HW #3 - MATH 6310 FALL 2019

DUE: FRIDAY, OCTOBER 4TH

Definition 1. Suppose R is a commutative integral domain. A subset $W \subseteq R$ containing 1 and not containing 0 is called a *multiplicative set* if for any $a, b \in W$, we have $ab \in W$. (Note the conditions on 1 and 0 are not always assumed in the literature, we make them here for convenience).

In this case, we define $W^{-1}R$ to be the set of pairs (a, b) such that $a \in R$ and $b \in W$, modulo the equivalence relation where $(a_1, b_1) \sim (a_2, b_2)$ if $a_1b_2 = a_2b_1$. The equivalence class of (a, b) we denote by a/b.

 $W^{-1}R$ forms a ring under the familiar rules for adding and multiplying fractions (you may take this as given).

Furthermore, the map

$$\phi: R \longrightarrow W^{-1}R$$

sending $r \mapsto r/1$ is a ring homomorphism (you may also take it as given).

(1) Suppose that R is a commutative integral domain, $W \subseteq R$ is a multiplicative set and $Q \subseteq R$ is a prime ideal such that $W \cap Q = \emptyset$. Show that the set

$$W^{-1}Q := \{x/w \mid x \in Q, w \in W\} \subseteq W^{-1}R$$

is a prime ideal of $W^{-1}R$.

Hint: We checked this in class.

(2) Suppose that R is a commutative integral domain and $W \subseteq R$ is a multiplicative set. Suppose that $P \subseteq W^{-1}R$ is a prime ideal and set $Q = P \cap R$ (where the intersection is taken with the isomorphic copy of $R \subseteq W^{-1}(R)$). Show that $Q \cap W = \emptyset$ and that $W^{-1}Q = P$.

Conclude that the prime ideals of $W^{-1}R$ are in bijection with the prime ideals Q in R such that $W \cap Q = \emptyset$.

(3) Suppose that $W \subseteq R$ is a multiplicative set in a commutative integral domain, and W is made up of only units (= invertible elements) of R. Show that the map $\phi : R \to W^{-1}R$ from the first page is an isomorphism of rings.

(4) Suppose that R is a commutative integral domain, $W \subseteq R$ is a multiplicative set and ψ : $R \to S$ is a ring homomorphism between commutative rings. Further suppose that for each $w \in W$, there is some $s \in S$ such that $s\psi(w) = 1_S$. Show that one can factor ψ as follows

and that the map α is unique. This is called the *universal property of localization*.

(5) Suppose that R is a commutative integral domain and pick a nonzero $r \in R$. Set $W = \{1, r, r^2, r^3, \dots\}$. Show that we have an isomorphism between rings $R[x]/\langle rx - 1 \rangle \cong W^{-1}R$.

(6) Show that any finite integral domain is a division ring.

(7) Do either of these distributive laws, for ideals I,J,K in a commutative ring R hold? $I\cdot(J+K)=I\cdot J+I\cdot K$ $I\cap(J+K)=I\cap J+I\cap K$

(8) Suppose R is a commutative ring and $I, J \subseteq R$ are ideals such that I + J = R (in this case we say the ideals are (strongly) relatively prime). Prove that $I \cap J = I \cdot J$. What does this say for ideals in \mathbb{Z} ?

(9) Suppose that R is a ring with ideals I_1, I_2, \ldots, I_k ideals such that $I_i + I_j = R$ for $i \neq j$. Show that the system of equations

$$\begin{array}{rclrcl}
x + I_1 &=& a_1 + I_1 \\
x + I_2 &=& a_2 + I_2 \\
& \dots &=& \dots \\
x + I_k &=& a_k + I_k
\end{array}$$

always has a solution.

Hint: First prove the case when k = 2 and show that two solutions differ by an element of $I_1 \cap I_2$. You can then do induction and at some point you'll also want to show that $I_j + \bigcap_{i \neq j} I_i = R$.

(10) Suppose that $I_1, I_2, \ldots, I_k \subseteq R$ are ideals such that $I_i + I_j = R$ for $i \neq j$. Prove that we have an isomorphism:

 $R/(I_1 \cap I_2 \cap \dots \cap I_k) \cong (R/I_1) \oplus (R/I_2) \oplus \dots \oplus (R/I_k)$