1}R$ -module.
 - (b) Show that an arbitrary direct sum $\bigoplus_{\lambda} I_{\lambda}$ of injective *R*-modules is an injective *R*-module.
- (5) Suppose that $\phi : R \to S$ is a ring homomorphism and I is an injective R-module. Show that $\operatorname{Hom}_R(S, I)$ is an injective S-module.

Hint: This is not so hard, you need to prove/use a special case of a jazzed up version of Hom $-\otimes$ adjointness: for any S-module M, $\operatorname{Hom}_R(M, I) \cong \operatorname{Hom}_S(M, \operatorname{Hom}_R(S, I))$ as S-modules.

- (6) If R is a PID. Show that an R-module I is injective if and only if it is divisible¹.
- (7) Show that every \mathbb{Z} -module can be embedded into an injective \mathbb{Z} -module

Hint: First show that a free \mathbb{Z} -module can be embedded into an injective \mathbb{Z} -module. For M an arbitrary \mathbb{Z} -module, write $F \to M \to 0$ where F is a free \mathbb{Z} -module and $F \to M$ has kernel K. Mod out some appropriate injective module by K.

(8) Conclude that for any ring R, any R-module can be embedded into an injective R-module. Hence show that injective resolutions exist. This result is an assertion that the category of R-modules has enough injectives.

Continued on the next page.

¹For an integral domain R, an R-module M is called divisible if for every $0 \neq r \in R$, and every $m \in M$, there is some $m' \in M$ with rm' = m.

- (10) Suppose that M, N are R-modules and that $\operatorname{Ext}^1(M, N) = 0$. Show that every extension $0 \to N \to E \to M \to 0$ is split. More generally, identify a particular (obstruction) class in $\operatorname{Ext}^1(M, N)$ which is zero if and only if a given extension $0 \to N \to E \to M \to 0$ is split. *Hint:* Compute the long exact sequence associated to $\operatorname{Hom}(M, \bullet)$ and think about what it means. The class should be the image of particular identity map in Ext^1 .
- (11) We will show that $\operatorname{Ext}^{1}(M, N)$ is in bijection with the set of equivalence classes of extensions $0 \to N \to E \to M \to 0.^{2}$
 - (a) Start with an exact sequence $0 \to K \xrightarrow{i} P \xrightarrow{\rho} M \to 0$ with P projective and induce a map ∂ : Hom $(K, N) \to \text{Ext}^1(M, N) \to 0$. Thus each class x in Ext¹ gives us a (non-canonical) $\beta \in \text{Hom}(K, N)$ with $\partial(\beta) = x$. Let X be the cokernel of $K \to P \oplus N$ defined by $k \mapsto (i(k), \beta(k))$. Prove that there is a commutative diagram

$$\begin{array}{ccc} 0 \longrightarrow K \longrightarrow P \longrightarrow M \longrightarrow 0 \\ & & \downarrow & \operatorname{id}_M \\ 0 \longrightarrow N \longrightarrow X \longrightarrow M \longrightarrow 0 \end{array}$$

with exact rows. Explain in particular what the map $X \to M$ is.

- (b) In the previous problem, you constructed an element in $\text{Ext}^1(M, N)$ which was zero if and only if a given extension was split. Show that the element $x \in \text{Ext}^1$ corresponds to the extension $0 \to N \to X \to M \to 0$.
- (c) Use what you have already done to complete the proof of the desired statement.

 $^{^{2}}$ Remember, two extensions are equivalent if there is a commutative diagram

