
MATH 6320 – FINAL

Your Name

• You have 2 hours to do this exam.
• No calculators!
• For justifications, please use complete sentences and make sure to explain any steps which are

questionable.
• Good luck!

Problem Total Points Score

1 14

2 14

3 18

4 18

5 18

6 18

Total 100
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1. Short answer questions (2 points each).

(a) Give an example of a commutative ring with unity R and a multiplicative set W ⊆ R such that the map
R→W−1R (x 7→ x

1 ) is not injective.

Solution: There are lots of correct examples. For instance any multiplicative set W containing zero
will work (as long as R 6= {0}). Here’s another specific one, R = Q[x, y]/〈xy〉, W = {1, x, x2, . . . , }. Then
y 7→ y

1 = xy
x = 0

x .

(b) Give an example of a non-separable extension of fields.

Solution: Fp(xp) ⊆ Fp(x).

(c) What does it mean for a group G to be solvable?

Solution: This means that there is a chain of subgroups {e} = H0 �H1 � . . . �Hn−1 �Hn = G such
that each Hi+1/Hi is Abelian for i = 0, . . . , n− 1.

(d) What does it mean that {f1, . . . , fn} is a Gröbner basis for I ⊆ k[x1, . . . , xr] with respect to a monomial
order >?

Solution: It means that I = 〈f1, . . . , fn〉 and that in>(I) = 〈in>(f1), . . . , in>(fn)〉

(e) If R = k[x], what is Ext3(R/〈x− 1〉, R2 ⊕R/〈x+ 1〉)?

Solution: R/〈x − 1〉 has a very short projective resolution, namely 0 → R
·(x−1)−−−−→ R → R/〈x − 1〉. It

follows that only Ext1 and Ext0 could possibly be nonzero.

(f) True or false, if M → N is a surjective map of k[x, y]-modules and B = k[x, y]/〈y2−x3〉, then M ⊗B →
N ⊗B is surjective.

Solution: Yes, tensor is right exact.

(g) What is the definition of
√
I, the radical of I, where I is an ideal in a commutative ring R with unity.

Solution:
√
I = {r ∈ R | rn ∈ Ifor some n > 0}.

2



2. Short answer questions (2 points each).

(h) What is the definition of a linear representation of a finite group G?

Solution: It is a group homomorphism φ : G→ GL(V ) where V is a vector space (over some field).

(i) True or false, |Q(
√

2, i) : Q| = 4.

Solution: True, obviously |Q(
√

2) : Q| = 2, and i /∈ Q(
√

2). Hence |Q(
√

2, i) : Q(
√

2)| = 2 as well. Thus

|Q(
√

2, i) : Q| = 2 · 2 = 4.

(j) If K is the splitting field of x3 − 2 over Q, how many proper subfields does K have?

Solution: 5. We have seen many times that the Galois group G is S3. The proper subfields of K
correspond to the non-trivial subgroups of G by the Galois correspondence. The non-trivial subgroups of
S3 are 〈(12)〉, 〈(13)〉, 〈(23)〉, 〈(123)〉, G. There are 5 (five) of them.

(k) True or false, every ideal of k[x, y, z] has at most 3 generators.

Solution: False. Consider for instance 〈x2, xy, xz, y2, yz, y2〉.

(l) If 0 → L → M → N → 0 is a split short exact sequence of R-modules, then is it always true that
0→ HomR(B,L)→ HomR(B,M)→ HomR(B,N)→ 0 is always also split exact?

Solution: Yes. If N →M is such that N →M → N is the identity, then Hom(B,N)→ Hom(B,M)→
Hom(B,N) is also the identity.

(m) Give an example of an algebraic extension of fields which is not finite.

Solution: Q ⊆ Q where Q is the algebraic closure of Q. Lots of other examples work too.

(n) Let K be the splitting field of xp
n−1 − 1 over Fp. How many elements does K have?

Solution: The splitting field of xp
n−1 − 1 is the same as the splitting field of xp

n − x. That has pn

elements, namely the elements of Fpn .
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3. Suppose that R = (Z/2Z)[x, y]/〈x2 + 1, xy + 1〉. Explicitly list all the prime ideals of R. Is R an integral
domain? (18 points)

Hint: You can mod out by the one equation before modding out by another. Modding out by xy + 1 is
inverting an element and so can be treated like inverting a certain multiplicative set.

Solution: Let A = Z/2Z[x], let W = {1, x, x2, . . .} ⊆ A. From the hint, we see that R ∼= W−1A/〈x2 + 1〉
(since modding out by xy + 1 first just makes y := −1

x ). So the primes of R are in bijection with the primes

of W−1A/〈x2 + 1〉.
Hence the primes of R are in bijection with the primes of A/〈x2 + 1〉 that do not contain x by properties

of localization. The primes of A/〈x2 + 1〉 are in bijection with the primes of A which contain 〈x2 + 1〉.
Fortunately, there is only one such prime. Note that x2 + 1 = (x + 1)(x + 1) (characteristic 2) and so the

primes of A/〈x2 + 1〉 is simply
{

(x+ 1)
(
A/〈x2 + 1〉

)}
=
{
〈x+ 1〉A/〈x2+1〉

}
.

Now if we are inverting W , we ask does this prime contain x? Obviously it does not (since if 〈x + 1〉
contains x, it contains x + 1 − x = 1 which makes it non-prime). Hence there is exactly one prime ideal of
W−1A/〈x2 + 1〉, and hence there is exactly one prime in R, namely 〈x+ 1〉R.

Finally we observe that R is not an integral domain since (x+ 1)2 = 0 even though x+ 1 is not equal to
zero.

4



4. Let F be a field of characteristic zero and let E/F be a finite Galois extension. Suppose that E = F [α].
Show that E 6= F [α2] if and only if there exists a σ ∈ G = Gal(E/F ) with σ(α) = −α. (18 points)

Hint: If E 6= F [α2] consider Gal(E/F [α2]). Otherwise if σ exists, consider the field fixed by it.

Solution: Suppose first that E 6= F [α2], then F [α2] ⊆ E corresponds to a subgroup H = Gal(E,F [α2]).
Obviously [E,F [α2]] 6= 1 and α is a root of the polynomial T 2 − α, so [E,F [α2]] = 2 and Gal(E/F [α2]) =
{1, σ}. Obviously σ must send α to another root of T 2 − α2, hence to −α.

Conversely, suppose that there is an element σ ∈ G with σ(α) = −α, then σ2 = 1 and so setting H = 〈σ〉
we see that |H| = 2 and so EH is a field with [E : EH ] = |H| = 2. Obviously α2 is fixed by σ so F [α2] ⊆ EH ,
but it’s easy to see that [E : F [α2]] ≤ 2 as well, since α is a root of the quadratic polynomialy T 2 − α2.
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5. Suppose that R = k[x, y] where k is a field. Let I = 〈x, y〉 be an ideal and notice we have an inclusion
0→ I → R. Prove that the map HomR(R,R)→ HomR(I,R) is an isomorphism. (18 points)

Hint: You may want to show that Ext1(R/I,R) = 0. You can do this directly with a free resolution, you
basically have done this before in fact (there are other ways too, you can stick R/I into other short exact
sequences).

Solution: We have a short exact sequence 0→ I → R→ R/I → 0 which induces a long exact sequence

0→ Hom(R/I,R)→ Hom(R,R)→ Hom(I,R)→ Ext1(R/I,R).

First we show that Hom(R/I,R) = 0. Indeed, if φ : R/I → R is an R-module homomorphism and
φ(u) = v ∈ R then xφ(u) = φ(ux) = xv. But ux ∈ I so that ux = 0 ∈ R/I. Hence xv = 0. But R is an
integral domain so that v = 0. Hence φ is the zero homomorphism.

Next we show that Ext1(R/I,R) = 0. We can do it directy via a projective resolution:

0 // R

 y
−x


// R2

[
x y

]
// R

f 7→f
// R/I // 0

0 // P2
// P1

// P0
// R/I // 0

This is just like the projective resolution we did on that worksheet, just slightly longer. We apply Hom(•, R)
to the resolution part of the above and obtain 0 → Hom(P0, R) → Hom(P1, R) → Hom(P2, R) → 0. We
need to compute Ext1(R/I,R). By definition this is

ker
(
Hom(P1, R)→ Hom(P2, R)

)
image

(
Hom(P0, R)→ Hom(P1, R)

) .
The only way to do this is to identify what these modules and the maps between them are. Fortunately,
Hom(P1, R) = R2 and Hom(P0, R) = R = Hom(P2, R), so we need to figure out what the maps between

them are. R = Hom(P0, R) → Hom(P1, R) = R2 is the map which sends 1 to

[
x
y

]
, represented by the

matrix

[
x
y

]
. R2 = Hom(P1, R) → Hom(P2, R) = R is the map that sends

[
a
b

]
to ay − bx, represented

by the matrix
[
y −x

]
. You can see these by working summand by summand and noting that R

·f−→ R

becomes Hom(R,R)
Hom(·f,R)−−−−−−−→ Hom(R,R) which is also identified with ·f .

Regardless, it is clear now that Hom(P0, R)→ Hom(P1, R)→ Hom(P2, R) is exact since it is, up to a sign,

the same as our original resolution. But then Ext1(R/I,R) =
ker
(
Hom(P1,R)→Hom(P2,R)

)
image

(
Hom(P0,R)→Hom(P1,R)

) = 0 as claimed.

Now from our exact sequence we conclude that 0 → Hom(R,R) → Hom(I,R) → 0 is exact and hence
Hom(R,R)→ Hom(I,R) is an isomorphism as claimed.

6



6. Suppose that Q ⊆ F ⊆ C is an extension of fields such that F/Q is finite and Galois with G = Gal(F/Q)

being an Abelian group. Suppose α = a+ bi ∈ F and 1 = |α| =
√
a2 + b2.

(a) Show that if τ is complex conjugation, then τ(F ) ⊆ F and hence that τ ∈ G. (6 points)

Hint: F is the splitting field of some polynomial g(x) ∈ Q[x].

Solution: Using the hint, assume g and monic, we see that τ(g) = g since the coefficients of g are in
Q. Thus if g(x) =

∏
(x− αi) for some α1, . . . , αn ∈ F and hence τ permutes the αi. But the αi generate F

over Q and so τ(F ) ⊆ F as claimed.

(b) Let f(x) ∈ Q[x] be the minimal polynomial for α over Q. Suppose that β is any other root of f , prove
that |β| = 1 as well. (12 points)

Hint: We know that β = σ(α) for some σ ∈ G. Use the fact that G is Abelian. Also recall that
|β|2 = βτ(β). (8 points)

Solution: 1 = σ(1) = σ(ατ(α)) = σ(α)σ(τ(α)) = βτ(σ(α)) = βτ(β) = |β|2 as desired.
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