HW #6 – MATH 6320 SPRING 2015

DUE: THURSDAY APRIL 2ND

- (1) Suppose that R is a Noetherian ring. Is it true that there exists an integer $n_0 > 0$ such that (a) every ideal $I \subseteq R$ is generated by at most n_0 elements?
 - (b) every ascending chain of ideals $I_1 \subsetneq I_2 \subsetneq \ldots$ has length at most n_0 ?
 - Prove or give a counter example.
- (2) Let A = k[x, y], $I = \langle x \rangle$ and B = k. We have the natural projection $f : A \to A/I$ and the natural inclusion $g : k \hookrightarrow A/I \cong k[y]$. Consider the ring $C = \{(a, b) \in A \oplus B \mid f(a) = g(b)\}$ as in problem (8) from homework 5.
 - (a) Show that projection the map from $i: C \to A$ is injective
 - (b) Show that C is non-Noetherian even though it is a subring of a Noetherian ring.
 - (c) Describe the maximal ideal of C in terms of the map $i^{\sharp} : \operatorname{Spec} A \to \operatorname{Spec} C$.

Hint: You may assume (8) from the previous homework.

- (3) Show that every finitely generated module over a Noetherian ring is finitely presented.
- (4) Show that every Artinian integral domain is a field.
- (5) An *R*-module *I* is called *injective* if for every *injective* map of *R*-modules $f : A \to B$ and every *R*-module map $g : A \to I$, there exists a map $h : B \to I$ such that the following diagram commutes:

- (a) Show that \mathbb{Q} is an injective \mathbb{Z} -module, as is \mathbb{Q}/\mathbb{Z} .
- (b) Suppose that $0 \to I \to B \to C \to 0$ is exact, prove that

$$0 \to \operatorname{Hom}_R(N, I) \to \operatorname{Hom}_R(N, B) \to \operatorname{Hom}_R(N, C) \to 0$$

is exact for every R-module N if I is injective.

(6) Prove the 5-lemma. In other words, suppose that

is a commutative diagram with exact sequences as rows.

- (a) If we suppose that α_2 and α_4 are surjective, and α_5 is injective, show that α_3 is surjective.
- (b) If we suppose that α_2 and α_4 are injective, and α_1 is surjective, show that α_3 is injective.
- (c) Show that if α_2, α_4 are isomorphisms, α_5 is injective and α_1 is surjective, that α_3 is also an isomorphism.