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FALL 2019
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Let’s play around with universal properties.
In general category theory, an epimorphism between objects is something that is right cancellative.

In other words, f is an epimorphism, if we have

A
f
// B

h

==

g
##

C

a diagram, and if we have g◦f = h◦f , then g = h. (These could be groups and group homomorphisms,
or sets and ordinary functions, or ...).

1. Suppose that A,B,C above are sets and f, g, h as above are just functions between sets. Show
that if f is surjective then f is an epimorphism.

2. Prove the converse to 1., if f is an epimorphism, then f is surjective.
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Now we switch to the category of groups. In other words suppose we have f : A −→ B a homo-
morphism of groups. We declare f to be an epi if g ◦ f = h ◦ f implies g = h.

A
f
// B

h

==

g
##

C

3. In the category of Abelian groups (ie, assume, A,B,C are Abelian), show that f is an epi if and
only if f is surjective. (This is still true without the Abelian assumption, but it’s a bit harder, and
may not fit in the space provided.)

Hint: If f is surjective, it should easily be an epi (from the previous page).

Now let’s think about the category of monoids. Consider the inclusion map f : (Z≥0,+, 0) −→
(Z,+, 0). Obviously this map is not surjective, however see the next exercise.

4. Show that f is an epi in the category of monoids.

Hint: Is it true for monoids that g(−n) = −g(n)?
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