WS #7 - MATH 6310 FALL 2019

DUE: WEDNESDAY DECEMBER 4TH

You are encouraged to work in groups on this. Only one write up needs to be turned in per group. **1.** Suppose that $P_{\bullet}, P'_{\bullet}$ are projective resolutions of *R*-modules *M* and *N*. Suppose have an *R*-module map $h: M \to N$. Consider the diagram

Show that there exist the dotted arrows making the diagram commute. This gives us a map of chain complexes $\phi: P_{\bullet} \to P'_{\bullet}$. Was the map you constructed unique?

Definition: Two maps of chain complexes $\phi, \psi : K_{\bullet} \to L_{\bullet}$ are declared to be *homotopic* (denoted $\phi \sim \psi$ frequently) if for each n, there is an R-module map $h_n : K_n \to L_{n+1}$ such that

$$\phi_n - \psi_n = d_L h_n + h_{n-1} d_K$$

2. If ϕ, ψ are homotopic, show that they induce the same maps on homology. *Hint:* First draw a diagram picturing the above equation. **3.** Back in the setting of **1.**, show that any two maps $\phi, \psi : P_{\bullet} \to P'_{\bullet}$ you constructed are homotopic.

4. Conclude that this homotopy is preserved after tensoring by another module A and thus conclude that $\operatorname{Tor}_i(M, A)$ is independent of the choice of projective resolution of M. Likewise conclude that $\operatorname{Ext}^i(M, A)$ is independent of the projective resolution of M.

5. Compute a free resolution of the ideal $\langle x, y \rangle$ inside R = k[x, y].

6. Use this to compute directly by hand $\operatorname{Tor}_i(\langle x, y \rangle, k[x, y] / \langle x, y \rangle)$.

7. Likewise compute directly $\operatorname{Ext}^i(\langle x,y\rangle,k[x,y]/\langle x,y\rangle).$