HW #4 - MATH 6320 SPRING 2015

DUE: THURSDAY FEBRUARY 26TH

- (1) Determine the Galois group of $x^4 25$ over \mathbb{Q} .
- (2) Let K be a field of characteristic $\neq 2$. Suppose that $\alpha, \beta \in K$. Figure out exactly when $K(\sqrt{\alpha}) = K(\sqrt{\beta})$. Use this to determine whether or not $\mathbb{Q}(\sqrt{1-\sqrt{2}}) = \mathbb{Q}(i,\sqrt{2})$.
- (3) Let $K = \mathbb{Q}(a^{1/n})$ where $a \in \mathbb{Q}_{>0}$ and that $x^n a$ is irreducible so that $[K : \mathbb{Q}] = n$. Suppose that E is a subfield of K with $[E : \mathbb{Q}] = d$. Prove that $E = \mathbb{Q}(a^{1/d})$. *Hint:* Consider $N_{K/E}(a^{1/n}) \in E$ (remember, $N_{K/E}(a^{1/n})$ was defined in the previous

homework).

- (4) Suppose that m, n > 0 are integers. What is $(\mathbb{Z}/m\mathbb{Z}) \otimes (\mathbb{Z}/n\mathbb{Z})$? Of course your answer will depend on m and n.
- (5) Let A be a ring, M and A-module and I an ideal. Show that $M \otimes_A (A/I) \cong M/IM$.
- (6) Suppose that R is a local ring and M, N are finitely generated R-modules. Prove that if $M \otimes_R N = 0$ then M = 0 or N = 0. Find counter examples to this statement if R is nonlocal or if M, N are not finitely generated.

Hint: Use Nakayama's lemma.

- (7) Let R be a ring $\neq 0$ with $R^n \cong R^m$ for some integers m, n > 0. Show that m = n. Hint: Use Nakayama's lemma.
- (8) Suppose that R is a ring and that L, M, N are R-modules. Show that $\operatorname{Hom}_R(L \otimes M, N) \cong \operatorname{Hom}_R(L, \operatorname{Hom}_R(M, N))$. Additionally, choose one of the modules L, M, N and show that this isomorphism is functorial in that variable. In other words, if you choose L and if $L \to L'$ is a module map, show that

$$\operatorname{Hom}_{R}(L' \otimes_{R} M, N) \longrightarrow \operatorname{Hom}_{R}(L \otimes_{R} M, N)$$

$$\uparrow^{\sim} \qquad \uparrow^{\sim}$$

$$\operatorname{Hom}_{R}(L', \operatorname{Hom}_{R}(M, N)) \longrightarrow \operatorname{Hom}_{R}(L, \operatorname{Hom}_{R}(M, N))$$

commutes where the vertical maps are the isomorphisms from earlier in this problem and the horizontal maps are the ones coming from the contravariant nature of Hom.

Hint: This is easier than you might think, try writing down where something has to go.