HW #1 - MATH 6320 SPRING 2015

DUE: TUESDAY JANUARY 27TH

- (1) Determine the splitting field of $x^4 + x^2 + 1$ over \mathbb{Q} . Also compute its degree.
- (2) Determine the splitting field of $x^6 4$ over \mathbb{Q} . Also compute its degree.
- (3) Find all irreducible polynomials of degrees 1, 2 and 4 over \mathbb{F}_2 . Then prove their product is $x^{16} x$.
- (4) For any prime p and any nonzero $a \in \mathbb{F}_p$, prove that $x^p x + a$ is irreducible and separable over \mathbb{F}_p . (Suppose α is a root, show that $\alpha + 1$ is also a root).
- (5) Let a > 1 be an integer and let $n, d \ge 1$ be more integers. Show that d|n if and only if $a^d 1$ divides $a^n 1$. Conclude that $\mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^n}$ if and only if d divides n.
- (6) Let K be a finite extension of $\hat{\mathbb{Q}}$. Prove that there are only finitely many roots of unity in K.
- (7) Use the fact that $\alpha = 2\cos(2\pi/5)$ is a root of the polynomial $x^2 + x 1$ to show that the regular 5-gon is constructible by straightedge and compass.